References
1 Caraballo, H. and King, K. (2014) Emergency department management of mosquito-borne illness: Malaria, dengue, and West Nile virus.Emerg. Med. Pract. 16, 1–23
2 Tanser, F.C. et al. (2003) Potential effect of climate change on malaria transmission in Africa. Lancet 362, 1792–1798
3 World Health Organizaton (2015) World Malaria Report ,
4 Githeko, A. et al. (2000) Climate change and vector-borne diseases: A regional analysis. Bull. World Health Organ. 78, 1136–1147
5 Dondorp, A.M. et al. (2009) Artemisinin resistance in Plasmodium falciparum malaria. N. Engl. J. Med. 361, 455–467
6 Benelli, G. et al. (2016) Biological control of mosquito vectors: Past, present, and future. Insects 7, 52
7 Servick, K. (2016) , Brazil will release billions of lab-grown mosquitoes to combat infectious disease. Will it work? , Science . [Online]. Available: https://bit.ly/2DMXyHz. [Accessed: 25-Jun-2018]
8 Lambrechts, L. et al. (2015) Assessing the epidemiological effect of Wolbachia for dengue control. Lancet Infect. Dis. 15, 862–866
9 O’Neill, S. (2015) The dengue stopper. Sci. Am. 312, 72–77
10 David, A.S. et al. (2013) Release of genetically engineered insects: A framework to identify potential ecological effects.Ecol. Evol. 3, 4000–4015
11 Zwiebel, L.J. and Takken, W. (2004) Olfactory regulation of mosquito-host interactions. Insect Biochem. Mol. Biol. 34, 645–652
12 Nguyen, Q.-B.D. et al. (2018) Insect repellents: An updated review for the clinician. J. Am. Acad. Dermatol. DOI: 10.1016/j.jaad.2018.10.053.
13 Win, H.O. et al. (2018) Effectiveness of repellent delivered through village health volunteers on malaria incidence in villages in South-East Myanmar: A stepped-wedge cluster-randomised controlled trial protocol. BMC Infect. Dis. 18, 1–10
14 Robbins, P.J. and Cherniack, M.G. (1986) Review of the biodistribution and toxicity of the insect repellent N,N‐diethyl‐m‐toluamide (DEET). J. Toxicol. Environ. Health 18, 503–525
15 Schoenig, G.P. et al. (1999) Evaluation of the chronic toxicity and oncogenicity of N,N-diethyl-m-toluamide (DEET).Toxicol. Sci. 47, 99–109
16 DeGennaro, M. et al. (2013) Orco mutant mosquitoes lose strong preference for humans and are not repelled by volatile DEET.Nature 498, 487–491
17 Kröber, T. et al. (2010) An in vitro assay for testing mosquito repellents employing a warm body and carbon dioxide as a behavioral activator. J. Am. Mosq. Control Assoc. 26, 381–386
18 Leal, W.S. (2013) Odorant reception in insects: Roles of receptors, binding proteins and degrading enzymes. Annu. Rev. Entomol. 58, 373–391
19 Wang, G. et al. (2010) Molecular basis of odor coding in the malaria vector mosquito Anopheles gambiae. Proc Natl Acad Sci U S A 107, 4418–4423
20 Bohbot, J. et al. (2007) Molecular characterization of the Aedes aegypti odorant receptor gene family. Insect Mol. Biol. 16, 525–537
21 White, N.J. et al. (2014) Malaria. Lancet 383, 723–735
22 Wicher, D. (2015) Olfactory signaling in insects , 130Elsevier Inc.
23 Bohbot, J.D. and Pitts, R.J. (2015) The narrowing olfactory landscape of insect odorant receptors. Front. Ecol. Evol. 3, 1–10
24 Wicher, D. et al. (2008) Drosophila odorant receptors are both ligand-gated and cyclic-nucleotide-activated cation channels.Nature 452, 1007–1110
25 Mukunda, L. et al. (2018) Dimerisation of the Drosophila odorant coreceptor Orco. Front. Cell. Neurosci. 8, 261
26 Rinker, D.C. et al. (2013) Blood meal-induced changes to antennal transcriptome profiles reveal shifts in odor sensitivities in Anopheles gambiae. Proc. Natl. Acad. Sci. U. S. A. 110, 8260–8265
27 Xiao, S. et al. (2019) Robust olfactory responses in the absence of odorant binding proteins. Elife
28 Butterwick, J.A. et al. (2018) Cryo-EM structure of the insect olfactory receptor Orco. Nature 560, 447–452
29 Jones, P.L. et al. (2011) Functional agonism of insect odorant receptor ion channels. Proc Natl Acad Sci U S A 108, 8821–8825
30 Fleischer, J. et al. (2018) Access to the odor world: olfactory receptors and their role for signal transduction in insects.Cell. Mol. Life Sci. 75, 485–508
31 Meijerink, J. et al. (2001) Olfactory receptors on the antennae of the malaria mosquito Anopheles gambiae are sensitive to ammonia and other sweat-borne components. J. Insect Physiol. 47, 455–464
32 Rinker, D.C. et al. (2012) Novel high-throughput screens of Anopheles gambiae odorant receptors reveal candidate behaviour-modifying chemicals for mosquitoes. Physiol. Entomol. 37, 33–41
33 Krettler, C. et al. (2013) Expression of GPCRs in pichia pastoris for structural studies , 520
34 Byrne, B. (2015) Pichia pastoris as an expression host for membrane protein structural biology. Curr. Opin. Struct. Biol. 32, 9–17
