References
1 Caraballo, H. and King, K. (2014) Emergency department management of
mosquito-borne illness: Malaria, dengue, and West Nile virus.Emerg. Med. Pract. 16, 1–23
2 Tanser, F.C. et al. (2003) Potential effect of climate change
on malaria transmission in Africa. Lancet 362, 1792–1798
3 World Health Organizaton (2015) World Malaria Report ,
4 Githeko, A. et al. (2000) Climate change and vector-borne
diseases: A regional analysis. Bull. World Health Organ. 78,
1136–1147
5 Dondorp, A.M. et al. (2009) Artemisinin resistance in
Plasmodium falciparum malaria. N. Engl. J. Med. 361, 455–467
6 Benelli, G. et al. (2016) Biological control of mosquito
vectors: Past, present, and future. Insects 7, 52
7 Servick, K. (2016) , Brazil will release billions of lab-grown
mosquitoes to combat infectious disease. Will it work? , Science .
[Online]. Available: https://bit.ly/2DMXyHz. [Accessed:
25-Jun-2018]
8 Lambrechts, L. et al. (2015) Assessing the epidemiological
effect of Wolbachia for dengue control. Lancet Infect. Dis. 15,
862–866
9 O’Neill, S. (2015) The dengue stopper. Sci. Am. 312, 72–77
10 David, A.S. et al. (2013) Release of genetically engineered
insects: A framework to identify potential ecological effects.Ecol. Evol. 3, 4000–4015
11 Zwiebel, L.J. and Takken, W. (2004) Olfactory regulation of
mosquito-host interactions. Insect Biochem. Mol. Biol. 34,
645–652
12 Nguyen, Q.-B.D. et al. (2018) Insect repellents: An updated
review for the clinician. J. Am. Acad. Dermatol. DOI:
10.1016/j.jaad.2018.10.053.
13 Win, H.O. et al. (2018) Effectiveness of repellent delivered
through village health volunteers on malaria incidence in villages in
South-East Myanmar: A stepped-wedge cluster-randomised controlled trial
protocol. BMC Infect. Dis. 18, 1–10
14 Robbins, P.J. and Cherniack, M.G. (1986) Review of the
biodistribution and toxicity of the insect repellent
N,N‐diethyl‐m‐toluamide (DEET). J. Toxicol. Environ. Health 18,
503–525
15 Schoenig, G.P. et al. (1999) Evaluation of the chronic
toxicity and oncogenicity of N,N-diethyl-m-toluamide (DEET).Toxicol. Sci. 47, 99–109
16 DeGennaro, M. et al. (2013) Orco mutant mosquitoes lose strong
preference for humans and are not repelled by volatile DEET.Nature 498, 487–491
17 Kröber, T. et al. (2010) An in vitro assay for testing
mosquito repellents employing a warm body and carbon dioxide as a
behavioral activator. J. Am. Mosq. Control Assoc. 26, 381–386
18 Leal, W.S. (2013) Odorant reception in insects: Roles of receptors,
binding proteins and degrading enzymes. Annu. Rev. Entomol. 58,
373–391
19 Wang, G. et al. (2010) Molecular basis of odor coding in the
malaria vector mosquito Anopheles gambiae. Proc Natl Acad Sci U S
A 107, 4418–4423
20 Bohbot, J. et al. (2007) Molecular characterization of the
Aedes aegypti odorant receptor gene family. Insect Mol. Biol. 16,
525–537
21 White, N.J. et al. (2014) Malaria. Lancet 383, 723–735
22 Wicher, D. (2015) Olfactory signaling in insects , 130Elsevier
Inc.
23 Bohbot, J.D. and Pitts, R.J. (2015) The narrowing olfactory landscape
of insect odorant receptors. Front. Ecol. Evol. 3, 1–10
24 Wicher, D. et al. (2008) Drosophila odorant receptors are both
ligand-gated and cyclic-nucleotide-activated cation channels.Nature 452, 1007–1110
25 Mukunda, L. et al. (2018) Dimerisation of the Drosophila
odorant coreceptor Orco. Front. Cell. Neurosci. 8, 261
26 Rinker, D.C. et al. (2013) Blood meal-induced changes to
antennal transcriptome profiles reveal shifts in odor sensitivities in
Anopheles gambiae. Proc. Natl. Acad. Sci. U. S. A. 110,
8260–8265
27 Xiao, S. et al. (2019) Robust olfactory responses in the
absence of odorant binding proteins. Elife
28 Butterwick, J.A. et al. (2018) Cryo-EM structure of the insect
olfactory receptor Orco. Nature 560, 447–452
29 Jones, P.L. et al. (2011) Functional agonism of insect odorant
receptor ion channels. Proc Natl Acad Sci U S A 108, 8821–8825
30 Fleischer, J. et al. (2018) Access to the odor world:
olfactory receptors and their role for signal transduction in insects.Cell. Mol. Life Sci. 75, 485–508
31 Meijerink, J. et al. (2001) Olfactory receptors on the
antennae of the malaria mosquito Anopheles gambiae are sensitive to
ammonia and other sweat-borne components. J. Insect Physiol. 47,
455–464
32 Rinker, D.C. et al. (2012) Novel high-throughput screens of
Anopheles gambiae odorant receptors reveal candidate behaviour-modifying
chemicals for mosquitoes. Physiol. Entomol. 37, 33–41
33 Krettler, C. et al. (2013) Expression of GPCRs in pichia
pastoris for structural studies , 520
34 Byrne, B. (2015) Pichia pastoris as an expression host for membrane
protein structural biology. Curr. Opin. Struct. Biol. 32, 9–17
35 Higgins, D.R. (2004) Overview of protein expression in Pichia
pastoris. Curr. Protoc. Protein Sci.
