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The internal disorder of the two-dimensional confined hy-
drogenic atom is numerically studied in terms of the con-
finement radius for the 1s, 2s, 2p and 3d quantum states
by means of the statistical Crámer-Rao complexity measure.
First, the confinement dependence of the variance and the
Fisher information of the position and momentum spread-
ing of its electron distribution are computed and discussed.
Then, the Crámer-Rao complexity measure (which quantifies
the combined balance of the charge concentration around
the mean value and the gradient content of the electron dis-
tribution) is investigated in position and momentum spaces.
We found that confinement does disentangle complexity of
the system for all quantum states by means of this two com-
ponent measure.
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1 | INTRODUCTION

The internal disorder of d -dimensional quantum-mechanical non-relativistic systems is conditioned by the spatial
spreading/complexity of their Schrödinger single-particle probability density ρ(!r ), !r ∈ !d [2, 1]. To best quantify it,
three composite information-theoretic measures (the Fisher-Shannon, Lopezruiz-Mancini-Calvet (LMC) and Crámer-
Rao complexities) [3, 4] and various generalizations (e.g., the complexities of Fisher-Rényi and LMC-Rényi type) have
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been proposed beyond the single dispersion (the statistical variance) and information-theoretic measures (the Fisher
information and the Shannon entropy) and their extensions (e.g., the entropies of Rényi and Tsallis type) [5]. The latter
measures are given asV [ρ] =

〈
r 2
〉
− 〈r 〉2, r ≡ |!r |, for the variance and

F [ρ] :=
∫
!d

$$$!"d ρ(!r )
$$$2

ρ(!r )
d !r , S [ρ] := −

∫
!d

ρ(!r ) log ρ(!r )d !r (1)

for the Fisher and Shannon infromation-theoretic entropies [6, 7], respectively. The symbol "̄d denotes the d -
dimensional gradient operator. These measures quantify a single facet of the density ρ(!r ) of local (Fisher) or global
(variance, Shannon) character, such as the concentration around themean value (variance), the gradient content (Fisher
information) and the total extent (Shannon entropy) of the density. They have been shown to be very useful in nu-
merous scientific areas, particularly to identify and characterize many atomic, molecular and chemical phenomena
such as e.g., correlation properties, level avoided crossings of atoms in external electromagnetic fields, and transition
states and other stationary points in chemical reactions [8, 9, 10, 11, 12].

The composite information-theoretic measures have been recently shown to be most appropriate to describe the
intrinsic complexity of the quantum systems and to disentangle among their rich three-dimensional geometries, mainly
because they jointly grasp different facets of their internal disorder. This is basically because (i) they are adimensional,
(ii) they are invariant under replication (LMC), translation and scaling transformations, and (iii) they have, under certain
mathematical conditions, minimal values for both extreme cases: the completely ordered systems (e.g. a Dirac delta
distribution and a perfect crystal in one and three dimensions) and the totally disordered systems (e.g., an uniform
or highly flat distribution and an ideal gas in one and three dimensions). The basic composite information-theoretic
measures have the following two-ingredient expressions

CLMC [ρ] = eSρ ×
∫
!d

[ρ(!r )]2 d !r , CFS[ρ] = F [ρ] × 1

2πe
e

2
d S [ρ] (2)

for the LMC (Lopezruiz-Mancini-Calvet) [13, 14] and the Fisher-Shannon complexities CFS[ρ] [15, 16], respectively,
and

CCR[ρ] = F [ρ] ×V [ρ] (3)

for the Crámer-Rao complexity [17]. Note that the LMC complexity measures the density non-uniformity through the
combined effect of its total spreading and average height, while the Fisher-Shannon complexity grasps the oscillatory
nature of the density together with its total extent in the configuration space, and the Crámer-Rao quantity takes into
account the gradient content of the density jointly with its concentration around the centroid.

Here we are interested in the electronic complexity of the spherically-confined two-dimensional hydrogen atom
(in short, 2D-HA) both in position and momentum spaces. This is because it is the prototype which has been used to
interpret numerous phenomena and systems in surface chemistry [18, 19, 20], semiconductors (see e.g., [21]), quan-
tum dots [22, 23], atoms and molecules embedded in nanocavities (e.g., fullerenes, helium droplets,...) [24, 27, 25,
29, 30, 26], dilute bosonic and fermionic systems in magnetic traps of extremely low temperatures [31, 33, 34] and
a variety of quantum-information elements [35, 36]. Up until now, contrary to the stationary states of the confined
3D-HA where both the (energy-dependent) spectroscopic and the (eigenfunction-dependent) information-theoretic
properties have received much attention [37, 38, 39, 40, 41, 43, 42, 23, 44, 45, 46], the knowledge of these prop-



C. R. Estañón et al. 3

erties for the confined 2D-HA is quite scarce [47, 49, 48, 51, 52]. Just recently, the authors have determined [53]
the entropy-like (Shannon, Fisher) and complexity-like (Fisher-Shannon, LMC) measures for a few low-lying stationary
states of the confined 2D-HA. The aim of this work is to extend this informational approach by means of the calcu-
lation of the confinement dependence of the variance and the Crámer-Rao complexity measure for the 1s, 2s, 2p and
3d quantum states of the 2D-HA in the two conjugated spaces.

