Reference
1. ECHA-European Chemical Agency. Annex XC Restriction Report: cobalt
carbonate; cobalt di(acetate); cobalt dichloride; cobalt dinitrate;
cobalt sulphate [Internet]. 2018 [cited 2019 Jul 29].Available
from:
https://echa.europa.eu/registry-of-restriction-intentions/-/dislist/details/0b0236e181d575c8.
2. NICEATM -National Toxicology Program Interagency Center for the
Evaluation of Alternative Toxicological Methods. Murine Local Lymph Node
Assay (LLNA) Database [Internet]. 2010 [cited 2016 Nov
24].Available from:
http://ntp.niehs.nih.gov/pubhealth/evalatm/test-method-evaluations/immunotoxicity/nonanimal/index.html.
3. Linna A, Oksa P, Palmroos P, Roto P, Laippala P, Uitti J. Respiratory
health of cobalt production workers. Am. J. Ind. Med. 2003; 44:
124–132.
4. Roto P. Asthma, symptoms of chronic bronchitis and ventilatory
capacity among cobalt and zinc production workers. Scand. J. Work.
Environ. Health 1980; 6: 1–49.
5. Sauni R, Linna A, Oksa P, Nordman H, Tuppurainen M, Uitti J. Cobalt
asthma–a case series from a cobalt plant. Occup. Med. Oxf.
Engl. 2010; 60: 301–306.
6. Shirakawa T, Kusaka Y, Fujimura N, Goto S, Kato M, Heki S, Morimoto
K. Occupational Asthma from Cobalt Sensitivity in Workers Exposed to
Hard Metal Dust. Chest 1989; 95: 29–37.
7. Tsui H-C, Ronsmans S, De Sadeleer LJ, Hoet PHM, Nemery B, Vanoirbeek
JAJ. Skin Exposure Contributes to Chemical-Induced Asthma: What is the
Evidence? A Systematic Review of Animal Models. Allergy Asthma
Immunol. Res. [Internet] 2019 [cited 2020 Apr 7]; 12Available
from: /Synapse/10.4168/aair.2020.12.e47.
8. Vanoirbeek JAJ, Tarkowski M, Vanhooren HM, De Vooght V, Nemery B,
Hoet PHM. Validation of a mouse model of chemical-induced asthma using
trimellitic anhydride, a respiratory sensitizer, and
dinitrochlorobenzene, a dermal sensitizer. J. Allergy Clin.
Immunol. 2006; 117: 1090–1097.
9. Vooght VD, Cruz M-J, Haenen S, Wijnhoven K, Muñoz X, Hoet PH, Morell
F, Nemery B, Vanoirbeek JA. Ammonium persulfate can initiate an
asthmatic response in mice. Thorax 2010; 65: 252–257.
10. Devos FC, Boonen B, Alpizar YA, Maes T, Hox V, Seys S, Pollaris L,
Liston A, Nemery B, Talavera K, Hoet PHM, Vanoirbeek JAJ. Neuro-immune
interactions in chemical-induced airway hyperreactivity. Eur.
Respir. J. 2016; 48: 380–392.
11. Lai D-M, Shu Q, Fan J. The origin and role of innate lymphoid cells
in the lung. Mil. Med. Res. 2016; 3: 25.
12. Hammad H, Lambrecht BN. Dendritic cells and epithelial cells:
linking innate and adaptive immunity in asthma. Nat. Rev.
Immunol. 2008; 8: 193–204.
13. Ikarashi Y, Ohno K, Tsuchiya T, Nakamura A. Differences of draining
lymph node cell proliferation among mice, rats and guinea pigs following
exposure to metal allergens. Toxicology 1992; 76: 283–292.
14. Walters GI, Robertson AS, Moore VC, Burge PS. Cobalt asthma in
metalworkers from an automotive engine valve manufacturer. Occup.
Med. Oxf. Engl. 2014; 64: 358–364.
15. Walters GI, Moore VC, Robertson AS, Burge CBSG, Vellore A-D, Burge
PS. An outbreak of occupational asthma due to chromium and cobalt.Occup. Med. Oxf. Engl. 2012; 62: 533–540.
