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Abstract

The integrable Lakshmanan–Porsezian–Daniel (LPD) equation originating in nonlinear fiber is studied in this
work via the Riemann–Hilbert (RH) approach. Firstly we perform the spectral analysis of the Lax pair along with
LPD equation, from which a RH problem is formulated. Afterwards, using the symmetry relations of the potential
matrix, the formula of N-soliton solutions can be obtained by solving the special RH problem with reflectionless
under the conditions of irregularity. In particular, the localized structures and dynamic behaviors of the breathers
and solitons corresponding to the real part, imaginary part and modulus of the resulting solution r(x, t) are shown
graphically and discussed in detail. One of the innovations in the paper is that the higher-order linear and nonlinear
term β has important impact on the velocity, phase, period, and wavewidth of wave dynamics. The other is that
collisions of the high-order breathers and soliton solutions are elastic interaction which imply they remain bounded
all the time.
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1. Introduction

Communication system depended on optical solitons [1, 2] have attracted a considerable interest of mathematical
physicist due to its ultrafast response to time. It is known nonlinear pulses propagation in monomode fiber is modeled
by the classical nonlinear Schrödinger (NLS) equation [3]

iqt = αqxx + β|q|2q, (1)

in which only the group velocity dispersion α and the self-phase modulation effect β are considered. Later on, the
higher-order nonlinear Schrödinger (HNLS) equation that was more accurate for describing the propagation of femto-
second optical pulse is investigated [4].

In order to understand the ultrashort pulse propagation in optical fibers profoundly, we should contemplate the
effects of the higher-order dispersion, the higher-order nonlinearity, the self-steepening as well as the stimulated
Raman scattering. The following LPD equation we would study in this paper is as follows [5–7]

irt − α(
1
2

rxx + |r|2r) − β(rxxxx + 8|r|2rxx + 2r2r∗xx + 4r|rx|
2 + 6r2

xr∗ + 6|r|4r) = 0. (2)

Eq.(2) possess the second-order dispersion, the fourth-order dispersion, the cubic and quintic nonlinearities by adding
higher order nonlinear terms to the NLS equation. A long-distance, high-speed optical fiber transmission system can
be governed by the LPD equation due to its ultrashort optical pulse propagation.
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Here r(x, t) is the complex amplitude of the pulse envelope as well as β represents strength of higher-order linear
and nonlinear effects. In the mean time, the subscripts of r(x, t) denote the partial derivatives in regard to the corre-
sponding variables, while the asterisk stands for the complex conjugate. In optical fibers, x and t are equivalent to the
retarded time coordinate and propagation distance respectively.

As a member of the NLS integrable hierarchy, a lot of interesting studies have been done about Eq. (2). Laksh-
manan, Porsezian, and Daniel presented the LPD equation firstly from a classical 1-dimensional isotropic biquadratic
Heisenberg spin chain [5] with the help of geometric method and discussed the integrable characteristics in some
literatures [8, 9]. The breathers and rogue wave solutions of Eq. (2) are constructed and discussed in detail by means
of Darboux transformation [10]. Conservation laws, soliton solutions and modulational instability are analyzed in the
presence of small perturbation [11]. Furthermore, the authors constructed the NLS equation hierarchy beyond the
LPD equation and obtained plane wave solutions, Akhmediev breathers, Kuznetsov–Ma breathers, periodic solutions,
and rogue wave solutions for this infinite-order hierarchy in certain particular cases [12]. In addition, nonlocal LPD
equations [6, 7] are also explored and dynamical behaviors of the obtained solutions are illustrated in the form of
some visualized graphs.

The matrix RH problem was proposed by Fokas in 1997 [13] which can be used to figure out the initial-boundary
value problem [14], the long-time asymptotic behaviors [15], the associated random matrix and orthogonal poly-
nomials problems. Besides address the important mathematical problems above, RH approach [16–23] has been
successfully applied to formulate multiple-soliton solutions to many nonlinear evolution equations (NLEEs), such as
the coupled derivative NLS equation [24], the coupled NLS equation with higher-order effects [25], the multicompo-
nent AKNS integrable hierarchies [26], the generalized Sasa–Satsuma equation [27], the Kundu–Eckhaus equation
[28] and so on.