The structure of this work is the following. In Section II we first analytically discuss the eigenvalue free (uncon-
fined) d -dimensional hydrogen problem from an informational point of view, with application to the 1s, 2s, 2p and
3d states of the free two-dimensional case. In Section II the computational method to solve the eigenvalue confined
two-dimensional hydrogen problem is described and the probability densities which characterize the stationary states
of this system are given in both position and momentum spaces. In Section IV, we calculate and discuss the variance,
the Fisher information and the Crámer-Rao complexity of these densities in both conjugated spaces for various sta-
tionary states of the bounded 2D-HA. Finally, some concluding remarks are made.

2 | THE EIGENVALUE d -DIMENSIONALHYDROGENPROBLEM: AN INFORMATIONAL
APPROACH

In this section we briefly describe the analytical solution of the non-relativistic eigenvalue problem for the free (i.e.,
unconfined) d -dimensional hydrogen atom in both position and momentum spaces. The resulting electron probability
densities are used to determine the dispersion and Fisher information measures of the (ns) and circular states of this
system in a rigorousway, with applications to the 1s, 2s, 2p and 3d stationary states of the free 2D-HA. The Schrödinger
equation of the free (i.e., unconfined) d -dimensional hydrogenic system has the form

(
−1

2
!"2
d + V(r )

)
Ψ
(
!r
)
= EΨ

(
!r
)
, (4)

in atomic units, where !r = (r , θ1, θ2, . . . , θD−1) in hyperspherical units and r ≡ |!r | ∈ [0, +∞). The symbols !"d and V(r )
denote the d -dimensional gradient operator and the Coulomb potential V(!r ) = 1

r , respectively. It has been shown
[54, 5] that the wavefunctions of this system are characterized by the energies

E = − 1

2η2
, η = n +

d − 3

2
; n = 1, 2, 3, ..., (5)

and the associated eigenfunctions

Ψn,l ,{µ}(!r ) = Rn,l (r ) × Yl ,{µ}(Ωd−1), (6)

where (l , {µ }) ≡ (l ≡ µ1, µ2, ..., µd−1) denote the hyperquantum numbers associated to the angular variables Ωd−1 ≡
(θ1, θ2, ..., θd−1), which may take all values consistent with the inequalities l ≡ µ1 ≥ µ2 ≥ ... ≥ |µd−1 | ≡ |m | ≥ 0. The
radial part of the eigenfunction is given by

Rn,l (r ) =
(
λ−d

2η

)1/2 [
ω2L+1(r̃ )
r̃ d−2

]1/2
L̃(2L+1)
η−L−1 (r̃ ), (7)
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where λ =
η
2 , r̃ = r

λ , L is

L = l +
d − 3

2
, l = 0, 1, 2, . . . (8)

and the symbol L̃(α)
k

(x ) denotes the orthonormal Laguerre polynomial of degree k with respect to the weight ωα (x ) =
xα e−x on the interval [0,∞). The angular part of the eigenfunction is given by the known hyperspherical harmonics
Yl ,{µ}(Ωd−1) [54, 5].
Then, the position probability density for a generic (n, l , {µ }) ≡ (n, l ≡ µ1, µ2, ..., µd−1) state of the free d -dimensional
hydrogenic systems is

ρ(!r ) =
$$Ψn,l ,{µ}

(
!r
) $$2 = R 2

n,l (r ) ×
$$Yl ,{µ}(Ωd−1)

$$2 . (9)

which is normalized so that
∫
ρ(!r )d !r = 1.