16. Krakowiak A, Dudek W, Tarkowski M, Swiderska-Kiełbik S, Nieścierenko
E, Pałczyński C. Occupational asthma caused by cobalt chloride in a
diamond polisher after cessation of occupational exposure: a case
report. Int. J. Occup. Med. Environ. Health 2005; 18: 151–158.
17. Saini Y, Greenwood KK, Merrill C, Kim KY, Patial S, Parameswaran N,
Harkema JR, LaPres JJ. Acute Cobalt-Induced Lung Injury and the Role of
Hypoxia-Inducible Factor 1α in Modulating Inflammation. Toxicol.
Sci. 2010; 116: 673–681.
18. Lewis CP, Demedts M, Nemery B. Indices of oxidative stress in
hamster lung following exposure to cobalt(II) ions: in vivo and in vitro
studies. Am. J. Respir. Cell Mol. Biol. 1991; 5: 163–169.
19. Camner P, Boman A, Johansson A, Lundborg M, Wahlberg JE. Inhalation
of cobalt by sensitised guinea pigs: effects on the lungs. Br. J.
Ind. Med. 1993; 50: 753–757.
20. Vande Velde G, Poelmans J, De Langhe E, Hillen A, Vanoirbeek J,
Himmelreich U, Lories RJ. Longitudinal micro-CT provides biomarkers of
lung disease that can be used to assess the effect of therapy in
preclinical mouse models, and reveal compensatory changes in lung
volume. Dis. Model. Mech. 2016; 9: 91–98.
21. De Langhe E, Vande Velde G, Hostens J, Himmelreich U, Nemery B,
Luyten FP, Vanoirbeek J, Lories RJ. Quantification of lung fibrosis and
emphysema in mice using automated micro-computed tomography. PloS
One 2012; 7: e43123.
22. Vande Velde G, De Langhe E, Poelmans J, Bruyndonckx P, d’Agostino E,
Verbeken E, Bogaerts R, Lories R, Himmelreich U. Longitudinal in vivo
microcomputed tomography of mouse lungs: No evidence for radiotoxicity.Am. J. Physiol. Lung Cell. Mol. Physiol. 2015; 309: L271-279.
23. Dubsky S, Zosky GR, Perks K, Samarage CR, Henon Y, Hooper SB, Fouras
A. Assessment of airway response distribution and paradoxical airway
dilation in mice during methacholine challenge. J. Appl. Physiol.2016; 122: 503–510.
24. Van Den Broucke S, Pollaris L, Vande Velde G, Verbeken E, Nemery B,
Vanoirbeek J, Hoet P. Irritant-induced asthma to hypochlorite in mice
due to impairment of the airway barrier. Arch. Toxicol. 2018; 92:
1551–1561.
25. Boudewijns R, Thibaut HJ, Kaptein SJF, Li R, Vergote V, Seldeslachts
L, Keyzer CD, Sharma S, Jansen S, Weyenbergh JV, Ma J, Martens E,
Bervoets L, Buyten TV, Jacobs S, Liu Y, Martí-Carreras J, Vanmechelen B,
Wawina-Bokalanga T, Delang L, Rocha-Pereira J, Coelmont L, Chiu W,
Leyssen P, Heylen E, Schols D, Wang L, Close L, Matthijnssens J, Ranst
MV, et al. STAT2 signaling as double-edged sword restricting viral
dissemination but driving severe pneumonia in SARS-CoV-2 infected
hamsters. bioRxiv 2020; : 2020.04.23.056838.
26. Verougstraete V, Mallants A, Buchet J-P, Swennen B, Lison D. Lung
function changes in workers exposed to cobalt compounds: a 13-year
follow-up. Am. J. Respir. Crit. Care Med. 2004; 170: 162–166.
27. Rehfisch P, Anderson M, Berg P, Lampa E, Nordling Y, Svartengren M,
Westberg H, Gunnarsson L-G. Lung function and respiratory symptoms in
hard metal workers exposed to cobalt. J. Occup. Environ. Med.2012; 54: 409–413.
28. Devos FC, Maaske A, Robichaud A, Pollaris L, Seys S, Lopez CA,
Verbeken E, Tenbusch M, Lories R, Nemery B, Hoet PH, Vanoirbeek JA.
Forced expiration measurements in mouse models of obstructive and
restrictive lung diseases. Respir. Res. [Internet] 2017;
18Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5477381/.