Inspired by the work [29], we focus on constructing multi-soliton solutions to Eq. (2) under the zero boundary
condition at infinity by the RH method. The paper is organized as follows. In Sec. 2, a RH problem is set up and
solved in the reflectionless cases from the Lax pair related to Eq. (2). In Secs. 3 and 4, we construct general expression
of the N-soliton solutions of Eq. (2) and examine the spacial structures and collision dynamics behaviors of 1-order,
2-order and 3-order breathers and soliton solutions in detail as an example. Sec. 5 is devoted to conclusions and
discussions.

2. The Riemann–Hilbert problem

In the following, a RH problem is constructed for the LPD equation (2) through the scattering and inverse scatter-
ing transforms. To this end, we give spectral analysis of the Lax pair which is in the following form [7]:

Φx = UΦ =(iλΛ + iP)Φ,

Φt = VΦ =(−8iβΛλ4 − 8iβPλ3 + Λ(4iβ(P2 + iPx) + iα)λ2

+ (2β(PxP − PPx + 2iP3 + iPxx) + iαP)λ

+ Λ(
α

2
(Px − iP2) − iβ(3P4 + PxxP − PPxx − P2

x + iPxxx + 6iP2Px)))Φ,

(3)

where Φ = Φ(x, t) is an eigenfunction vector. The column vector Φ and these matrices Λ and P are given by:

Φ =

(
φ1
φ2

)
, Λ =

(
1 0
0 −1

)
, P =

(
0 r
r∗ 0

)
. (4)

The zero curvature equation Ut−Vx + [U,V] = 0 generates the LPD equation (2). Here [U,V] = UV −VU denotes
a commutator and λ ∈ C is a spectral parameter. Then the Lax pair (3) is converted into this equivalent form in the
case α = 2

Φx =iλΛΦ + U1Φ,

Φt = − 8iβλ4ΛΦ + U2Φ,
(5)
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where

U1 =iP,

U2 = − 8iβPλ3 + 2iΛ(2β(P2 + iPx) + 1)λ2 + (2β(PxP − PPx + 2iP3 + iPxx) + 2iP)λ

+ Λ(Px − iP2 − iβ(3P4 + PxxP − PPxx − P2
x + iPxxx + 6iP2Px)).

Assume that the potential function r in the Lax pair (3) decays to zero sufficiently fast as x→ ±∞. From Lax pair
(5), it is easy to know that Φ ∝ eiλΛx−8iβλ4Λt, so we propose the following transformation

Φ = Jei(λx−8λ4βt)Λ. (6)

On the basis of transformation (6), the Lax pair (5) is then transformed into a desired form

Jx − iλ[Λ, J] = U1J,

Jt + 8iβλ4[Λ, J] = U2J.
(7)

Firstly, we construct two matrix jost solutions through direct scattering process on the x-part of the Lax pair (7),

J− = ([J−]1, [J−]2), J+ = ([J+]1, [J+]2). (8)

They meet the asymptotic conditions

J− → I, x→ −∞, J+ → I, x→ +∞,

where each [J±]l (l = 1, 2) denotes the l-th column of the matrices J± respectively, I is a 2 × 2 identity matrix, and J±
are unique solutions of the Volterra integral equations

J−(x, λ) =I +

∫ x

−∞

eiλ(x−ξ)ΛU1(ξ; λ)J−(ξ; λ)e−iλ(x−ξ)Λdξ,

J+(x, λ) =I −
∫ +∞

x
eiλ(x−ξ)ΛU1(ξ; λ)J+(ξ; λ)e−iλ(x−ξ)Λdξ.

(9)

After a series of analysis, it can be seen that [J−]1, [J+]2 are analytic for λ ∈ C+ and continuous for λ ∈ C+ ∪ R,
whereas [J+]1, [J−]2 are analytic for λ ∈ C− and continuous for λ ∈ C− ∪ R, where

C+ = {λ|argλ ∈ (π, 2π)}, C− = {λ|argλ ∈ (0, π)}.