And the probability density in momentum spaces γ( !p) is obtained by squaring the d -dimensional Fourier transform of
the configuration eigenfunction, i.e., the momentum eigenfunction [5]

Ψ̃n,l ,{µ}( !p) = Mn,l (p) × Yl {µ}(Ωd−1), (10)

whose radial part is

Mn,l (p) =
( η
Z

)d/2
(1 + y )3/2

(
1 + y

1 − y

) d−2
4 √

ω∗
L+1(y )C̃

L+1
η−L−1(y ). (11)

where y ≡ (1−η2p2)/(1+η2p2) and the symbol C̃ α
m (x ) denotes the orthonormal Gegenbauer polynomials with respect

to the weight funciont ω∗
α (x ) = (1 − x2)α−

1
2 on the interval [−1,+1]. Then, the momentum probability density for a

generic (n, l , {µ }) ≡ (n, l ≡ µ1, µ2, ..., µd−1) state of the free d -dimensional hydrogenic systems is

γ( !p) =
$$Ψ̃n,l ,{µ}

(
!p
) $$2 = M2

n,l (p)
[
Yl {µ}(Ωd−1)

]2
, (12)

which is normalized so that
∫
γ( !p)d !p = 1.

Let us highlight that all the dispersion, entropy-like and complexity-like which quantify the different facets of the
electron delocalization and complexity of the free d -dimensional hydrogenic system in both position and momentum
spaces can be obtained by calculating the corresponding expressions given in the previous section for the position
and momentum densities of the system which we have just found. In particular, since

〈
r α

〉
≡
∫
!d

r αρ(!r )d !r =

∫ ∞

0
r α+d−1R 2

nl (r ) dr

=
1

2η

( η
2

)α ∫ ∞

0
ω2L+1 (r̃ )

[
L̃(2L+1)
nr (r̃ )

]2
r̃ α+1d r̃ , (13)

we have the values [5].

〈r 〉 = 1

2

[
3η2 − L(L + 1)

]
;

〈
r 2
〉
=

1

2
η2

[
5η2 − 3L(L + 1) + 1

]
, (14)
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so that the varianceV [ρ] =
〈
r 2
〉
− 〈r 〉2 has the value

V [ρ] = 1

4
[η2(η2 + 2) − L2(L + 1)2]. (15)

In addition, one can obtain the values [55, 56]

F [ρ] = 4
〈
p2

〉
− 2 |m | (2l + d − 2)

〈
r −2

〉
(16)

=
4

η3
[η − |m |] , d ≥ 2. (17)

for the position Fisher information of an arbitrary state (n, l ≡ µ1, µ2, ..., µd−1) of the system. Similar expressions can
be obtained for the variance and Fisher information of the d -dimensional hydrogen atom in momentum space [5].
Indeed, one has

〈
p2

〉
=

1

η2
(18)

and

F [γ] = 4
〈
r 2
〉
− 2 |m | (2l + d − 2)

〈
p−2

〉
(19)

= 2η2
[
5η2 − 3L(L + 1) − |m | (8η − 6L − 3) + 1

]
; d ≥ 2. (20)

for the momentum expectation value
〈
p2

〉
and the momentum Fisher informations of an arbitrary state (n, l , {µ }),

respectively. Surprisingly, the mean momentum expectation value 〈p 〉 is not yet explicitly known for any state, but
only for very-high lying (i.e., Rydberg) states (where the value is 2

πη [57]) and a few low-lying states of ns and circular
types (see Appendix). Let us also mention that with the previous considerations about the variance, and since the
Fisher informations of the d -dimensional probability density ρ(!r ) and the one-dimensional density ρ(r ) are equal for
unconfined spherically symmetrical systems, then one has that the Crámer-Rao products (

〈
r 2
〉
− 〈r 〉2) × F [ρ] and

(
〈
p2

〉
− 〈p 〉2) × F [γ] are upper bounded by unity. Moreover, the modified Crámer-Rao products

〈
r 2
〉
× F [ρ] ≥ d 2 and〈

p2
〉
× F [γ] ≥ d 2 are also fulfilled [59, 60, 58]; in both cases the minimal bound is reached by the ground state of the

d-dimensional harmonic oscillator.

Finally, from the general position expressions (15) and (17) and the corresponding ones in momentum space, we
can obtain the values gathered in Table I of the position and momentum variance and Fisher information for the 1s,
2s, 2p and 3d quantum states of the free 2D-HA (where d = 2). See also Appendix. Indeed, with L = m + d−3

2 and
d = 2 one has for example that

V [ρ] = 1

8
(2n4 − 4n3 + 7n2 − 5n − 2m4 +m2 + 1) (21)

and

F [ρ] =
32(n −m − 1

2 )
(2n − 1)3

(22)

for the variance and Fisher information of any quantum state (n,m) of the free 2D-HA in position space, respectively.
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Moreover, taking into account Eq. 3, the last two columns of Table 1 collect the position and momentum Crámer-Rao
complexity measures for the four states of the free 2D -HA under study.

TABLE 1 Variance and Fisher information for various low-lying states of the free 2D-HA.

