Reference

1. ECHA-European Chemical Agency. Annex XC Restriction Report: cobalt carbonate; cobalt di(acetate); cobalt dichloride; cobalt dinitrate; cobalt sulphate [Internet]. 2018 [cited 2019 Jul 29].Available from: https://echa.europa.eu/registry-of-restriction-intentions/-/dislist/details/0b0236e181d575c8.
2. NICEATM -National Toxicology Program Interagency Center for the Evaluation of Alternative Toxicological Methods. Murine Local Lymph Node Assay (LLNA) Database [Internet]. 2010 [cited 2016 Nov 24].Available from: http://ntp.niehs.nih.gov/pubhealth/evalatm/test-method-evaluations/immunotoxicity/nonanimal/index.html.
3. Linna A, Oksa P, Palmroos P, Roto P, Laippala P, Uitti J. Respiratory health of cobalt production workers. Am. J. Ind. Med. 2003; 44: 124–132.
4. Roto P. Asthma, symptoms of chronic bronchitis and ventilatory capacity among cobalt and zinc production workers. Scand. J. Work. Environ. Health 1980; 6: 1–49.
5. Sauni R, Linna A, Oksa P, Nordman H, Tuppurainen M, Uitti J. Cobalt asthma–a case series from a cobalt plant. Occup. Med. Oxf. Engl. 2010; 60: 301–306.
6. Shirakawa T, Kusaka Y, Fujimura N, Goto S, Kato M, Heki S, Morimoto K. Occupational Asthma from Cobalt Sensitivity in Workers Exposed to Hard Metal Dust. Chest 1989; 95: 29–37.
7. Tsui H-C, Ronsmans S, De Sadeleer LJ, Hoet PHM, Nemery B, Vanoirbeek JAJ. Skin Exposure Contributes to Chemical-Induced Asthma: What is the Evidence? A Systematic Review of Animal Models. Allergy Asthma Immunol. Res. [Internet] 2019 [cited 2020 Apr 7]; 12Available from: /Synapse/10.4168/aair.2020.12.e47.
8. Vanoirbeek JAJ, Tarkowski M, Vanhooren HM, De Vooght V, Nemery B, Hoet PHM. Validation of a mouse model of chemical-induced asthma using trimellitic anhydride, a respiratory sensitizer, and dinitrochlorobenzene, a dermal sensitizer. J. Allergy Clin. Immunol. 2006; 117: 1090–1097.
9. Vooght VD, Cruz M-J, Haenen S, Wijnhoven K, Muñoz X, Hoet PH, Morell F, Nemery B, Vanoirbeek JA. Ammonium persulfate can initiate an asthmatic response in mice. Thorax 2010; 65: 252–257.
10. Devos FC, Boonen B, Alpizar YA, Maes T, Hox V, Seys S, Pollaris L, Liston A, Nemery B, Talavera K, Hoet PHM, Vanoirbeek JAJ. Neuro-immune interactions in chemical-induced airway hyperreactivity. Eur. Respir. J. 2016; 48: 380–392.
11. Lai D-M, Shu Q, Fan J. The origin and role of innate lymphoid cells in the lung. Mil. Med. Res. 2016; 3: 25.
12. Hammad H, Lambrecht BN. Dendritic cells and epithelial cells: linking innate and adaptive immunity in asthma. Nat. Rev. Immunol. 2008; 8: 193–204.
13. Ikarashi Y, Ohno K, Tsuchiya T, Nakamura A. Differences of draining lymph node cell proliferation among mice, rats and guinea pigs following exposure to metal allergens. Toxicology 1992; 76: 283–292.
14. Walters GI, Robertson AS, Moore VC, Burge PS. Cobalt asthma in metalworkers from an automotive engine valve manufacturer. Occup. Med. Oxf. Engl. 2014; 64: 358–364.
15. Walters GI, Moore VC, Robertson AS, Burge CBSG, Vellore A-D, Burge PS. An outbreak of occupational asthma due to chromium and cobalt.Occup. Med. Oxf. Engl. 2012; 62: 533–540.