Subsequently we investigate the properties of J±. Resorting to the Abel’s identity and trU1 = trU2 = 0 that the
determinants of J± are independent of the variable x . Evaluating detJ− at x = −∞ and detJ+ at x = +∞, we find
detJ± = 1 for λ ∈ R. In addition, J−E and J+E are both fundamental matrix solutions of the original spectral problem
of the first formula in Eq. (3), where E = eiλΛx, they must be associated by a scattering matrix S (λ) = (si j)2×2

J−E = J+E · S (λ), λ ∈ R. (10)

DetS (λ) = 1 is obtained directly from Eq. (10). Furthermore, we know s11 and s22 can be analytic extension to C+

and C− respectively according to the property of J−.
In what follows, we shall formulate a RH problem by utilizing the analytic properties of the Jost solutions J±. Two

matrix functions related to the solutions (8) are reconstructed so that one is analytic in C+ and the other in C−. The
first analytic function of λ in C+ is defined as the form

P1(x, λ) = ([J−]1, [J+]2)(x, λ). (11)

And then, one can expand P1 into the asymptotic series at very large-λ

P1 = P(0)
1 +

P(1)
1

λ
+ O(

1
λ2 ), λ→ ∞. (12)
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After substituting expansion (12) into the spectral problem of the first formula in (7) and equating terms with same
power of λ, we have

O(λ) : − i[Λ, P(0)
1 ] = 0,

O(1) : P(0)
1x − i[Λ, P(1)

1 ] = U1P(0)
1 ,

(13)

which yields P(0)
1 = I, namely P1 → I as λ ∈ C+ → ∞.

An analytic counterpart of P1 in C− is still need to be constructed for the RH problem. Noting that the adjoint
scattering equation [30] of the first formula in (7) is of the form

Kx = iλ[Λ,K] − KU1. (14)

Actually, we only need to consider the inverse matrices of J±,

J−1
− =

(
[J−1
− ]1

[J−1
− ]2

)
, J−1

+ =

(
[J−1

+ ]1

[J−1
+ ]2

)
, (15)

which obey the boundary conditions J−1
± → I as x → ±∞. Then through calculations we know that J−1

± are the
solutions of adjoint equation (14). From (10) it is easy to see that

E−1J−1
− = R(λ) · E−1J−1

+ , (16)

with R(λ) = (ri j)2×2 as the inverse matrix of S (λ). Consequently, the matrix function P2 which is analytic in C− can
be defined as

P2(x, λ) =

(
[J−1
− ]1

[J−1
+ ]2

)
(x, λ). (17)

Analogously to the analysis of P1, the very large-λ asymptotic behavior of P2 comes out to be P2 → I as λ ∈ C− → ∞.
Inserting Jost solutions (8) into (10) gives rise to

([J−]1, [J−]2) = ([J+]1, [J+]2) ×
(

s11 s12e2iλx

s21e−2iλx s22

)
, (18)

from which we derive
[J−]1 = s11[J+]1 + s21e−2iλx[J+]2. (19)

Hence, P1 can be eventually rewritten as the form

P1 = ([J−]1, [J+]2) = ([J+]1, [J+]2)
(

s11 0
s21e−2iλx 1

)
. (20)

On the other hand, substituting (15) into (16), we acquire(
[J−1
− ]1

[J−1
− ]2

)
=

(
r11 r12e2iλx

r21e−2iλx r22

) (
[J−1

+ ]1

[J−1
+ ]2

)
, (21)

from which we can denote [J−1
− ]1 as

[J−1
− ]1 = r11[J−1

+ ]1 + r12e2iλx[J−1
+ ]2. (22)

Then P2 is represented as

P2 =

(
[J−1
− ]1

[J−1
+ ]2

)
=

(
r11 r12e2iλx

0 1

) (
[J−1

+ ]1

[J−1
+ ]2

)
. (23)

Up to now, the resulting functions P1 and P2 are analytic in C+ and C− respectively. After denoting that the limit
of P1 is P+ when λ ∈ C+ → R and the limit of P2 is P− when λ ∈ C− → R, based on which a RH problem would be
set up as follows

P−(x, λ)P+(x, λ) =

(
1 r12e2iλx

s21e−2iλx 1

)
, (24)
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whose canonical normalization conditions [31] are

P1(x, λ)→ I, λ ∈ C+ → ∞,

P2(x, λ)→ I, λ ∈ C− → ∞,
(25)

and r11s11 + r12s21 = 1.