State V [ρ] V [γ] F [ρ] F [γ] CCR [ρ] CCR [γ]

1s 0.1250 1.5326 16.0000 1.5000 2.0000 2.2989

2s 2.3750 0.2902 1.7777 58.2000 4.2220 16.8896

2p 2.2500 0.0975 0.5925 18.0000 1.3331 1.7550

3d 9.3750 0.0245 0.1280 62.5000 1.2000 1.5312

3 | CONFINED 2D-HYDROGEN ATOM: COMPUTATIONAL METHOD.

In this Section it is described the computational method used to compute the electronic wavefunctions and the as-
sociated probability densities for the stationary states (n,m) of the confined two-dimensional hydrogen atom (i.e., an
electron moving around the nucleus in a circular region of radius r0 with impenetrable walls and the nucleus clamped
at the center) in both position and momentum spaces. This confined 2D-HA obeys the Schrödinger equation (4) with
d = 2 and !r = (r , θ), where r ≡ |!r | ∈ [0, r0] and θ ∈ [0, 2π); so, their stationary states are characterized by two quantum
numbers (n,m) with n = 1, 2, . . . and m = 0, 1, . . . , n − 1. The states with m = n − 1 are usually called by circular states.
This equation cannot be solved in an analytical way, except for the limiting case r0 → ∞ which corresponds to the
free (i.e., unconfined) system already considered in Section II for d (d ≥ 2) dimensions.

To compute the eigensolutions Ψ(r0)
n,m (!r ;α) of the Schrödinger equation of the confined 2D-HA, we have used the

variational methodology described by Aquino et al [49] in the two-dimensional case and by Rojas et al [50] and by
Marin and Cruz [28], Nascimento et al [39], Rojas et al [50] and Jiao et al [40] in the three-dimensional case. Then,
we obtain

Ψ
(r0)
n,m (!r ;α) = R

(r0)
n,m (r ;α)

e imθ

√
2π
, (23)

where α is a variational parameter, and the approximate radial part R (r0)
n,m (r ;α) is given by

R
(r0)
n,m (r ;α) = Rn,m (r ;α)χ (r0)(r ) (24)

with the cut-off function χ (r0)(r ) =
(
1 − r

r0

)
to take into account the Dirichlet boundary condition at r = r0, and

Rn,m (r ;α) has the form

Rn,m (r ;α) = N ′
nm (α) e−αr (αr )|m | L2|m |

n−|m |−1 (αr ) , (25)

where N ′
nm (α) denotes the normalization constant, and the optimized values of α are variationally derived. For further

details about the role of the cut-off function we refer to some careful and systematic studies recently published
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[39],[50]. The energies of the corresponding quantum states are numerically obtained as a function of the confinement
radius r0 by minimizing the functional E (α) = 〈Ψ |H |Ψ〉 with respect to the variational parameter α . The confinement
dependence of the first few low-lying states E10, E20, E21 and E32 are given in Figure 1. We observe that for large
values of r0 these energies decrease monotonically towards to their respective values for the free case. It happens
that the greater the confinement (i.e., the smaller r0), the greater the energy. Moreover, the energetic lines E20 and
E32 cross at r0 ≃ 1 a.u., giving rise to the so-called (3d;2s) inversion. This is a common feature in systems confined by
cavities with impenetrable walls.

The associated wavefunctions of the confined 2D-HA system in momentum space are determined by computing
the Fourier transform of the position wavefunctions Ψ(r0)

n,m (!r ;α) given by Eq. (23), obtaining

Φ
(r0)
n,m ( !p) =

1

2π

∫
!2

Ψ
(r0)
n,m (r ;α)e−i %p ·%r d!r

= (2π)−
3
2

∫ r0

0
R
(r0)
n,m (r ;α) r

[∫ 2π

0
e imθe−i %p ·%r dθ

]
dr ,

which can be expressed as

Φ
(r0)
n,m ( !p) =

i 3m e imθp

(2π)1/2

∫ r0

0
R
(r0)
n,m (r ;α) Jm (r p) rdr , (26)

where we have taken into account the integral representation of the Bessel function, Jn (z ) = 1
2π i n

∫ 2π

0
e i nτe i z cosτ dτ ,

and its parity property, Jn (−z ) = (−1)n Jn (z ).

Finally, the position and momentum probability densities of the 2D-HA are given by

ρn,m (!r ; r0) =
$$$Ψ(r0)

n,m (!r ;α)
$$$2 ; γn,m ( !p ; r0) =

$$$Φ(r0)
n,m ( !p ;α)

$$$2 , (27)

respectively, which are the basic variables of the information theory of the two-dimensional confined hydrogenic
system. Theywill be used to compute the dispersion- and complexity-like quantities of the system in the next sections.