16. Krakowiak A, Dudek W, Tarkowski M, Swiderska-Kiełbik S, Nieścierenko E, Pałczyński C. Occupational asthma caused by cobalt chloride in a diamond polisher after cessation of occupational exposure: a case report. Int. J. Occup. Med. Environ. Health 2005; 18: 151–158.
17. Saini Y, Greenwood KK, Merrill C, Kim KY, Patial S, Parameswaran N, Harkema JR, LaPres JJ. Acute Cobalt-Induced Lung Injury and the Role of Hypoxia-Inducible Factor 1α in Modulating Inflammation. Toxicol. Sci. 2010; 116: 673–681.
18. Lewis CP, Demedts M, Nemery B. Indices of oxidative stress in hamster lung following exposure to cobalt(II) ions: in vivo and in vitro studies. Am. J. Respir. Cell Mol. Biol. 1991; 5: 163–169.
19. Camner P, Boman A, Johansson A, Lundborg M, Wahlberg JE. Inhalation of cobalt by sensitised guinea pigs: effects on the lungs. Br. J. Ind. Med. 1993; 50: 753–757.
20. Vande Velde G, Poelmans J, De Langhe E, Hillen A, Vanoirbeek J, Himmelreich U, Lories RJ. Longitudinal micro-CT provides biomarkers of lung disease that can be used to assess the effect of therapy in preclinical mouse models, and reveal compensatory changes in lung volume. Dis. Model. Mech. 2016; 9: 91–98.
21. De Langhe E, Vande Velde G, Hostens J, Himmelreich U, Nemery B, Luyten FP, Vanoirbeek J, Lories RJ. Quantification of lung fibrosis and emphysema in mice using automated micro-computed tomography. PloS One 2012; 7: e43123.
22. Vande Velde G, De Langhe E, Poelmans J, Bruyndonckx P, d’Agostino E, Verbeken E, Bogaerts R, Lories R, Himmelreich U. Longitudinal in vivo microcomputed tomography of mouse lungs: No evidence for radiotoxicity.Am. J. Physiol. Lung Cell. Mol. Physiol. 2015; 309: L271-279.
23. Dubsky S, Zosky GR, Perks K, Samarage CR, Henon Y, Hooper SB, Fouras A. Assessment of airway response distribution and paradoxical airway dilation in mice during methacholine challenge. J. Appl. Physiol.2016; 122: 503–510.
24. Van Den Broucke S, Pollaris L, Vande Velde G, Verbeken E, Nemery B, Vanoirbeek J, Hoet P. Irritant-induced asthma to hypochlorite in mice due to impairment of the airway barrier. Arch. Toxicol. 2018; 92: 1551–1561.
25. Boudewijns R, Thibaut HJ, Kaptein SJF, Li R, Vergote V, Seldeslachts L, Keyzer CD, Sharma S, Jansen S, Weyenbergh JV, Ma J, Martens E, Bervoets L, Buyten TV, Jacobs S, Liu Y, Martí-Carreras J, Vanmechelen B, Wawina-Bokalanga T, Delang L, Rocha-Pereira J, Coelmont L, Chiu W, Leyssen P, Heylen E, Schols D, Wang L, Close L, Matthijnssens J, Ranst MV, et al. STAT2 signaling as double-edged sword restricting viral dissemination but driving severe pneumonia in SARS-CoV-2 infected hamsters. bioRxiv 2020; : 2020.04.23.056838.
26. Verougstraete V, Mallants A, Buchet J-P, Swennen B, Lison D. Lung function changes in workers exposed to cobalt compounds: a 13-year follow-up. Am. J. Respir. Crit. Care Med. 2004; 170: 162–166.
27. Rehfisch P, Anderson M, Berg P, Lampa E, Nordling Y, Svartengren M, Westberg H, Gunnarsson L-G. Lung function and respiratory symptoms in hard metal workers exposed to cobalt. J. Occup. Environ. Med.2012; 54: 409–413.
28. Devos FC, Maaske A, Robichaud A, Pollaris L, Seys S, Lopez CA, Verbeken E, Tenbusch M, Lories R, Nemery B, Hoet PH, Vanoirbeek JA. Forced expiration measurements in mouse models of obstructive and restrictive lung diseases. Respir. Res. [Internet] 2017; 18Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5477381/.