3. General formula of the N-soliton solutions

In this section, we construct the N-soliton solutions to the LPD equation (2) based on the RH problem. For this
purpose, we suppose the RH problem is irregular which means both detP1 and detP2 own zeros in their analytic
domains. Recalling the definitions of P1 and P2, we have

detP1 = s11(λ), λ ∈ C+,

detP2 = r11(λ), λ ∈ C−,
(26)

which immediately enables us to know that detP1 and detP2 possess the same zeros as s11 and r11 respectively.
Utilizing the resulting analysis above, we now discuss the characteristics of zeros. We note the potential matrix

U1 has the symmetry relation
U†1 = −U1,

here † stands for Hermitian of a matrix. On basis of this relation, we deduce

J†±(λ∗) = J−1
± (λ). (27)

Introducing two matrices H1=diag(1; 0) and H2=diag(0; 1) allows the expressions (20) and (23) to be reformulated
as

P1 = J−H1 + J+H2, P2 = H1J−1
− + H2J−1

+ . (28)

Performing the Hermitian of the first formula in (28) and making use of the relation (27), we have

P†1(λ∗) = P2(λ), S †(λ∗) = R(λ), (29)

for λ ∈ C−. By means of the second equation of (29), we further have s∗11(λ∗) = r11(λ). It implies that each zero λk of
s11 results in each zero λ∗k of r11 correspondingly. Therefore, our assumption in the general case is that, detP1 has N
simple zeros {λ j}

N
1 in C+ and detP2 has N simple zeros{λ̂ j}

N
1 in C−, where λ̂ j = λ∗j , 1 ≤ j ≤ N. Each of kerP1(λ j) and

kerP2(λ̂ j) contain only a single basis column vector ν j and vector ν̂ j respectively,

P1(λ j)ν j = 0, ν̂ jP2(λ̂ j) = 0. (30)

Taking the Hermitian of the first formula in (30) and using (29) as well as comparing with the second formula in (30),
we find that the eigenvectors fulfill the relation

ν̂ j = ν†j , 1 ≤ j ≤ N. (31)

Differentiating the first formula in (30) about x and t respectively and taking advantage of the Lax pair (7), we have
the following relationships

P1(λ j)(
∂ν j

∂x
− iλ jΛx) = 0,

P1(λ j)(
∂ν j

∂t
+ 8iβλ4

jΛt) = 0,
(32)

which results in
ν j = eiλ jΛx−8iβλ4

j Λtν j,0, 1 ≤ j ≤ N. (33)
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Here ν j,0 is independent of the variables x and t. By means of the relation (31), we thus derive

ν̂ j = ν†j,0e−iλ∗jΛx+8iβλ∗4j Λt, 1 ≤ j ≤ N. (34)

In order to obtain soliton solutions for the LPD equation (2), we choose the jump matrix as the 2 × 2 identity matrix.
This can be achieved by supposing the vanishing coefficient s21 = r12 = 0, which corresponds to the reflectionless
case. Consequently, the expression of the unique solution for this particular RH problem can be described

P1(λ) = I −
N∑

k=1

N∑
j=1

νkν̂ j(M−1)k j

λ − λ̂ j
,

P2(λ) = I +

N∑
k=1

N∑
j=1

νkν̂ j(M−1)k j

λ − λk
,

(35)

in which M is a N × N matrix defined by

M = (Mk j)N×N = (
ν̂kν j

λ j − λ̂k
)N×N , 1 ≤ k, j ≤ N,

and (M−1)k j represents the (k, j)-entry of the invere matrix M.
In the following, we are going to retrieve the potential function r. Expanding P1(λ) at large-λ as

P1 = I +
P(1)

1

λ
+ O(

1
λ2 ), λ→ ∞, (36)

and carrying it into the first formula in (7) generates the reconstructed potential function [32]

r = −2(p(1)
1 )12, (37)

where (p(1)
1 )12 is the (1, 2)-entry of matrix P(1)

1 . From expression of the first formula in (35), the P(1)
1 can be evidently

obtained

P(1)
1 = −

N∑
k=1

N∑
j=1

νkν̂ j(M−1)k j. (38)

For the purpose of obtaining explicit multi-soliton solutions to the LPD equation (2), we set the assumption
ν j,0 = (α j, β j)T and θ j = iλ jx − 8iβλ4

j t, Imλ j < 0, 1 ≤ j ≤ N, here α j, β j ∈ C are elements of ν j,0. On the basis of
above results, the formula of N-soliton solutions to the LPD equation (2) can be ultimately obtained as follows:

r(x, t) = 2
N∑

k=1

N∑
j=1

αkβ
∗
je
θk−θ

∗
j (M−1)k j, (39)

where

Mk j =
α∗kα jeθ

∗
k+θ j + β∗kβ je−θ

∗
k−θ j

λ j − λ
∗
k

, 1 ≤ k, j ≤ N.