4 | VARIANCE AND CRÁMER-RAO COMPLEXITY OF 2D-HYDROGENIC STATES

In this section we study the confinement dependence of the variance, the Fisher information and the Crámer-Rao
complexity measure for the 1s, 2s, 2p and 3d states of the two-dimensional confined hydrogenic atom in both position
and momentum spaces. These measures quantify the confinement effects on the concentration around the mean
value and the gradient content of the charge and momentum delocalization of the system in an individual and joint
manner, respectively.

4.1 | The variance

Since

〈
r α

〉
≡
∫
!2

r αρn,m (!r ; r0) d !r =

∫ ∞

0
r α+d−1 |R (r0)

n,m (r ;α) |2 dr ,
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FIGURE 1 Confinement dependent of the energies E10, E20, E21 and E32 for the 1s, 2s, 2p and 3d states of the
confined 2D-HA. Atomic units have been used.
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the variance of the probability density for a generic quantum state (n,m) of the confined 2D-HA is given by

V [ρn,m (!r ; r0)] =
∫ r0

0
r 3 |R (r0)

n,m (r ;α) |2 dr −
(∫ r0

0
r 2 |R (r0)

n,m (r ;α) |2 dr
)2

(28)

in position space and by

V [γn,m (!r ; r0)] =
∫ r0

0
p3 |φ(r0)

nm (p) |2 dp −
(∫ r0

0
p2 |φ(r0)

nm (p) |2 dp
)2

(29)

in momentum space, where the symbol φ(r0)
nm (p) denotes the radial part of the momentum eigenfunction.

In Figures 2 and 3 we show the variance for the quantum states 1s, 2s, 2p and 3d of the confined 2D-HA as a
function of the confinement radius r0 in both position and momentum spaces, respectively. First we observe that
both position and momentum values for the variance increase and decrease, respectively, to the rigorously known (as
shown above in Table I) free values when the confinement radius r0 increases, reaching the latter ones at around 8

a.u.(1s), 20 a.u.(2p), 40 a.u.(2s) and 30 a.u.(3d) in position space and around 6 a.u.(1s), 15 a.u. (2p), 8 a.u. (2s) and 10

a.u.(3d ) in momentum space.
In Figure 2 we find that for the circular states (1s, 2p, 3d) the variances of their charge distributions not only decrease
when the confinement radius decreases from the critical values just mentioned, but also they cross each other; for
example, the variance of the ground state has two crossings, one with that of the state 2p and another one with that
of the state 3d. In addtion, the state 3d has a crossing with each of the remaining states Moreover, the confinement
effects on the electronic charge andmomentumdistributions of the quantum states around itsmean value and on their
corresponding energies are clearly different. The comparison of Figures 1 and 3 shows that confinement dependence
of the energies and the momentum variances is globally similar but the known energy (3d;2s)-crossing at 1 a.u. does
not occur in the variance case; interestingly, however, it occurs three crossings of (1s;2p,3d,2s) character.

4.2 | The Fisher information

The Fisher information for the stationary states of the two-dimensional confined hydrogenic atom, which are char-
acterized by the position and momentum probability densities ρ(!r ; r0) and γ( !p ; r0) respectively, defined by Eq. (27), is
given [6] (see also [3]) by

Fρ (r0) =
∫
!2

$$"ρ(!r ; r0)$$2
ρ(!r ; r0)

d !r ; Fγ (r0) =
∫
!2

$$"γ( !p ; r0)$$2
γ( !p ; r0)

d !p, (30)

which satisfy the uncertainty relation Fρ × Fγ ≥ 4 × 22 = 16 for the real wavefunctions of the system [61], what
in our case occurs for the 1s and 2s states only. The Fisher information Fρ (r0) for the state (n,m) of a 2D-HA is
a local measure of spreading of the density ρn,m (!r ; r0) because it is a gradient functional of ρn,m (!r ; r0). The higher
this quantity is, the more localized is the density, the smaller is the uncertainty and the higher is the accuracy in
estimating the localization of the particle. Recently (see Figure 3 of [53]) the Fisher information of the 2D-HA has
been computed for the 1s, 2s, 2p and 3d states. Therein, we found that the Fisher information decreases (position)
and increases (momentum) when r0 is increasing, so that they tend broadly and fastly to the free values (analytically
calculated in section II and numerically given in Table I) in such a way that the Fisher-information-based uncertainty
relation for the 1s and 2s states is always fulfilled because they are described by real wavefunctions.
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FIGURE 2 Confinement dependence of the variance for the 1s, 2s, 2p and 3d states of the confined 2D-HA in
position space. Atomic units have been used.
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FIGURE 3 Confinement dependence of the variance for the 1s, 2s, 2p and 3d states of the confined 2D-HA in
momentum space. Atomic units have been used.
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4.3 | The Crámer-Rao complexity

