References
Amphoux, A., Vialou, V., Drescher, E., Brüss, M., Mannoury La Cour, C., Rochat, C., et al. (2006). Differential pharmacological in vitro properties of organic cation transporters and regional distribution in rat brain. Neuropharmacology 50 : 941–52.
Andersen, J., Olsen, L., Hansen, K.B., Taboureau, O., Jørgensen, F.S., Jørgensen, A.M., et al. (2010). Mutational mapping and modeling of the binding site for (S)-citalopram in the human serotonin transporter. J. Biol. Chem. 285 : 2051–63.
Baumann, M.H., Bulling, S., Benaderet, T.S., Saha, K., Ayestas, M.A., Partilla, J.S., et al. (2014). Evidence for a role of transporter-mediated currents in the depletion of brain serotonin induced by serotonin transporter substrates. Neuropsychopharmacology39 : 1355–65.
Baumann, M.H., Walters, H.M., Niello, M., and Sitte, H.H. (2018). Neuropharmacology of synthetic cathinones. In Handbook of Experimental Pharmacology, (Springer New York LLC), pp 113–142.
Bonson, K.R., Dalton, T., and Chiapperino, D. (2019). Scheduling synthetic cathinone substances under the Controlled Substances Act. Psychopharmacology (Berl). 236 : 845–860.
Cheng, M.H., Block, E., Hu, F., Cobanoglu, M.C., Sorkin, A., and Bahar, I. (2015). Insights into the Modulation of Dopamine Transporter Function by Amphetamine, Orphenadrine, and Cocaine Binding. Front. Neurol.6 : 134.
Curtis, M.J., Alexander, S., Cirino, G., Docherty, J.R., George, C.H., Giembycz, M.A., et al. (2018). Experimental design and analysis and their reporting II: updated and simplified guidance for authors and peer reviewers. Br. J. Pharmacol. 175 : 987–993.
Drug Enforcement Administration, Department of Justice (2011). Schedules of controlled substances: temporary placement of three synthetic cathinones in Schedule I. Final Order. Fed. Regist. 76 : 65371–5.
Drug Enforcement Administration, Department of Justice (2014). Schedules of controlled substances: temporary placement of 10 synthetic cathinones into Schedule I. Final order. Fed. Regist. 79 : 12938–43.
Duart-Castells, L., López-Arnau, R., Vizcaíno, S., Camarasa, J., Pubill, D., and Escubedo, E. (2019). 7,8-Dihydroxyflavone blocks the development of behavioral sensitization to MDPV, but not to cocaine: Differential role of the BDNF-TrkB pathway. Biochem. Pharmacol. 163 : 84–93.
Engel, K., and Wang, J. (2005). Interaction of organic cations with a newly identified plasma membrane monoamine transporter. Mol. Pharmacol.68 : 1397–407.
Eshleman, A.J., Wolfrum, K.M., Reed, J.F., Kim, S.O., Swanson, T., Johnson, R.A., et al. (2017). Structure-activity relationships of substituted cathinones, with transporter binding, uptake, and release. J. Pharmacol. Exp. Ther. 360 : 33–47.
European Monitoring Centre for Drugs and Drug (2019). European Drug Report.
Gannon, B.M., Baumann, M.H., Walther, D., Jimenez-Morigosa, C., Sulima, A., Rice, K.C., et al. (2018). The abuse-related effects of pyrrolidine-containing cathinones are related to their potency and selectivity to inhibit the dopamine transporter. Neuropsychopharmacology43 : 2399–2407.
Gatch, M.B., Dolan, S.B., and Forster, M.J. (2015a). Comparative Behavioral Pharmacology of Three Pyrrolidine-Containing Synthetic Cathinone Derivatives. J. Pharmacol. Exp. Ther. 354 : 103–10.
Gatch, M.B., Rutledge, M.A., and Forster, M.J. (2015b). Discriminative and locomotor effects of five synthetic cathinones in rats and mice. Psychopharmacology (Berl). 232 : 1197–205.
Giannotti, G., Canazza, I., Caffino, L., Bilel, S., Ossato, A., Fumagalli, F., et al. (2017). The Cathinones MDPV and α-PVP Elicit Different Behavioral and Molecular Effects Following Acute Exposure. Neurotox. Res. 32 : 594–602.
Glennon, R.A., and Dukat, M. (2016). Structure-activity relationships of synthetic cathinones. In Current Topics in Behavioral Neurosciences, (Springer Verlag), pp 19–47.
Glennon, R.A., and Young, R. (2016). Neurobiology of 3,4-methylenedioxypyrovalerone (MDPV) and α-pyrrolidinovalerophenone (α-PVP). Brain Res. Bull. 126 : 111–126.