Following the same argument as that in Ref. [29], the solutions (39) can be rewritten in a more elegant form

r(x, t) = −2
detF
detM

, (40)

where F is a (N + 1) × (N + 1) matrix given by

F =


0 β1e−θ1 . . . βNe−θN

α∗1eθ
∗
1 M11 . . . M1N

...
...

. . .
...

α∗Neθ
∗
N MN1 . . . MN1


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4. Dynamic behaviors of explicit breathers and soliton solutions

In the following, we focus on obtaining explicit breathers and soliton solutions and further examine their dynamic
behaviors by various graphs.

In the case of N = 1, 1-soliton solution is constructed from N-soliton solution (39) as the following form

r1(x, t) = 2α1β
∗
1eθ1−θ

∗
1

λ1 − λ
∗
1

|α1|
2eθ∗1+θ1 + |β1|

2e−θ∗1−θ1
, (41)

where θ1 = iλ1x− 8iβλ4
1t. In addition, by choosing α1 = 1 and letting λ1 = ξ1 + iη1 as well as |β1|

2 = e2τ1 , the solution
(41) is further converted into the brief form:

r1(x, t) = 2iβ∗1η1e2iYe−τ1 sech(2X − τ1), (42)

here

X = − η1x + 32βξ1η1(ξ2
1 − η

2
1)t,

Y =ξ1x − 8β(ξ4
1 − 6ξ2

1η
2
1 + η4

1)t.

The solution (42) is demonstrating as the form of a hyperbolic secant function with maximum amplitude H =

2|β∗1η1|e−τ1 and velocity V = 32βξ1(ξ2
1 − η

2
1). When the parameters are properly selected, the real and imaginary parts

of the solution (42) exhibit periodicity and local oscillation behaviors and the modulus of the solution degenerate to
exact 1-soliton soluiton which can be shown in Fig 1. As can be seen from Fig. 1 (d), (e) and (f), the breather solutions
propagate periodically along the straight line l : −η1x + 32βξ1η1(ξ2

1 − η
2
1)t = 0 with period Tl = π√

ξ2
1+64β2(ξ4

1−6ξ2
1η

2
1+η4

1)2

from the positive to the negative direction corresponding to x-axis. On the contrary, 1-soliton solution propagates
from the left to the right hand side along x-axis.
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(a) (b) (c)

(d) (e) (f)

Figure 1: Two types of solutions of r1(x, t) in (42) with the parameters chosen as α1 = β1 = 1, ξ1 = 2/5, η1 = −1/5, β = 1, τ1 = 0; (a), (b):
1-order breathers corresponding to real and imaginary part of r1(x, t); (c): The spatial structure of | r1(x, t) |; (d), (e) and (f) are the propagation
patterns of the solutions along the x-axis at different times in Fig. 1 (a), (b) and (c) respectively.

In the case of N = 2, the 2-soliton solution for Eq. (2) is generated as

r2(x, t) =
2

M11M22 − M12M21
(α1β

∗
1M22eθ1−θ

∗
1 − α1β

∗
2M12eθ1−θ

∗
2 − α2β

∗
1M21eθ2−θ

∗
1 + α2β

∗
2M11eθ2−θ

∗
2 ), (43)

where

M11 =
|α1|

2eθ
∗
1+θ1 + |β1|

2e−θ
∗
1−θ1

λ1 − λ
∗
1

, M12 =
α∗1α2eθ

∗
1+θ2 + β∗1β2e−θ

∗
1−θ2

λ2 − λ
∗
1

,

M21 =
α∗2α1eθ

∗
2+θ1 + β∗2β1e−θ

∗
2−θ1

λ1 − λ
∗
2

, M22 =
|α2|

2eθ
∗
2+θ2 + |β2|

2e−θ
∗
2−θ2

λ2 − λ
∗
2

,

and
θ1 = iλ1x − 8iβλ4

1t, θ2 = iλ2x − 8iβλ4
2t, λ1 = ξ1 + iη1, λ2 = ξ2 + iη2.

