References
Abramowitz, G.,, 2012: Towards a public, standardized, diagnostic benchmarking system for land surface models. Geosci. Model Dev., 5, 819–827, doi:10.5194/gmd-5-819-2012.5, 819–827, doi:10.5194/gmd-5-819-2012.
Best, M.J., Abramowitz, G., Johnson, H.R., Pitman, A.J., Balsamo, G., Boone, A., Cuntz, M., Decharme, B., Dirmeyer, P.A., Dong, J. and Ek, M., 2015. The plumbing of land surface models: benchmarking model performance. Journal of Hydrometeorology16 (3), 1425-1442.
Beven, K J, 2006, A manifesto for the equifinality thesis, J. Hydrology , 320, 18-36.
Beven, K J, 2007, Working towards integrated environmental models of everywhere: uncertainty, data, and modelling as a learning process.Hydrology and Earth System Science, 11(1), 460-467.
Beven, K J, 2018, On hypothesis testing in hydrology: why falsification of models is still a really good idea, WIRES Water, 5(3), e1278, DOI: 10.1002/wat2.1278.
Beven, K. J., 2019, Towards a methodology for testing models as hypotheses in the inexact sciences, Proceedings Royal Society A, 475 (2224), 20180862, doi: 10.1098/rspa.2018.0862
Beven, K. J., 2020, Deep Learning, Hydrological Processes and the Uniqueness of Place, Hydrological Processes, 34(16), 3608-3613, doi: 10.1002/hyp.13805
Beven, K.J. and A.M. Binley (1992), The future of distributed models: model calibration and uncertainty prediction, Hydrological Processes , 6, 279-298.
Beven, K J and Freer, J, 2001 Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental systems, J. Hydrology, 249, 11-29.
Beven, K., Smith, P. J., and Wood, A., 2011, On the colour and spin of epistemic error (and what we might do about it), Hydrol. Earth Syst. Sci., 15, 3123-3133, doi: 10.5194/hess-15-3123-2011.
Beven, K J and Westerberg, I, 2011, On red herrings and real herrings: disinformation and information in hydrological inference,Hydrological Processes (HPToday) , 25 , 1676–1680, DOI: 10.1002/hyp.7963.
Beven, K. J. and Alcock, R., 2012, Modelling everything everywhere: a new approach to decision making for water management under uncertainty, Freshwater Biology, 56, 124-132, doi:10.1111/j.1365-2427.2011.02592.x
Beven, K. J., and Smith, P. J., 2015, Concepts of Information Content and Likelihood in Parameter Calibration for Hydrological Simulation Models, ASCE J. Hydrol. Eng ., 20 (1), p.A4014010, doi: 10.1061/(ASCE)HE.1943-5584.0000991.
Beven, K. J. and Lane, S., 2019, Invalidation of models and fitness-for-purpose: a rejectionist approach, Chapter 6 in: Beisbart, C. & Saam, N. J. (eds.), Computer Simulation Validation - Fundamental Concepts, Methodological Frameworks, and Philosophical Perspectives , Cham: Springer. 145-171.
Beven, K. J. and Lane, S., 2022. On (in)validating environmental models. 1. Principles for formulating a Turing-like Test for determining when a model is fit-for purpose. Hydrological Processes , 36(10), e14704,https://doi.org/10.1002/hyp.14704.
Beven, K. J., Lane, S., Page, T., Hankin, B, Kretzschmar, A., Smith, P. J., Chappell, N., 2022a, On (in)validating environmental models. 2. Implementation of the Turing-like Test to modelling hydrological processes, Hydrological Processes , 36(10), e14703, https://doi.org/10.1002/hyp.14703.
Beven, K. J., Page, T., Hankin, B, Smith, P.J., Kretzschmar, A., Mindham, D., Chappell, N., 2022b, Deciding on fitness-for-purpose - of models and of natural flood management, Hydrological Processes, 36 (11), e14752, https://doi.org/10.1002/hyp.14752.
Birkel, C. and Soulsby, C., 2015. Advancing tracer‐aided rainfall–runoff modelling: A review of progress, problems and unrealised potential. Hydrological Processes29 (25), 5227-5240.
Brazier, R. E., Beven, K. J., Freer, J. and Rowan, J. S., 2000, Equifinality and uncertainty in physically-based soil erosion models: application of the GLUE methodology to WEPP, the Water Erosion Prediction Project – for sites in the UK and USA, Earth Surf. Process. Landf. , 25, 825-845.