The Crámer-Rao complexity measure for the stationary states of the 2D-HA, according to Eqs.(3) and (27), are given
by

CCR[ρn,m (!r ; r0)] = F [ρn,m (!r ; r0)] ×V [ρn,m (!r ; r0)] (31)

and

CCR[γn,m ( !p ; r0)] = F [γn,m ( !p ; r0)] ×V [γn,m ( !p ; r0)] (32)

in both position and momentum spaces, respectively. These measures quantify the combined balance of the gradient
content of the density jointly with its concentration around the centroid in both conjugated spaces. So, they are sta-
tistical complexities of local-global character.

In Figures 4 and 5 we show the values of these Crámer-Rao measures for the quantum states 1s, 2s, 2p and 3d of
the confined 2D-HA as a function of the confinement radius r0 in both position and momentum spaces, respectively.
First we observe that confinement does disentangle charge disorder and momentum complexity for the four quantum
states under study. Moreover, these position and momentum measures appear to be lowerbounded by unity for all
values of the confinement radius; that is, not only asymptotically where the system becomes unconfined and then
this property is rigorously fulfilled as already mentioned at the end of section II.

Note in Figure 4 that the position Crámer-Rao measures behave differently for the four states when r0 increases,
although all of them tend towards constancy when r0 is sufficiently large; that is, when confinement is sufficiently
weak and then the 2D-HA system becomes practically free. Such a constancy is reached at 15 a.u. (or even earlier)
for the circular states and at 25 a.u. for the state 2s . Above this critical confinement radius the Crámer-Rao measure
satisfies the inequality chain

CCR [3d ] < CCR [2p] < CCR [1s] < CCR [2s].

Note that these constant free values for the position Crámer-Rao measure are 1.2000 (3d), 1.3331 (2p), 2.0000 (1s)
and 4.2220 (2s), which coincide with the values collected in the last two columns of Table 1 which were obtained in
a rigorous analytical way; this is a further checking of our numerical results.
For stronger confinements the situation gets much more involved. Note that the Crámer-Rao ordering for the circular
states gets altered for values of r0 less than 10 a.u., and the Crámer-Rao measure CCR [2s] shows a minimum at around
6 a.u. because of the delicate balance of the charge concentration around the centroid and the oscillatory character
of the electron density at such a value of the confinement radius.

Similar considerations can be done from Figure 5 for the momentum Crámer-Rao complexity measures of the
states 1s, 2s, 2p and 3d. Here again we observe that for all ground and excited states this quantity tends towards the
corresponding constant known free values when r0 increases (i.e., when the confinement is weaker and weaker), so
that it is fulfilled the same complexity ordering pointed out previously in position space. This constancy is reached at
15 a .u . (or even earlier) for circular states and at at 25 a.u. for the state 2s , as in position space. This behavior towards
free constancy is, of course, different for each quantum state. In the ground state the measure smoothly increases
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when r0 increases up until the free constant value which is reached at 4 a .u .. In the first excited state (2s ) the momen-
tum Crámer-Rao complexity has a completely different behavior with respect to the position one when r0 increases:
the former measure has a pronounced maximum at about r0 = 5 a .u ., from which it oscillates to the free constancy.
For the circular states 2p and 3d the values of this momentum measure smoothly vary towards the corresponding
free constant values rigorously calculated in Section II and collected in Table I; remark that they cross each other at
r0 = 6 a .u . All this suggests a strong dependence of the Crámer-Rao complexity measure on the quantum-number
difference n − |m |.

For stronger confinements (say, when r0 < 10a .u .) the previous complexity ordering changes, mainly among the
momentum complexities of the ground state and the other two circular states; this is basically because of the delicate
interplay of the momentum concentration around the centroid and the gradient content of the electron density.

5 | CONCLUSIONS

In this work the internal disorder of the confined two-dimensional hydrogen atom is studied in a few low-lying quan-
tum states (1s, 2s, 2p, 3d) by means of the variance and the Crámer-Rao complexity measure in both position and
momentum spaces as a function of the confinement radius r0. These measures, which do not depend on the energy
but on the eigenfunction of the state, quantify the pointwise concentration of the electronic charge around the cen-
troid and the combined balance of this concentration and the gradient content of the electron density all over the
confinement region, respectively.
We have found that the position and momentum variances increase and decrease, respectively, when the confine-
ment becomes weaker and weaker (that is, when r0 is increasing), so that for a critical confinement radius onwards
the variances have the values of the free (unconfined) 2D-HA which are rigorous and analytically determined. This
critical radius is bigger in position space than in momentum space for each state. Moreover, the variances go mono-
tonically up (in position space) and down (momentum space) without crossing, except for the ground state, to the
corresponding free values. Then, the greater the confinement (i.e.,the smaller r0), the smaller the position variance
and the greater the momentum variance.