After assuming that α1 = α2 = 1, β1 = β2 and |β1|
2 = e2τ1 , the 2-soliton solution (43) becomes

r2(x, t) =
2β∗1

M11M22 − M12M21
(eθ1−θ

∗
1 M22 − eθ1−θ

∗
2 M12 − eθ2−θ

∗
1 M21 + eθ2−θ

∗
2 M11), (44)
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where

M11 = −
ieτ1

η1
cosh(θ∗1 + θ1 − τ1), M12 =

2eτ1

(ξ2 − ξ1) + i(η1 + η2)
cosh(θ∗1 + θ2 − τ1),

M22 = −
ieτ1

η2
cosh(θ∗2 + θ2 − τ1), M21 =

2eτ1

(ξ1 − ξ2) + i(η1 + η2)
cosh(θ∗2 + θ1 − τ1).

The spatial structures and dynamical behaviors of solution (44) are presented in Fig. 2 by choosing a set of appropriate
parameters. Intersectant pattern breather solutions of the real and imaginary parts of r2(x, t) can be seen clearly.
One of the breathers propagates along the straight line l1 : −η1x + 32βξ1η1(ξ2

1 − η
2
1)t = 0 with constant velocity

V1 = 32βξ1(ξ2
1 − η

2
1) and period Tl1 = π√

ξ2
1+64β2(ξ4

1−6ξ2
1η

2
1+η4

1)2
. Meanwhile the other propagates along the straight line

l2 : −η2x+32βξ2η2(ξ2
2−η

2
2)t = 0 with constant velocity V2 = 32βξ2(ξ2

2−η
2
2) and period Tl2 = π√

ξ2
2+64β2(ξ4

2−6ξ2
2η

2
2+η4

2)2
. But

the modulus of r2(x, t) degenerate into 2-soliton solutions which interact with each other at origin of the coordinates
and reaches the maximum amplitude 1. The general 2-soliton describes an elastic collision among two fundamental
solitons and is bounded for all the time, as observed in many physical phenomena.

(a) (b) (c)

(d) (e) (f)

Figure 2: Two types of intersectant pattern solutions of r2(x, t) in (44) with the parameters chosen as α1 = β1 = α2 = β2 = 1, ξ1 = −1/2, η1 =

−1/5, ξ2 = 2/5, η2 = −3/10, β = 1, τ1 = 0; (a), (b): Breathers of real and imaginary part of r2(x, t); (c): 2-soliton solutions corresponding to
| r2(x, t) |; (d), (e): Contour plots and propagation orbit of Fig. 2(a) and (b); (f): Sectional view of 2-soliton along the x-axis at different times in
Fig. 2(c).
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(a) (b) (c)

(d) (e) (f)

Figure 3: The parameters are the same as Fig. 2 only β is changed to 2.

Subsequently, the influence of higher-order linear and nonlinear effect r on the dynamics would be analyzed.
Comparing Fig. 3 with Fig. 2, with the increasing of β from 1 to 2 under other parameters unchanged, the periods
of the two second-order breathers decrease, the velocities increase and the phases change, but the amplitudes keep
unchanged. Furthermore, for the 2-order breathers and 2-soliton solutions, the angle between two single one also
decrease from arctan(13300/6283) to arctan(19950/28849).

When N = 3, analogously to the procedures above, the formula of r(x, t) is presented

r3(x, t) =
2

det(M)

[
α1β

∗
1eθ1−θ

∗
1 (M−1)11 + α1β

∗
2eθ1−θ

∗
2 (M−1)12 + α1β

∗
3eθ1−θ

∗
3 (M−1)13

+ α2β
∗
1eθ2−θ

∗
1 (M−1)21 + α2β

∗
2eθ2−θ

∗
2 (M−1)22 + α2β

∗
3eθ2−θ

∗
3 (M−1)23

+ α3β
∗
1eθ3−θ

∗
1 (M−1)31 + α3β

∗
2eθ3−θ

∗
2 (M−1)32 + α3β

∗
3eθ3−θ

∗
3 (M−1)33

]
,

(45)

here M = (Mk j)3×3 is a 3×3 matrix function. We omit the explicit expressions of elements Mk j and (M−1)k j (1 ≤ k, j ≤
3) due to the limited space. When the appropriate parameters are selected, 3-order breather solutions corresponding
to the real and imaginary parts as well as 3-soliton solutions for modulus of the r3(x, t) are similarly obtained and their
dynamic behaviors are vividly shown in Fig. 4. Obviously distinct to the case in Fig. 2, they do not propagate along
the original trajectories after the collisions between them.
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(a) (b) (c)

