References
Amphoux, A., Vialou, V., Drescher, E., Brüss, M., Mannoury La Cour, C.,
Rochat, C., et al. (2006). Differential pharmacological in vitro
properties of organic cation transporters and regional distribution in
rat brain. Neuropharmacology 50 : 941–52.
Andersen, J., Olsen, L., Hansen, K.B., Taboureau, O., Jørgensen, F.S.,
Jørgensen, A.M., et al. (2010). Mutational mapping and modeling of the
binding site for (S)-citalopram in the human serotonin transporter. J.
Biol. Chem. 285 : 2051–63.
Baumann, M.H., Bulling, S., Benaderet, T.S., Saha, K., Ayestas, M.A.,
Partilla, J.S., et al. (2014). Evidence for a role of
transporter-mediated currents in the depletion of brain serotonin
induced by serotonin transporter substrates. Neuropsychopharmacology39 : 1355–65.
Baumann, M.H., Walters, H.M., Niello, M., and Sitte, H.H. (2018).
Neuropharmacology of synthetic cathinones. In Handbook of Experimental
Pharmacology, (Springer New York LLC), pp 113–142.
Bonson, K.R., Dalton, T., and Chiapperino, D. (2019). Scheduling
synthetic cathinone substances under the Controlled Substances Act.
Psychopharmacology (Berl). 236 : 845–860.
Cheng, M.H., Block, E., Hu, F., Cobanoglu, M.C., Sorkin, A., and Bahar,
I. (2015). Insights into the Modulation of Dopamine Transporter Function
by Amphetamine, Orphenadrine, and Cocaine Binding. Front. Neurol.6 : 134.
Curtis, M.J., Alexander, S., Cirino, G., Docherty, J.R., George, C.H.,
Giembycz, M.A., et al. (2018). Experimental design and analysis and
their reporting II: updated and simplified guidance for authors and peer
reviewers. Br. J. Pharmacol. 175 : 987–993.
Drug Enforcement Administration, Department of Justice (2011). Schedules
of controlled substances: temporary placement of three synthetic
cathinones in Schedule I. Final Order. Fed. Regist. 76 : 65371–5.
Drug Enforcement Administration, Department of Justice (2014). Schedules
of controlled substances: temporary placement of 10 synthetic cathinones
into Schedule I. Final order. Fed. Regist. 79 : 12938–43.
Duart-Castells, L., López-Arnau, R., Vizcaíno, S., Camarasa, J., Pubill,
D., and Escubedo, E. (2019). 7,8-Dihydroxyflavone blocks the development
of behavioral sensitization to MDPV, but not to cocaine: Differential
role of the BDNF-TrkB pathway. Biochem. Pharmacol. 163 : 84–93.
Engel, K., and Wang, J. (2005). Interaction of organic cations with a
newly identified plasma membrane monoamine transporter. Mol. Pharmacol.68 : 1397–407.
Eshleman, A.J., Wolfrum, K.M., Reed, J.F., Kim, S.O., Swanson, T.,
Johnson, R.A., et al. (2017). Structure-activity relationships of
substituted cathinones, with transporter binding, uptake, and release.
J. Pharmacol. Exp. Ther. 360 : 33–47.
European Monitoring Centre for Drugs and Drug (2019). European Drug
Report.
Gannon, B.M., Baumann, M.H., Walther, D., Jimenez-Morigosa, C., Sulima,
A., Rice, K.C., et al. (2018). The abuse-related effects of
pyrrolidine-containing cathinones are related to their potency and
selectivity to inhibit the dopamine transporter. Neuropsychopharmacology43 : 2399–2407.
Gatch, M.B., Dolan, S.B., and Forster, M.J. (2015a). Comparative
Behavioral Pharmacology of Three Pyrrolidine-Containing Synthetic
Cathinone Derivatives. J. Pharmacol. Exp. Ther. 354 : 103–10.
Gatch, M.B., Rutledge, M.A., and Forster, M.J. (2015b). Discriminative
and locomotor effects of five synthetic cathinones in rats and mice.
Psychopharmacology (Berl). 232 : 1197–205.
Giannotti, G., Canazza, I., Caffino, L., Bilel, S., Ossato, A.,
Fumagalli, F., et al. (2017). The Cathinones MDPV and α-PVP Elicit
Different Behavioral and Molecular Effects Following Acute Exposure.
Neurotox. Res. 32 : 594–602.
Glennon, R.A., and Dukat, M. (2016). Structure-activity relationships of
synthetic cathinones. In Current Topics in Behavioral Neurosciences,
(Springer Verlag), pp 19–47.
Glennon, R.A., and Young, R. (2016). Neurobiology of
3,4-methylenedioxypyrovalerone (MDPV) and α-pyrrolidinovalerophenone
(α-PVP). Brain Res. Bull. 126 : 111–126.