35 Higgins, D.R. (2004) Overview of protein expression in Pichia pastoris. Curr. Protoc. Protein Sci.
36 Ahmad, M. et al. (2014) Protein expression in Pichia pastoris: Recent achievements and perspectives for heterologous protein production. Appl. Microbiol. Biotechnol. 98, 5301–5317
37 Cervera, L. et al. (2011) Optimization of HEK 293 cell growth by addition of non-animal derived components using design of experiments. BMC Proc. 5, P126
38 Betenbaugh, M.J. et al. (1991) Production of recombinant proteins by Baculovirus-infected Gypsy moth cells. Biotechnol. Prog. 7, 462–467
39 Fukutani, Y. et al. (2012) An improved bioluminescence-based signaling assay for odor sensing with a yeast expressing a chimeric olfactory receptor. Biotechnol. Bioeng. 109, 3143–3151
40 Fukutani, Y. et al. (2015) Improving the odorant sensitivity of olfactory receptor-expressing yeast with accessory proteins.Anal. Biochem. 471, 1–8
41 Radhika, V. et al. (2007) Chemical sensing of DNT by engineered olfactory yeast strain. Nat. Chem. Biol. 3, 325–330
42 Fukutani, Y. et al. (2012) The N-terminal replacement of an olfactory receptor for the development of a yeast-based biomimetic odor sensor. Biotechnol. Bioeng. 109, 205–212
43 Link, A.J. et al. (2008) Efficient production of membrane-integrated and detergent-soluble G protein-coupled receptors in Escherichia coli. Protein Sci. 17, 1857–1863
44 Chang, C.-H. et al. (2018) Enhancing the efficiency of the Pichia pastoris AOX1 promoter via the synthetic positive feedback circuit of transcription factor Mxr1. BMC Biotechnol. 18, 81
45 Venkatachalam, K. and Montell, C. (2007) TRP Channels. Annu Rev Biochem.
46 Kwon, Y. et al. (2010) Drosophila TRPA1 channel is required to avoid the naturally occurring insect repellent citronellal. Curr. Biol. 20, 1672–1678
47 Salgado, V.L. (2017) Insect TRP channels as targets for insecticides and repellents. J. Pestic. Sci. 42, 1–6
48 Xu, P. et al. (2015) 1-Octen-3-ol: The attractant that repels.F1000Research 4, 156
49 Syed, Z. and Leal, W.S. (2008) Mosquitoes smell and avoid the insect repellent DEET. Proc. Natl. Acad. Sci. United States Am. 105, 13598–13603
50 Afify, A. et al. (2019) Commonly used insect repellents hide human odors from Anopheles mosquitoes. Curr. Biol. 29, 3669–3680
51 Beavers, J.B. et al. (1982) Diaprepes abbreviatus: Laboratory and field behavioral and attractancy studies. Environ. Entomol.11, 436–439
52 Carey, A.F. et al. (2010) Odorant reception in the malaria mosquito Anopheles gambiae. Nature 464, 66–71
53 Miseta, A. et al. (2002) The Golgi apparatus plays a significant role in the maintenance of Ca2+ homeostasis in the VPS33Δ vacuolar biogenesis mutant of Saccharomyces cerevisiae. J. Biol. Chem. 274, 5939–5947
54 Cui, J. et al. (2009) Simulating calcium influx and free calcium concentrations in yeast. Cell Calcium 45, 123–132
55 Jordan, M.D. and Challiss, R.A.J. (2011) Expression of insect olfactory receptors for biosensing on SAW sensors. Procedia Comput. Sci. 7, 281–282
56 Kiely, A. et al. (2007) Functional analysis of a Drosophila melanogaster olfactory receptor expressed in Sf9 cells. J. Neurosci. Methods 159, 189–194
57 Misawa, N. et al. (2010) Highly sensitive and selective odorant sensor using living cells expressing insect olfactory receptors.Proc Natl Acad Sci U S A 107, 4–6
58 Chen, S. and Luetje, C.W. (2012) Identification of new agonists and antagonists of the insect odorant receptor co-receptor subunit.PLoS One 7, 1–9
59 Panagiotou, V. et al. (2011) Generation and screening of Pichia pastoris strains with enhanced protein production by use of microengraving. Appl. Environ. Microbiol. 77, 3154–3156