(d) (e) (f)

Figure 4: Abundant graphs of r3(x, t) in (45) with choices of parameters as α j = β j = 1, 1 ≤ j ≤ 3, ξ1 = −1/2, η1 = −1/5, ξ2 = 1/3, η2 =

−3/10, ξ3 = 1/2, η3 = −2/5, β = 1, τ1 = 0; (a), (b): 3-order breather solutions and propagation orbits of real part and imaginary part of r3(x, t);
(c): 3-soliton solutions corresponding to | r3(x, t) |; (d), (e) and (f) are corresponding hybrid graphs containing contours, density and propagation
orbits.

5. Conclusions

In this investigation, we have studied the LPD equation in an optical fiber associated with a 2 × 2 Lax pair via the
RH approach. Depending on the spectral analysis of the Lax pair, then a matrix RH problem about the real spectral
parameter λ is formulated. By solving the particular Riemann–Hilbert problems with vanishing scattering coefficients,
which correspond to the reflectionless cases, the general N-soliton solutions are obtained for Eq. (2).

Furthermore, as a result, 1-, 2- and 3-order breather solutions corresponding to the real and imaginary parts of
the general N-soliton solutions r(x, t) can be acquired and the dynamic characteristics are analyzed graphically in
resulting graphs. When we take the modulus of the solutions, the breather solutions degenerate into soliton solutions
immediately and their dynamic behaviors and perspective views are vividly shown in different types of graphs. The
results derived are novel and may provide a feasible way in applications in the communication of nonlinear optical
fiber.

Acknowledgments: We would like to express our sincere thanks to every member in our discussion group for their
valuable suggestions. The authors would also thank the reviewers for their constructive comments on this paper.

Funding: The study is funded in part by the National Natural Science Foundation of China (Nos. 11975145 and
12026245), the Program for Science & Technology Innovation Talents in Universities of Henan Province (No.22HASTIT019),

11



the Natural Science Foundation of Henan (No.202300410524) and the Technique Project of Henan (No. 212102310397)

Conflict of Interest: The authors declare that they have no conflict of interest.

References

[1] A.M. Wazwaz, L. Kaur, New integrable Boussinesq equations of distinct dimensions with diverse variety of soliton solutions,
Nonlinear Dyn. 97 (2019) 83.

[2] A.M. Wazwaz, G.Q. Xu, Kadomtsev-petviashvili hierarchy: two integrable equations with time-dependent coefficients, Non-
linear Dyn. 100 (2020) 3711.

[3] G.P. Agrawal, Nonlinear Fiber Optics, Academic Press, Sadiego (1989).
[4] A. Hasegawa, Y. Kodama, Solitons in Optical Communications, Clarendon, Oxford (1995).
[5] M. Lakshmanan, K. Porsezian, M. Daniel, Effect of discreteness on the continuum limit of the Heisenberg spin chain, Phys.

Lett. A 133 (1988) 483.
[6] W. Liu, D.Q. Qiu, Z.W. Wu, J.S. He, Dynamical Behavior of Solution in Integrable Nonlocal Lakshmanan–Porsezian–Daniel

Equation, Commun. Theor. Phys. 65 (2016) 671.
[7] Y.Q. Yang, T. Suzuki, X.P. Xue, Darboux transformations and exact solutions for the integrable nonlocal Lakshmanan–

Porsezian–Daniel equation, Appl. Math. Lett. 99 (2020) 105998.
[8] K. Porsezian, M. Daniel, M. Lakshmanan, On the integrability aspects of the one-dimensional classical continuum isotropic

biquadratic Heisenberg spin chain. J. Math. Phys. 33 (1992) 1807.
[9] K. Porsezian, Completely integrable nonlinear Schrödinger type equations on moving space curves, Phys. Rev. E 55 (1997)

3785.
[10] L.H. Wang, K. Porsezian, J.S. He, Breather and rogue wave solutions of a generalized nonlinear Schrödinger equation, Phys.

Rev. E 87 (2013) 053202.
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