29. Pollaris L, Devos F, De Vooght V, Seys S, Nemery B, Hoet PHM, Vanoirbeek JAJ. Toluene diisocyanate and methylene diphenyl diisocyanate: asthmatic response and cross-reactivity in a mouse model.Arch. Toxicol. 2016; 90: 1709–1717.
30. Saini Y, Kim KY, Lewandowski R, Bramble LA, Harkema JR, LaPres JJ. Role of hypoxia-inducible factor 1α in modulating cobalt-induced lung inflammation. Am. J. Physiol.-Lung Cell. Mol. Physiol. 2009; 298: L139–L147.
31. Campbell EM, Charo IF, Kunkel SL, Strieter RM, Boring L, Gosling J, Lukacs NW. Monocyte chemoattractant protein-1 mediates cockroach allergen-induced bronchial hyperreactivity in normal but not CCR2-/- mice: the role of mast cells. J. Immunol. Baltim. Md 1950 1999; 163: 2160–2167.
32. De Plaen IG, Han X-B, Liu X, Hsueh W, Ghosh S, May MJ. Lipopolysaccharide induces CXCL2/macrophage inflammatory protein-2 gene expression in enterocytes via NF-κB activation: independence from endogenous TNF-α and platelet-activating factor. Immunology 2006; 118: 153–163.
33. Halim TYF, Krauss RH, Sun AC, Takei F. Lung natural helper cells are a critical source of Th2 cell-type cytokines in protease allergen-induced airway inflammation. Immunity 2012; 36: 451–463.
34. Klein Wolterink RGJ, Kleinjan A, van Nimwegen M, Bergen I, de Bruijn M, Levani Y, Hendriks RW. Pulmonary innate lymphoid cells are major producers of IL-5 and IL-13 in murine models of allergic asthma.Eur. J. Immunol. 2012; 42: 1106–1116.
35. Zelante T, Wong AYW, Ping TJ, Chen J, Sumatoh HR, Viganò E, Hong Bing Y, Lee B, Zolezzi F, Fric J, Newell EW, Mortellaro A, Poidinger M, Puccetti P, Ricciardi-Castagnoli P. CD103(+) Dendritic Cells Control Th17 Cell Function in the Lung. Cell Rep. 2015; 12: 1789–1801.
36. Norimoto A, Hirose K, Iwata A, Tamachi T, Yokota M, Takahashi K, Saijo S, Iwakura Y, Nakajima H. Dectin-2 promotes house dust mite-induced T helper type 2 and type 17 cell differentiation and allergic airway inflammation in mice. Am. J. Respir. Cell Mol. Biol. 2014; 51: 201–209.
37. Plantinga M, Guilliams M, Vanheerswynghels M, Deswarte K, Branco-Madeira F, Toussaint W, Vanhoutte L, Neyt K, Killeen N, Malissen B, Hammad H, Lambrecht BN. Conventional and monocyte-derived CD11b(+) dendritic cells initiate and maintain T helper 2 cell-mediated immunity to house dust mite allergen. Immunity 2013; 38: 322–335.
38. Pollaris L, Van Den Broucke S, Decaesteker T, Cremer J, Seys S, Devos FC, Provoost S, Maes T, Verbeken E, Vande Velde G, Nemery B, Hoet PHM, Vanoirbeek JAJ. Dermal exposure determines the outcome of repeated airway exposure in a long-term chemical-induced asthma-like mouse model.Toxicology 2019; 421: 84–92.
39. Mjösberg J, Spits H. Human innate lymphoid cells. J. Allergy Clin. Immunol. 2016; 138: 1265–1276.
40. Lambrecht BN, Hammad H. Asthma: the importance of dysregulated barrier immunity. Eur. J. Immunol. 2013; 43: 3125–3137.
41. Hirose K, Ito T, Nakajima H. Roles of IL-22 in allergic airway inflammation in mice and humans. Int. Immunol. 2018; 30: 413–418.
TABLE 1 . Nonparametric Spearman correlation between auricular lymph node (LN) cells and lung dendritic cells (DCs)/innate lymphoid cells (ILCs)