Buytaert, W and Beven, K J, 2009, Regionalisation as a learning process,Water Resour. Res. , 45, W11419, doi:10.1029/2008WR007359.
Cavadias, G. and Morin, G., 1986. The combination of simulated discharges of hydrological models: Application to the WMO intercomparison of conceptual models of snowmelt runoff. Hydrology Research17 (1), 21-32.
Choi, H T and Beven, K J (2007) Multi-period and Multi-criteria Model Conditioning to Reduce Prediction Uncertainty in Distributed Rainfall-Runoff Modelling within GLUE framework, J. Hydrology,332 (3-4): 316-336
Clarke, R.T., 1999. Uncertainty in the estimation of mean annual flood due to rating-curve indefinition. Journal of Hydrology222 (1-4), 185-190
Costa, J.E. and Jarrett, R.D., 2008. An evaluation of selected extraordinary floods in the United States reported by the US Geological Survey and implications for future advancement of flood science  (No. 2008-5164). US Geological Survey.
Coxon, G., Freer, J., Wagener, T., Odoni, N.A. and Clark, M., 2014. Diagnostic evaluation of multiple hypotheses of hydrological behaviour in a limits‐of‐acceptability framework for 24 UK catchments. Hydrological Processes28 (25), 6135-6150.
Coxon, G., Freer, J., Westerberg, I.K., Wagener, T., Woods, R. and Smith, P.J., 2015. A novel framework for discharge uncertainty quantification applied to 500 UK gauging stations. Water resources research51 (7), 5531-5546.
Crochemore, L., Perrin, C., Andréassian, V., Ehret, U., Seibert, S.P., Grimaldi, S., Gupta, H. and Paturel, J.E., 2015. Comparing expert judgement and numerical criteria for hydrograph evaluation. Hydrological sciences journal60 (3), 402-423.
Dean, S., Freer, J., Beven, K., Wade, A.J. and Butterfield, D., 2009. Uncertainty assessment of a process-based integrated catchment model of phosphorus. Stochastic Environmental Research and Risk Assessment23 , 991-1010.
Delavau, C. J., Stadnyk, T., and Holmes, T., 2017, Examining the impacts of precipitation isotope input (δ 18Oppt) on distributed, tracer-aided hydrological modelling, Hydrol. Earth Syst. Sci., 21, 2595–2614, https://doi.org/10.5194/hess-21-2595-2017.
Domeneghetti, A., Castellarin, A. and Brath, A., 2012. Assessing rating-curve uncertainty and its effects on hydraulic model calibration. Hydrology and Earth System Sciences16 (4), 1191-1202.
Environment Agency. (2010). Benchmarking of 2D hydraulic modelling packages (Report No. SC080035/SR2), Environment Agency, Bristol, UK.
Environment Agency. (2013). Benchmarking the latest generation of 2D hydraulic modelling packages (Final Technical Report Project SC120002). Environment Agency, Bristol, UK.
Environment Agency. (2022). Flood Hydrology Roadmap. (Report No. FRS18196/R1). Environment Agency, Bristol, UK.
Frame, J., Ullrich, P., Nearing, G., Gupta, H. and Kratzert, F., 2023. On strictly enforced mass conservation constraints for modeling the rainfall-runoff process. Hydrological Processes, 37(3), e14847, https://doi.org/10.1002/hyp.14847
Gauch, M., Kratzert, F., Gilon, O., Gupta, H., Mai, J., Nearing, G., Tolson, B., Hochreiter, S. and Klotz, D., 2022. In Defense of Metrics: Metrics Sufficiently Encode Typical Human Preferences Regarding Hydrological Model Performance, eartharxiv,https://doi.org/10.31223/X52938
Georgakakos, K.P. and Smith, G.F., 1990. On improved hydrologic forecasting—Results from a WMO real-time forecasting experiment. Journal of Hydrology114 (1-2), 17-45.
Harmel, R. D., Smith, D. R., King, K. W., & Slade, R. M. (2009). Estimating storm discharge and water quality data uncertainty: A software tool for monitoring and modeling applications. Environmental Modelling &Software, 24, 832e842.