29. Pollaris L, Devos F, De Vooght V, Seys S, Nemery B, Hoet PHM,
Vanoirbeek JAJ. Toluene diisocyanate and methylene diphenyl
diisocyanate: asthmatic response and cross-reactivity in a mouse model.Arch. Toxicol. 2016; 90: 1709–1717.
30. Saini Y, Kim KY, Lewandowski R, Bramble LA, Harkema JR, LaPres JJ.
Role of hypoxia-inducible factor 1α in modulating cobalt-induced lung
inflammation. Am. J. Physiol.-Lung Cell. Mol. Physiol. 2009; 298:
L139–L147.
31. Campbell EM, Charo IF, Kunkel SL, Strieter RM, Boring L, Gosling J,
Lukacs NW. Monocyte chemoattractant protein-1 mediates cockroach
allergen-induced bronchial hyperreactivity in normal but not CCR2-/-
mice: the role of mast cells. J. Immunol. Baltim. Md 1950 1999;
163: 2160–2167.
32. De Plaen IG, Han X-B, Liu X, Hsueh W, Ghosh S, May MJ.
Lipopolysaccharide induces CXCL2/macrophage inflammatory protein-2 gene
expression in enterocytes via NF-κB activation: independence from
endogenous TNF-α and platelet-activating factor. Immunology 2006;
118: 153–163.
33. Halim TYF, Krauss RH, Sun AC, Takei F. Lung natural helper cells are
a critical source of Th2 cell-type cytokines in protease
allergen-induced airway inflammation. Immunity 2012; 36:
451–463.
34. Klein Wolterink RGJ, Kleinjan A, van Nimwegen M, Bergen I, de Bruijn
M, Levani Y, Hendriks RW. Pulmonary innate lymphoid cells are major
producers of IL-5 and IL-13 in murine models of allergic asthma.Eur. J. Immunol. 2012; 42: 1106–1116.
35. Zelante T, Wong AYW, Ping TJ, Chen J, Sumatoh HR, Viganò E, Hong
Bing Y, Lee B, Zolezzi F, Fric J, Newell EW, Mortellaro A, Poidinger M,
Puccetti P, Ricciardi-Castagnoli P. CD103(+) Dendritic Cells Control
Th17 Cell Function in the Lung. Cell Rep. 2015; 12: 1789–1801.
36. Norimoto A, Hirose K, Iwata A, Tamachi T, Yokota M, Takahashi K,
Saijo S, Iwakura Y, Nakajima H. Dectin-2 promotes house dust
mite-induced T helper type 2 and type 17 cell differentiation and
allergic airway inflammation in mice. Am. J. Respir. Cell Mol.
Biol. 2014; 51: 201–209.
37. Plantinga M, Guilliams M, Vanheerswynghels M, Deswarte K,
Branco-Madeira F, Toussaint W, Vanhoutte L, Neyt K, Killeen N, Malissen
B, Hammad H, Lambrecht BN. Conventional and monocyte-derived CD11b(+)
dendritic cells initiate and maintain T helper 2 cell-mediated immunity
to house dust mite allergen. Immunity 2013; 38: 322–335.
38. Pollaris L, Van Den Broucke S, Decaesteker T, Cremer J, Seys S,
Devos FC, Provoost S, Maes T, Verbeken E, Vande Velde G, Nemery B, Hoet
PHM, Vanoirbeek JAJ. Dermal exposure determines the outcome of repeated
airway exposure in a long-term chemical-induced asthma-like mouse model.Toxicology 2019; 421: 84–92.
39. Mjösberg J, Spits H. Human innate lymphoid cells. J. Allergy
Clin. Immunol. 2016; 138: 1265–1276.
40. Lambrecht BN, Hammad H. Asthma: the importance of dysregulated
barrier immunity. Eur. J. Immunol. 2013; 43: 3125–3137.
41. Hirose K, Ito T, Nakajima H. Roles of IL-22 in allergic airway
inflammation in mice and humans. Int. Immunol. 2018; 30:
413–418.
TABLE 1 . Nonparametric Spearman correlation between auricular
lymph node (LN) cells and lung dendritic cells (DCs)/innate lymphoid
cells (ILCs)