We have also shown here that confinement does distinguish complexity of the 2D-CHA for all stationary states
by means of the Crámer-Rao measure in the two conjugated spaces. These quantities tend in various ways towards
the corresponding constant free values for both ground and excited states when the confinement radius r0 increases.
This constancy, which is also analytically calculated, is reached at a critical confinement radius, which is much less
for circular states than for the state 2s basically because of the bigger relative gradient content. So, this complexity
measure best detects the confinement effects when the impenetrable wall of the system is located at a gradually
smaller critical radius.

The present results together with some recent efforts on information entropies of global (Shannon, Rényi, Tsallis)
[41, 42, 38] and local (Fisher, relative Fisher) [43, 62, 38, 45, 63] character for numerous excited states of three-
dimensional free and confined hydrogen-like systems, illustrate how and how much confinement is crucial not only
for the energy spectrum of multidimensional hydrogen [64, 30] but also for its eigenfunction-dependent information-
theoretical properties which control all the chemical and physical properties.
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FIGURE 4 Confinement dependence of the Crámer-Rao complexity measure for the 1s, 2s, 2p and 3d states of the
confined 2D-HA in position space. Atomic units have been used.
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FIGURE 5 Confinement dependence of the Crámer-Rao complexity measure for the 1s, 2s, 2p and 3d states of the
2D-CHA in momentum space. Atomic units have been used.
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A | DISPERSION AND FISHER INFORMATION VALUES OF ns AND CIRCULAR STATES
OF THE FREE d - AND 2-DIMENSIONAL HYDROGENIC ATOM

The mean expectation value 〈p 〉 of the momentum probability density of the free d -dimensional hydrogenic atom is
not yet explicitly known for a generic stationary state (n, l , {µ }) ≡ (n, l ≡ µ1, µ2, ..., µd−1) despite the efforts of various
authors [65, 66, 67]. However, its value can be analytically found for some specific states such as the (ns) and circular
states which are the leitmotiv of this work. This is the purpose of this appendix. In addition we illustrate here the
analytical computation of the other dispersion and Fisher information measures which we are interesting in. This is
possible because the general expressions (7), (9), (11) and (12) strongly simplifies for such states as it is illustrated for
convenience in the following.

A.1 | ns states

For the (ns)-states (i.e., when µi = 0, & i = 1, . . . , d − 1 ) one finds, from Eqs. (7), (9), (11) and (12), the expressions

ρ(!r )(ns) =
22d−1Γ

(
d
2

)

π
d
2 (2n + d − 3)d+1

e−
r
λ

$$$L̃(d−2)
n−1

( r
λ

)$$$2 , (33)

γ( !p)(ns) =
(2n + d − 3)d Γ

(
d
2

)

8π
d
2

[
C̃

d−1
2

n−1

(
1 − η2p2

1 + η2p2

)]2
, (34)

for the position and momentum probability densities of the free d -dimensional hydrogenic system, respectively. And,
moreover, when n = 1 we have the expressions

ρ(!r )(1s) =
(

2

d − 1

)d 1

π
d−1
2 Γ

(
d+1
2

) e− 4
d−1 r , (35)

γ( !p)(1s) =
(d − 1)d Γ

(
d+1
2

)

π
d+1
2

1(
1 + (d−1)2

4 p2
)d+1 , (36)
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for the position and momentum probability densities of the ground state of the d -dimensional free hydrogen atom.
From here we find that

〈
pα

〉
(1s) =

(
2

d − 1

)α 2Γ
(
d−α
2 + 1

)
Γ
(
d+α
2

)

dΓ2
(
d
2

) ; −d < α < d + 2 (37)

so that

〈p 〉 (1s) = 4

d (d − 1)
Γ2

(
d+1
2

)

Γ2
(
d
2

) , 〈
p2

〉
(1s) =

(
2

d − 1

)2
, (38)

and the variance becomes

V [γ] (1s) =
(

2

d − 1

)2 
1 − 4

d 2

899
:
Γ
(
d+1
2

)

Γ
(
d
2

) ;<<
=

4
. (39)

Similarly, we can calculate the position and momentum variance for states (ns) other than n = 1. As well we can
obtain for example the values

F [ρ] (ns) =
(
2

η

)2
; F [γ] (ns) = η2

[
10η2 − 3

2
(d − 3)(d − 1) + 2

]
, (40)

for the position and momentum Fisher information of the (ns)-states, respectively; and

F [ρ] (1s) =
(

4

d − 1

)2
, F [γ] (1s) = 1

4
d (d + 1)(d − 1)2 (41)

for the position and momentum Fisher information of the ground state of the d -dimensional free hydrogen atom,
respectively. For d = 2 the last few expressions give the values of the position and momentum Fisher information for
the 1s and 2s states of the free 2D-HA gathered in Table I.