Hevener, K.E., Ball, D.M., Buolamwini, J.K., and Lee, R.E. (2008).
Quantitative structure-activity relationship studies on nitrofuranyl
anti-tubercular agents. Bioorganic Med. Chem. 16 : 8042–8053.
Huskinson, S.L., Naylor, J.E., Townsend, E.A., Rowlett, J.K., Blough,
B.E., and Freeman, K.B. (2017). Self-administration and behavioral
economics of second-generation synthetic cathinones in male rats.
Psychopharmacology (Berl). 234 : 589–598.
Hwang, J.-Y., Kim, J.-S., Oh, J.-H., Hong, S.-I., Ma, S.-X., Jung,
Y.-H., et al. (2017). The new stimulant designer compound pentedrone
exhibits rewarding properties and affects dopaminergic activity. Addict.
Biol. 22 : 117–128.
Javadi-Paydar, M., Nguyen, J.D., Vandewater, S.A., Dickerson, T.J., and
Taffe, M.A. (2018). Locomotor and reinforcing effects of pentedrone,
pentylone and methylone in rats. Neuropharmacology 134 : 57–64.
Jonker, J.W., and Schinkel, A.H. (2004). Pharmacological and
Physiological Functions of the Polyspecific Organic Cation Transporters:
OCT1, 2, and 3 (SLC22A1-3). J. Pharmacol. Exp. Ther. 308 : 2–9.
Koepsell, H. (2020). Organic cation transporters in health and disease.
Pharmacol. Rev. 72 : 253–319.
Koepsell, H., and Endou, H. (2004). The SLC22 drug transporter family.
Pflugers Arch. Eur. J. Physiol. 447 : 666–676.
Koepsell, H., Gorboulev, V., and Arndt, P. (1999). Molecular
pharmacology of organic cation transporters in kidney. J. Membr. Biol.167 : 103–117.
Kolanos, R., Sakloth, F., Jain, A.D., Partilla, J.S., Baumann, M.H., and
Glennon, R.A. (2015). Structural Modification of the Designer Stimulant
α-Pyrrolidinovalerophenone (α-PVP) Influences Potency at Dopamine
Transporters. ACS Chem. Neurosci. 6 : 1726–1731.
Kolanos, R., Solis, E., Sakloth, F., Felice, L.J. De, and Glennon, R.A.
(2013). ‘Deconstruction’ of the abused synthetic cathinone
methylenedioxypyrovalerone (MDPV) and an examination of effects at the
human dopamine transporter. ACS Chem. Neurosci. 4 : 1524–9.
Lopez-Arnau, R., Duart-Castells, L., Aster, B., Camarasa, J., Escubedo,
E., and Pubill, D. (2019). Effects of MDPV on dopamine transporter
regulation in male rats. Comparison with cocaine. Psychopharmacology
(Berl). 236 : 925–938.
López-Arnau, R., Martínez-Clemente, J., Pubill, D., Escubedo, E., and
Camarasa, J. (2012). Comparative neuropharmacology of three
psychostimulant cathinone derivatives: butylone, mephedrone and
methylone. Br. J. Pharmacol. 167 : 407–20.
Majchrzak, M., Celiński, R., Kuś, P., Kowalska, T., and Sajewicz, M.
(2018). The newest cathinone derivatives as designer drugs: an
analytical and toxicological review. Forensic Toxicol. 36 :
33–50.
Marusich, J.A., Antonazzo, K.R., Wiley, J.L., Blough, B.E., Partilla,
J.S., and Baumann, M.H. (2014). Pharmacology of novel synthetic
stimulants structurally related to the ‘bath salts’ constituent
3,4-methylenedioxypyrovalerone (MDPV). Neuropharmacology 87 :
206–13.
Marusich, J.A., Lefever, T.W., Blough, B.E., Thomas, B.F., and Wiley,
J.L. (2016). Pharmacological effects of methamphetamine and alpha-PVP
vapor and injection. Neurotoxicology 55 : 83–91.
Mayer, F.P., Luf, A., Nagy, C., Holy, M., Schmid, R., Freissmuth, M., et
al. (2016a). Application of a Combined Approach to Identify New
Psychoactive Street Drugs and Decipher Their Mechanisms at Monoamine
Transporters. Curr. Top. Behav. Neurosci. 32 : 333–350.
Mayer, F.P., Wimmer, L., Dillon-Carter, O., Partilla, J.S., Burchardt,
N. V, Mihovilovic, M.D., et al. (2016b). Phase I metabolites of
mephedrone display biological activity as substrates at monoamine
transporters. Br. J. Pharmacol. 173 : 2657–68.
McGrath, J.C., and Lilley, E. (2015). Implementing guidelines on
reporting research using animals (ARRIVE etc.): New requirements for
publication in BJP. Br. J. Pharmacol. 172 : 3189–3193.