Hevener, K.E., Ball, D.M., Buolamwini, J.K., and Lee, R.E. (2008). Quantitative structure-activity relationship studies on nitrofuranyl anti-tubercular agents. Bioorganic Med. Chem. 16 : 8042–8053.
Huskinson, S.L., Naylor, J.E., Townsend, E.A., Rowlett, J.K., Blough, B.E., and Freeman, K.B. (2017). Self-administration and behavioral economics of second-generation synthetic cathinones in male rats. Psychopharmacology (Berl). 234 : 589–598.
Hwang, J.-Y., Kim, J.-S., Oh, J.-H., Hong, S.-I., Ma, S.-X., Jung, Y.-H., et al. (2017). The new stimulant designer compound pentedrone exhibits rewarding properties and affects dopaminergic activity. Addict. Biol. 22 : 117–128.
Javadi-Paydar, M., Nguyen, J.D., Vandewater, S.A., Dickerson, T.J., and Taffe, M.A. (2018). Locomotor and reinforcing effects of pentedrone, pentylone and methylone in rats. Neuropharmacology 134 : 57–64.
Jonker, J.W., and Schinkel, A.H. (2004). Pharmacological and Physiological Functions of the Polyspecific Organic Cation Transporters: OCT1, 2, and 3 (SLC22A1-3). J. Pharmacol. Exp. Ther. 308 : 2–9.
Koepsell, H. (2020). Organic cation transporters in health and disease. Pharmacol. Rev. 72 : 253–319.
Koepsell, H., and Endou, H. (2004). The SLC22 drug transporter family. Pflugers Arch. Eur. J. Physiol. 447 : 666–676.
Koepsell, H., Gorboulev, V., and Arndt, P. (1999). Molecular pharmacology of organic cation transporters in kidney. J. Membr. Biol.167 : 103–117.
Kolanos, R., Sakloth, F., Jain, A.D., Partilla, J.S., Baumann, M.H., and Glennon, R.A. (2015). Structural Modification of the Designer Stimulant α-Pyrrolidinovalerophenone (α-PVP) Influences Potency at Dopamine Transporters. ACS Chem. Neurosci. 6 : 1726–1731.
Kolanos, R., Solis, E., Sakloth, F., Felice, L.J. De, and Glennon, R.A. (2013). ‘Deconstruction’ of the abused synthetic cathinone methylenedioxypyrovalerone (MDPV) and an examination of effects at the human dopamine transporter. ACS Chem. Neurosci. 4 : 1524–9.
Lopez-Arnau, R., Duart-Castells, L., Aster, B., Camarasa, J., Escubedo, E., and Pubill, D. (2019). Effects of MDPV on dopamine transporter regulation in male rats. Comparison with cocaine. Psychopharmacology (Berl). 236 : 925–938.
López-Arnau, R., Martínez-Clemente, J., Pubill, D., Escubedo, E., and Camarasa, J. (2012). Comparative neuropharmacology of three psychostimulant cathinone derivatives: butylone, mephedrone and methylone. Br. J. Pharmacol. 167 : 407–20.
Majchrzak, M., Celiński, R., Kuś, P., Kowalska, T., and Sajewicz, M. (2018). The newest cathinone derivatives as designer drugs: an analytical and toxicological review. Forensic Toxicol. 36 : 33–50.
Marusich, J.A., Antonazzo, K.R., Wiley, J.L., Blough, B.E., Partilla, J.S., and Baumann, M.H. (2014). Pharmacology of novel synthetic stimulants structurally related to the ‘bath salts’ constituent 3,4-methylenedioxypyrovalerone (MDPV). Neuropharmacology 87 : 206–13.
Marusich, J.A., Lefever, T.W., Blough, B.E., Thomas, B.F., and Wiley, J.L. (2016). Pharmacological effects of methamphetamine and alpha-PVP vapor and injection. Neurotoxicology 55 : 83–91.
Mayer, F.P., Luf, A., Nagy, C., Holy, M., Schmid, R., Freissmuth, M., et al. (2016a). Application of a Combined Approach to Identify New Psychoactive Street Drugs and Decipher Their Mechanisms at Monoamine Transporters. Curr. Top. Behav. Neurosci. 32 : 333–350.
Mayer, F.P., Wimmer, L., Dillon-Carter, O., Partilla, J.S., Burchardt, N. V, Mihovilovic, M.D., et al. (2016b). Phase I metabolites of mephedrone display biological activity as substrates at monoamine transporters. Br. J. Pharmacol. 173 : 2657–68.
McGrath, J.C., and Lilley, E. (2015). Implementing guidelines on reporting research using animals (ARRIVE etc.): New requirements for publication in BJP. Br. J. Pharmacol. 172 : 3189–3193.