A.2 | Circular states

Other particular states interesting for our purposes are the circular states (n, µ1 = µ2 = · · · = µd−1 = n − 1) which,
according to Eqs. (7), (9), (11) and (12), have the following probability densities

ρcirc(!r ) =
2d+2−2n

π
d−1
2 (2n + d − 3)d Γ(n)Γ

(
n + d−1

2

) × e−
r
λ

( r
λ

)2n−2 d−2∏
j=1

(
sin θj

)2n−2
, (42)

and

γcirc( !p) =
22n−2(2n + d − 3)d Γ

(
n + d−1

2

)

π
d+1
2 Γ(n)

(ηp)2n−2

(1 + η2p2)2n+d−1
d−2∏
j=1

(
sin θj

)2n−2
, (43)
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for the position and momentum probability densities, respectively.
From these two expressions we can obtain all the dispersion, entropy-like and complexity-like quantities of the circular
states of the d -dimensional free hydrogen atom as defined in section I. In particular we have the values

〈
r α

〉
=

(
2n + d − 3

4

)α Γ(2n + d − 2 + α)
Γ(2n + d − 2) ; α > −2n − d + 2, (44)

〈
pα

〉
=

(
2

2n + d − 3

)α Γ
(
n + d+α−2

2

)
Γ
(
n + d−α

2

)
(
n + d−2

2

)
Γ2

(
n + d−2

2

) , −2n − d + 2 < α < 2n + d (45)

for the position and momentum expectation values of order α , respectively. The use of these expressions with α = 1

and 2 allows one to find the values for the position and momentum variance for the circular states, obtaining for
example the value

V
[
γcirc

]
(1s) =

(
2

d − 1

)2 
1 − 4

d 2

899
:
Γ
(
d+1
2

)

Γ
(
d
2

) ;<<
=

4
. (46)

for the momentum variance of the ground state (1s) of the free d -dimensional hydrogenic atom. Moreover, we find
that

〈p 〉(d = 2) =
2Γ2( 12 + n)

n(2n − 1)Γ2(n)
; 〈p2 〉(d = 2) = 4

(2n − 1)2
(47)

so that the momentum variance for any circular state (n, n − 1) of a 2D-HA has the value

V
[
γcirc

]
(d = 2) = 4

(2n − 1)2
899
:
1 −

Γ
(
n + 1

2

)4
n2 Γ(n)4

;<<
=
. (48)

The last three expressions for d = 2 give the valueV [γ] (1s ; d = 2) = 4(1 − π2/16) = 1.5326 as well as the momentum
variances for the other circular states, 2p and 3d, of Table I. The rest of values for the position andmomentumvariances
gathered in the second and third column of this table for the two-dimensional free hydrogen can be obtained in a
similar manner. For example, we have the values

F
[
ρcirc

]
=

2(d − 1)
η3

=
16(d − 1)

(2n + d − 3)3
, (49)

F
[
γcirc

]
=

1

4
(2n + d − 3)2 [(2n + d )(d − 1) + 2] , (50)

for the position and momentum Fisher information, which for d = 2 give the values

F
[
ρcirc

]
=

16

(2n − 1)3
; F

[
γcirc

]
=

1

2
(2n − 1)2(n + 2), (51)
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for the position and momentum Fisher information of the free 2D-HA. For n = 1, 2, , 3 they supply the corresponding
values of the Fisher information of the circular states gathered in Table I; that is, 1s, 2p and 3d.
Finally, for completeness, since

〈
r 2
〉
=

(
2n + d − 3

4

)2
(2n + d − 2)(2n + d − 1);

〈
p2

〉
=

(
2

2n + d − 3

)2
(52)

we also observe that

〈
r 2
〉
F [ρ] = (d − 1)(2n + d − 1)(2n + d − 2)

2n + d − 3
;

〈
p2

〉
F [γ] = (2n + d )(d − 1) + 2, (53)

for the Crámer-Rao uncertainty products for the circular states (n, n − 1) of the 2D-HA, which are always greater than
d 2 as they should (see at the end of section II) [59, 60, 58].
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