McKerchar, T.L., Zarcone, T.J., and Fowler, S.C. (2005). Differential
acquisition of lever pressing in inbred and outbred mice: comparison of
one-lever and two-lever procedures and correlation with differences in
locomotor activity. J. Exp. Anal. Behav. 84 : 339–56.
Meltzer, P.C., Butler, D., Deschamps, J.R., and Madras, B.K. (2006).
1-(4-Methylphenyl)-2-pyrrolidin-1-yl-pentan-1-one (Pyrovalerone)
analogues: a promising class of monoamine uptake inhibitors. J. Med.
Chem. 49 : 1420–32.
Negus, S.S., and Banks, M.L. (2017). Decoding the Structure of Abuse
Potential for New Psychoactive Substances: Structure-Activity
Relationships for Abuse-Related Effects of 4-Substituted Methcathinone
Analogs. Curr. Top. Behav. Neurosci. 32 : 119–131.
Niello, M., Cintulova, D., Hellsberg, E., Jäntsch, K., Holy, M.,
Ayatollahi, L.H., et al. (2019). para-Trifluoromethyl-methcathinone is
an allosteric modulator of the serotonin transporter. Neuropharmacology.161 : 107615.
Pubill, D., Chipana, C., Camins, A., Pallàs, M., Camarasa, J., and
Escubedo, E. (2005). Free radical production induced by methamphetamine
in rat striatal synaptosomes. Toxicol. Appl. Pharmacol. 204 :
57–68.
Saha, K., Li, Y., Holy, M., Lehner, K.R., Bukhari, M.O., Partilla, J.S.,
et al. (2019). The synthetic cathinones, butylone and pentylone, are
stimulants that act as dopamine transporter blockers but 5-HT
transporter substrates. Psychopharmacology (Berl). 236 : 953–962.
Saha, K., Partilla, J.S., Lehner, K.R., Seddik, A., Stockner, T., Holy,
M., et al. (2015). ‘Second-generation’ mephedrone analogs, 4-MEC and
4-MePPP, differentially affect monoamine transporter function.
Neuropsychopharmacology 40 : 1321–31.
Sandtner, W., Stockner, T., Hasenhuetl, P.S., Partilla, J.S., Seddik,
A., Zhang, Y.-W., et al. (2016). Binding Mode Selection Determines the
Action of Ecstasy Homologs at Monoamine Transporters. Mol. Pharmacol.89 : 165–75.
Simmler, L.D., Rickli, A., Hoener, M.C., and Liechti, M.E. (2014).
Monoamine transporter and receptor interaction profiles of a new series
of designer cathinones. Neuropharmacology 79 : 152–60.
Stevens Negus, S., and Miller, L.L. (2014). Intracranial
self-stimulation to evaluate abuse potential of drugs. Pharmacol. Rev.66 : 869–917.
United Nations Office on Drugs and Crime (UNODC) UNODC Early Warning
Advisory (EWA) on New Psychoactive Substances (NPS).
Walther, D., Shalabi, A.R., Baumann, M.H., and Glennon, R.A. (2019).
Systematic Structure-Activity Studies on Selected 2-, 3-, and
4-Monosubstituted Synthetic Methcathinone Analogs as Monoamine
Transporter Releasing Agents. ACS Chem. Neurosci. 10 : 740–745.
Wang, K.H., Penmatsa, A., and Gouaux, E. (2015). Neurotransmitter and
psychostimulant recognition by the dopamine transporter. Nature521 : 322–327.
Watterson, L.R., Burrows, B.T., Hernandez, R.D., Moore, K.N.,
Grabenauer, M., Marusich, J.A., et al. (2014). Effects of
α-pyrrolidinopentiophenone and 4-methyl-N-ethylcathinone, two synthetic
cathinones commonly found in second-generation ‘bath salts,’ on
intracranial self-stimulation thresholds in rats. Int. J.
Neuropsychopharmacol. 18 :.
Wojcieszak, J., Andrzejczak, D., Wojtas, A., Gołembiowska, K., and
Zawilska, J.B. (2018). Effects of the new generation
α-pyrrolidinophenones on spontaneous locomotor activities in mice, and
on extracellular dopamine and serotonin levels in the mouse striatum.
Forensic Toxicol. 36 : 334–350.
Zaami, S., Giorgetti, R., Pichini, S., Pantano, F., Marinelli, E., and
Busardò, F.P. (2018). Synthetic cathinones related fatalities: An
update. Eur. Rev. Med. Pharmacol. Sci. 22 : 268–274.
Table 1. Affinity and potency of substituted cathinones and
standard compounds at monoamine transporters. Monoamine uptake-1 and
uptake-2 inhibition: values are IC50 given as µM (mean
and 95% confidence intervals (CI). Transporter binding affinities:
values are Ki given as µM (mean ± SD).