References
1. de Almeida JR, Byrd JK, Wu R, et al. A systematic review of transoral
robotic surgery and radiotherapy for early oropharynx cancer: a
systematic review. Laryngoscope. 2014;124(9):2096-2102.
2. Moore EJ, Olsen KD, Kasperbauer JL. Transoral robotic surgery for
oropharyngeal squamous cell carcinoma: a prospective study of
feasibility and functional outcomes. Laryngoscope.2009;119(11):2156-2164.
3. Eisbruch A, Harris J, Garden AS, et al. Multi-institutional trial of
accelerated hypofractionated intensity-modulated radiation therapy for
early-stage oropharyngeal cancer (RTOG 00-22). Int J Radiat Oncol
Biol Phys. 2010;76(5):1333-1338.
4. Pedro C, Mira B, Silva P, et al. Surgery vs. primary radiotherapy in
early-stage oropharyngeal cancer. Clin Transl Radiat Oncol.2018;9:18-22.
5. Hinton G. Deep learning—a technology with the potential to
transform health care. JAMA. 2018.
6. Naylor C. On the prospects for a (deep) learning health care system.JAMA. 2018.
7. Kang J, Schwartz R, Flickinger J, Beriwal S. Machine Learning
Approaches for Predicting Radiation Therapy Outcomes: A Clinician’s
Perspective. Int J Radiat Oncol Biol Phys. 2015;93(5):1127-1135.
8. Bzdok D, Altman N, Krzywinski M. Statistics versus machine learning.Nat Methods. 2018;15(4):233-234.
9. Bilimoria KY, Stewart AK, Winchester DP, Ko CY. The National Cancer
Data Base: a powerful initiative to improve cancer care in the United
States. Ann Surg Oncol. 2008;15(3):683-690.
10. Deyo RA, Cherkin DC, Ciol MA. Adapting a clinical comorbidity index
for use with ICD-9-CM administrative databases. J Clin Epidemiol.1992;45(6):613-619.
11. Edge SB, Compton CC. The American Joint Committee on Cancer: the 7th
edition of the AJCC cancer staging manual and the future of TNM.Ann Surg Oncol. 2010;17(6):1471-1474.
12. Bur AM, Shew M, New J. Artificial Intelligence for the
Otolaryngologist: A State of the Art Review. Otolaryngol Head Neck
Surg. 2019;160(4):603-611.
13. Karadaghy OA, Shew M, New J, Bur AM. Development and Assessment of a
Machine Learning Model to Help Predict Survival Among Patients With Oral
Squamous Cell Carcinoma. JAMA Otolaryngol Head Neck Surg. 2019.
14. Steyerberg EW, Vergouwe Y. Towards better clinical prediction
models: seven steps for development and an ABCD for validation.Eur Heart J. 2014;35(29):1925-1931.
15. Liederbach E, Lewis CM, Yao K, et al. A Contemporary Analysis of
Surgical Trends in the Treatment of Squamous Cell Carcinoma of the
Oropharynx from 1998 to 2012: A Report from the National Cancer
Database. Ann Surg Oncol. 2015;22(13):4422-4431.
16. Cruz JA, Wishart DS. Applications of machine learning in cancer
prediction and prognosis. Cancer Inform. 2007;2:59-77.
17. Shew M, New J, Bur AM. Machine Learning to Predict Delays in
Adjuvant Radiation following Surgery for Head and Neck Cancer.Otolaryngol Head Neck Surg. 2019:194599818823200.
18. Liu J, Wang X, Cheng Y, Zhang L. Tumor gene expression data
classification via sample expansion-based deep learning.Oncotarget. 2017;8(65):109646-109660.
19. Pieszko K, Hiczkiewicz J, Budzianowski P, et al. Predicting
Long-Term Mortality after Acute Coronary Syndrome Using Machine Learning
Techniques and Hematological Markers. Dis Markers.2019;2019:9056402.
20. Subbarayan RS, Koester L, Villwock MR, Villwock J. Proliferation and
Contributions of National Database Studies in Otolaryngology Literature
Published in the United States: 2005-2016. Ann Otol Rhinol
Laryngol. 2018;127(9):643-648.
21. Christodoulou E, Ma J, Collins GS, Steyerberg EW, Verbakel JY, Van
Calster B. A systematic review shows no performance benefit of machine
learning over logistic regression for clinical prediction models.J Clin Epidemiol. 2019;110:12-22.
22. Bur AM, Holcomb A, Goodwin S, et al. Machine learning to predict
occult nodal metastasis in early oral squamous cell carcinoma.Oral Oncology. 2019;92:20-25.
23. Boffa DJ, Rosen JE, Mallin K, et al. Using the National Cancer
Database for Outcomes Research: A Review. JAMA Oncol.2017;3(12):1722-1728.