Henderson-Sellers, A., K. McGuffie, and A. J. Pitman. ”The project for intercomparison of land-surface parametrization schemes (PILPS): 1992 to 1995.” Climate Dynamics  12 (1996): 849-859.
Hollaway MJ, Beven KJ, Benskin C.McW.H., Collins, A.L., Evans, R., Falloon, P.D., Forber, K.J., Hiscock, K.M., Kahana, R., Macleod, C.J.A., Ockenden, M.C., Villamizar, M.L., Wearing, C., Withers, P.J.A., Zhou, J.G., Barber, N. J. and Haygarth, P.M. 2018a, A method for uncertainty constraint of catchment discharge and phosphorus load estimates. Hydrological Processes . 32:2779- 2787. https://doi.org/10.1002/hyp.13217
Hollaway, M.J., Beven, K.J., Benskin, C.McW.H., Collins, A.L., Evans, R., Falloon, P.D., Forber, K.J., Hiscock, K.M., Kahana, R., Macleod, C.J.A., Ockenden, M.C., Villamizar, M.L., Wearing, C., Withers, P.J.A., Zhou, J.G., Haygarth, P.M., 2018b, Evaluating a processed based water quality model on a UK headwater catchment: what can we learn from a ‘limits of acceptability’ uncertainty framework?, J. Hydrology. 558: 607-624. Doi: 10.1016/j.jhydrol.2018.01.063.
Knoben, W.J., Freer, J.E. and Woods, R.A., 2019. Inherent benchmark or not? Comparing Nash–Sutcliffe and Kling–Gupta efficiency scores. Hydrology and Earth System Sciences23 (10), 4323-4331.
Kollet, S., Sulis, M., Maxwell, R.M., Paniconi, C., Putti, M., Bertoldi, G., Coon, E.T., Cordano, E., Endrizzi, S., Kikinzon, E. and Mouche, E., 2017. The integrated hydrologic model intercomparison project, IH‐MIP2: A second set of benchmark results to diagnose integrated hydrology and feedbacks. Water Resources Research53 (1), .867-890.
Krueger, T., Quinton, J.N., Freer, J., Macleod, C.J., Bilotta, G.S., Brazier, R.E., Butler, P. and Haygarth, P.M., 2009. Uncertainties in data and models to describe event dynamics of agricultural sediment and phosphorus transfer. Journal of Environmental Quality38 (3), 1137-1148.
Lane, R.A., Coxon, G., Freer, J.E., Wagener, T., Johnes, P.J., Bloomfield, J.P., Greene, S., Macleod, C.J. and Reaney, S.M., 2019. Benchmarking the predictive capability of hydrological models for river flow and flood peak predictions across over 1000 catchments in Great Britain. Hydrology and Earth System Sciences23 (10), 4011-4032.
Lees, T., Buechel, M., Anderson, B., Slater, L., Reece, S., Coxon, G. and Dadson, S.J., 2021. Benchmarking data-driven rainfall–runoff models in Great Britain: a comparison of long short-term memory (LSTM)-based models with four lumped conceptual models. Hydrology and Earth System Sciences25 (10),.5517-5534.
Liu, Y, Freer, JE, Beven, KJ and Matgen, P, 2009, Towards a limits of acceptability approach to the calibration of hydrological models: extending observation error, J. Hydrol. , 367:93-103, doi:10.1016/j.jhydrol.2009.01.016.
Mai, J., Shen, H., Tolson, B.A., Gaborit, É., Arsenault, R., Craig, J.R., Fortin, V., Fry, L.M., Gauch, M., Klotz, D. and Kratzert, F., 2022. The Great Lakes Runoff Intercomparison Project Phase 4: the Great Lakes (GRIP-GL). Hydrology and Earth System Sciences26 (13), 3537-3572.
Maxwell, R.M., Putti, M., Meyerhoff, S., Delfs, J.O., Ferguson, I.M., Ivanov, V., Kim, J., Kolditz, O., Kollet, S.J., Kumar, M. and Lopez, S., 2014. Surface‐subsurface model intercomparison: A first set of benchmark results to diagnose integrated hydrology and feedbacks. Water resources research50 (2), 1531-1549.
McMillan, H.K. and Westerberg, I.K., 2015. Rating curve estimation under epistemic uncertainty. Hydrological Processes29 (7), 1873-1882.