36 Ahmad, M. et al. (2014) Protein expression in Pichia pastoris:
Recent achievements and perspectives for heterologous protein
production. Appl. Microbiol. Biotechnol. 98, 5301–5317
37 Cervera, L. et al. (2011) Optimization of HEK 293 cell growth
by addition of non-animal derived components using design of
experiments. BMC Proc. 5, P126
38 Betenbaugh, M.J. et al. (1991) Production of recombinant
proteins by Baculovirus-infected Gypsy moth cells. Biotechnol.
Prog. 7, 462–467
39 Fukutani, Y. et al. (2012) An improved bioluminescence-based
signaling assay for odor sensing with a yeast expressing a chimeric
olfactory receptor. Biotechnol. Bioeng. 109, 3143–3151
40 Fukutani, Y. et al. (2015) Improving the odorant sensitivity
of olfactory receptor-expressing yeast with accessory proteins.Anal. Biochem. 471, 1–8
41 Radhika, V. et al. (2007) Chemical sensing of DNT by
engineered olfactory yeast strain. Nat. Chem. Biol. 3, 325–330
42 Fukutani, Y. et al. (2012) The N-terminal replacement of an
olfactory receptor for the development of a yeast-based biomimetic odor
sensor. Biotechnol. Bioeng. 109, 205–212
43 Link, A.J. et al. (2008) Efficient production of
membrane-integrated and detergent-soluble G protein-coupled receptors in
Escherichia coli. Protein Sci. 17, 1857–1863
44 Chang, C.-H. et al. (2018) Enhancing the efficiency of the
Pichia pastoris AOX1 promoter via the synthetic positive feedback
circuit of transcription factor Mxr1. BMC Biotechnol. 18, 81
45 Venkatachalam, K. and Montell, C. (2007) TRP Channels. Annu Rev
Biochem.
46 Kwon, Y. et al. (2010) Drosophila TRPA1 channel is required to
avoid the naturally occurring insect repellent citronellal. Curr.
Biol. 20, 1672–1678
47 Salgado, V.L. (2017) Insect TRP channels as targets for insecticides
and repellents. J. Pestic. Sci. 42, 1–6
48 Xu, P. et al. (2015) 1-Octen-3-ol: The attractant that repels.F1000Research 4, 156
49 Syed, Z. and Leal, W.S. (2008) Mosquitoes smell and avoid the insect
repellent DEET. Proc. Natl. Acad. Sci. United States Am. 105,
13598–13603
50 Afify, A. et al. (2019) Commonly used insect repellents hide
human odors from Anopheles mosquitoes. Curr. Biol. 29, 3669–3680
51 Beavers, J.B. et al. (1982) Diaprepes abbreviatus: Laboratory
and field behavioral and attractancy studies. Environ. Entomol.11, 436–439
52 Carey, A.F. et al. (2010) Odorant reception in the malaria
mosquito Anopheles gambiae. Nature 464, 66–71
53 Miseta, A. et al. (2002) The Golgi apparatus plays a
significant role in the maintenance of Ca2+ homeostasis in the VPS33Δ
vacuolar biogenesis mutant of Saccharomyces cerevisiae. J. Biol.
Chem. 274, 5939–5947
54 Cui, J. et al. (2009) Simulating calcium influx and free
calcium concentrations in yeast. Cell Calcium 45, 123–132
55 Jordan, M.D. and Challiss, R.A.J. (2011) Expression of insect
olfactory receptors for biosensing on SAW sensors. Procedia
Comput. Sci. 7, 281–282
56 Kiely, A. et al. (2007) Functional analysis of a Drosophila
melanogaster olfactory receptor expressed in Sf9 cells. J.
Neurosci. Methods 159, 189–194
57 Misawa, N. et al. (2010) Highly sensitive and selective
odorant sensor using living cells expressing insect olfactory receptors.Proc Natl Acad Sci U S A 107, 4–6
58 Chen, S. and Luetje, C.W. (2012) Identification of new agonists and
antagonists of the insect odorant receptor co-receptor subunit.PLoS One 7, 1–9
59 Panagiotou, V. et al. (2011) Generation and screening of
Pichia pastoris strains with enhanced protein production by use of
microengraving. Appl. Environ. Microbiol. 77, 3154–3156