McKerchar, T.L., Zarcone, T.J., and Fowler, S.C. (2005). Differential acquisition of lever pressing in inbred and outbred mice: comparison of one-lever and two-lever procedures and correlation with differences in locomotor activity. J. Exp. Anal. Behav. 84 : 339–56.
Meltzer, P.C., Butler, D., Deschamps, J.R., and Madras, B.K. (2006). 1-(4-Methylphenyl)-2-pyrrolidin-1-yl-pentan-1-one (Pyrovalerone) analogues: a promising class of monoamine uptake inhibitors. J. Med. Chem. 49 : 1420–32.
Negus, S.S., and Banks, M.L. (2017). Decoding the Structure of Abuse Potential for New Psychoactive Substances: Structure-Activity Relationships for Abuse-Related Effects of 4-Substituted Methcathinone Analogs. Curr. Top. Behav. Neurosci. 32 : 119–131.
Niello, M., Cintulova, D., Hellsberg, E., Jäntsch, K., Holy, M., Ayatollahi, L.H., et al. (2019). para-Trifluoromethyl-methcathinone is an allosteric modulator of the serotonin transporter. Neuropharmacology.161 : 107615.
Pubill, D., Chipana, C., Camins, A., Pallàs, M., Camarasa, J., and Escubedo, E. (2005). Free radical production induced by methamphetamine in rat striatal synaptosomes. Toxicol. Appl. Pharmacol. 204 : 57–68.
Saha, K., Li, Y., Holy, M., Lehner, K.R., Bukhari, M.O., Partilla, J.S., et al. (2019). The synthetic cathinones, butylone and pentylone, are stimulants that act as dopamine transporter blockers but 5-HT transporter substrates. Psychopharmacology (Berl). 236 : 953–962.
Saha, K., Partilla, J.S., Lehner, K.R., Seddik, A., Stockner, T., Holy, M., et al. (2015). ‘Second-generation’ mephedrone analogs, 4-MEC and 4-MePPP, differentially affect monoamine transporter function. Neuropsychopharmacology 40 : 1321–31.
Sandtner, W., Stockner, T., Hasenhuetl, P.S., Partilla, J.S., Seddik, A., Zhang, Y.-W., et al. (2016). Binding Mode Selection Determines the Action of Ecstasy Homologs at Monoamine Transporters. Mol. Pharmacol.89 : 165–75.
Simmler, L.D., Rickli, A., Hoener, M.C., and Liechti, M.E. (2014). Monoamine transporter and receptor interaction profiles of a new series of designer cathinones. Neuropharmacology 79 : 152–60.
Stevens Negus, S., and Miller, L.L. (2014). Intracranial self-stimulation to evaluate abuse potential of drugs. Pharmacol. Rev.66 : 869–917.
United Nations Office on Drugs and Crime (UNODC) UNODC Early Warning Advisory (EWA) on New Psychoactive Substances (NPS).
Walther, D., Shalabi, A.R., Baumann, M.H., and Glennon, R.A. (2019). Systematic Structure-Activity Studies on Selected 2-, 3-, and 4-Monosubstituted Synthetic Methcathinone Analogs as Monoamine Transporter Releasing Agents. ACS Chem. Neurosci. 10 : 740–745.
Wang, K.H., Penmatsa, A., and Gouaux, E. (2015). Neurotransmitter and psychostimulant recognition by the dopamine transporter. Nature521 : 322–327.
Watterson, L.R., Burrows, B.T., Hernandez, R.D., Moore, K.N., Grabenauer, M., Marusich, J.A., et al. (2014). Effects of α-pyrrolidinopentiophenone and 4-methyl-N-ethylcathinone, two synthetic cathinones commonly found in second-generation ‘bath salts,’ on intracranial self-stimulation thresholds in rats. Int. J. Neuropsychopharmacol. 18 :.
Wojcieszak, J., Andrzejczak, D., Wojtas, A., Gołembiowska, K., and Zawilska, J.B. (2018). Effects of the new generation α-pyrrolidinophenones on spontaneous locomotor activities in mice, and on extracellular dopamine and serotonin levels in the mouse striatum. Forensic Toxicol. 36 : 334–350.
Zaami, S., Giorgetti, R., Pichini, S., Pantano, F., Marinelli, E., and Busardò, F.P. (2018). Synthetic cathinones related fatalities: An update. Eur. Rev. Med. Pharmacol. Sci. 22 : 268–274.
Table 1. Affinity and potency of substituted cathinones and standard compounds at monoamine transporters. Monoamine uptake-1 and uptake-2 inhibition: values are IC50 given as µM (mean and 95% confidence intervals (CI). Transporter binding affinities: values are Ki given as µM (mean ± SD).