McMillan, H.K., Westerberg, I.K. and Krueger, T., 2018. Hydrological data uncertainty and its implications. Wiley Interdisciplinary Reviews: Water5 (6), p.e1319.
Nearing, G.S., Mocko, D.M., Peters-Lidard, C.D., Kumar, S.V. and Xia, Y., 2016. Benchmarking NLDAS-2 soil moisture and evapotranspiration to separate uncertainty contributions. Journal of hydrometeorology17 (3), 745-759.
Nearing, G.S., Ruddell, B.L., Clark, M.P., Nijssen, B. and Peters-Lidard, C., 2018. Benchmarking and process diagnostics of land models. Journal of Hydrometeorology19 (11), 1835-1852.
Nearing, G.S., Kratzert, F., Sampson, A.K., Pelissier, C.S., Klotz, D., Frame, J.M., Prieto, C. and Gupta, H.V., 2021. What role does hydrological science play in the age of machine learning?. Water Resources Research57 (3), p.e2020WR028091.
Newman, A.J., Mizukami, N., Clark, M.P., Wood, A.W., Nijssen, B. and Nearing, G., 2017. Benchmarking of a physically based hydrologic model. Journal of Hydrometeorology18 (8), 2215-2225.
Page, T., Beven, K.J. and Freer, J., 2007, Modelling the Chloride Signal at the Plynlimon Catchments, Wales Using a Modified Dynamic TOPMODEL.Hydrological Processes, 21, 292-307.
Pappenberger, F., Ramos, M.H., Cloke, H.L., Wetterhall, F., Alfieri, L., Bogner, K., Mueller, A. and Salamon, P., 2015. How do I know if my forecasts are better? Using benchmarks in hydrological ensemble prediction. Journal of Hydrology522 , 697-713.
Perrin, C., Michel, C. and Andréassian, V., 2001. Does a large number of parameters enhance model performance? Comparative assessment of common catchment model structures on 429 catchments. Journal of hydrology242 (3-4), 275-301.
Sittner, W.T., 1976. WMO project on intercomparison of conceptual models used in hydrological forecasting. Hydrological Sciences Journal21 (1), 203-213.
Smith, A., Tetzlaff, D., Kleine, L., Maneta, M. and Soulsby, C., 2021. Quantifying the effects of land use and model scale on water partitioning and water ages using tracer-aided ecohydrological models. Hydrology and Earth System Sciences25 (4), 2239-2259.
Smith, M.B., Seo, D.J., Koren, V.I., Reed, S.M., Zhang, Z., Duan, Q., Moreda, F. and Cong, S., 2004. The distributed model intercomparison project (DMIP): motivation and experiment design. Journal of Hydrology298 (1-4), 4-26.
Smith, M.B., Koren, V., Reed, S., Zhang, Z., Zhang, Y., Moreda, F., Cui, Z., Mizukami, N., Anderson, E.A. and Cosgrove, B.A., 2012. The distributed model intercomparison project–Phase 2: Motivation and design of the Oklahoma experiments. Journal of Hydrology418 , 3-16.
Smith, M.B., Koren, V., Zhang, Z., Moreda, F., Cui, Z., Cosgrove, B., Mizukami, N., Kitzmiller, D., Ding, F., Reed, S. and Anderson, E., 2013. The distributed model intercomparison project–Phase 2: Experiment design and summary results of the western basin experiments. Journal of Hydrology507 , 300-329.
Stevenson, J.L., Birkel, C., Neill, A.J., Tetzlaff, D. and Soulsby, C., 2021. Effects of streamflow isotope sampling strategies on the calibration of a tracer‐aided rainfall‐runoff model. Hydrological Processes35 (6), p.e14223.
Westerberg, I., Guerrero, J.L., Seibert, J., Beven, K.J. and Halldin, S., 2011. Stage‐discharge uncertainty derived with a non‐stationary rating curve in the Choluteca River, Honduras. Hydrological Processes25 (4), 603-613.
Westerberg, I.K., Sikorska-Senoner, A.E., Viviroli, D., Vis, M. and Seibert, J., 2022. Hydrological model calibration with uncertain discharge data. Hydrological Sciences Journal67 (16), 2441-2456.
Wi, S. and Steinschneider, S., 2022. Assessing the physical realism of deep learning hydrologic model projections under climate change. Water Resources Research58 (9), p.e2022WR032123.