References
1. Culp C, Kim HK, Abdi S. Ketamine Use for Cancer and Chronic Pain
Management. Front Pharmacol. 2020;11:599721.
10.3389/fphar.2020.599721
2. Dahlhamer J, Lucas J, Zelaya C, et al. Prevalence of Chronic Pain and
High-Impact Chronic Pain Among Adults - United States, 2016. MMWR
Morb Mortal Wkly Rep. 2018;67(36):1001-1006. 10.15585/mmwr.mm6736a2
3. Fayaz A, Croft P, Langford RM, Donaldson LJ, Jones GT. Prevalence of
chronic pain in the UK: a systematic review and meta-analysis of
population studies. BMJ Open. 2016;6(6):e010364.
10.1136/bmjopen-2015-010364
4. St Sauver JL, Warner DO, Yawn BP, et al. Why patients visit their
doctors: assessing the most prevalent conditions in a defined American
population. Mayo Clin Proc. 2013;88(1):56-67.
10.1016/j.mayocp.2012.08.020
5. Steglitz J, Buscemi J, Ferguson MJ. The future of pain research,
education, and treatment: a summary of the IOM report ”Relieving pain in
America: a blueprint for transforming prevention, care, education, and
research”. Transl Behav Med. 2012;2(1):6-8.
10.1007/s13142-012-0110-2
6. Ahmad FB, Cisewski JA, Rossen LM, P S. Provisional drug overdose
death counts. 2023;
https://www.cdc.gov/nchs/nvss/vsrr/drug-overdose-data.htm.
7. Cohen SP, Vase L, Hooten WM. Chronic pain: an update on burden, best
practices, and new advances. Lancet. 2021;397(10289):2082-2097.
10.1016/S0140-6736(21)00393-7
8. Woolf CJ, King AE. Subthreshold components of the cutaneous
mechanoreceptive fields of dorsal horn neurons in the rat lumbar spinal
cord. J Neurophysiol. 1989;62(4):907-916.
10.1152/jn.1989.62.4.907
9. Yunus MB. Editorial review: an update on central sensitivity
syndromes and the issues of nosology and psychobiology. Curr
Rheumatol Rev. 2015;11(2):70-85. 10.2174/157339711102150702112236
10. Harte SE, Harris RE, Clauw DJ. The neurobiology of central
sensitization. Journal of Applied Biobehavioral Research.2018;23(2):e12137. 10.1111/jabr.12137
11. Brooks JC, Tracey I. The insula: a multidimensional integration site
for pain. Pain. 2007;128(1-2):1-2. 10.1016/j.pain.2006.12.025
12. Wager TD, Atlas LY, Lindquist MA, Roy M, Woo CW, Kross E. An
fMRI-based neurologic signature of physical pain. N Engl J Med.2013;368(15):1388-1397. 10.1056/NEJMoa1204471
13. Dedek A, Hildebrand ME. Advances and Barriers in Understanding
Presynaptic N-Methyl-D-Aspartate Receptors in Spinal Pain Processing.Front Mol Neurosci. 2022;15:864502. 10.3389/fnmol.2022.864502
14. Nagy GG, Watanabe M, Fukaya M, Todd AJ. Synaptic distribution of the
NR1, NR2A and NR2B subunits of the N-methyl-d-aspartate receptor in the
rat lumbar spinal cord revealed with an antigen-unmasking technique.Eur J Neurosci. 2004;20(12):3301-3312.
10.1111/j.1460-9568.2004.03798.x
15. Mendell LM, Wall PD. Responses of Single Dorsal Cord Cells to
Peripheral Cutaneous Unmyelinated Fibres. Nature.1965;206(4979):97-99. 10.1038/206097a0
16. Woolf CJ, Thompson SWN. The induction and maintenance of central
sensitization is dependent on N-methyl-D-aspartic acid receptor
activation; implications for the treatment of post-injury pain
hypersensitivity states. Pain. 1991;44(3):293-299.
10.1016/0304-3959(91)90100-C
17. Coderre TJ, Vaccarino AL, Melzack R. Central nervous system
plasticity in the tonic pain response to subcutaneous formalin
injection. Brain Res. 1990;535(1):155-158.
10.1016/0006-8993(90)91835-5
18. Coderre TJ, Melzack R. The contribution of excitatory amino acids to
central sensitization and persistent nociception after formalin-induced
tissue injury. J Neurosci. 1992;12(9):3665-3670.
10.1523/JNEUROSCI.12-09-03665.1992
19. Inturrisi CE. The role of N-methyl-D-aspartate (NMDA) receptors in
pain and morphine tolerance. Minerva Anestesiol.2005;71(7-8):401-403.
20. South SM, Kohno T, Kaspar BK, et al. A conditional deletion of the
NR1 subunit of the NMDA receptor in adult spinal cord dorsal horn
reduces NMDA currents and injury-induced pain. J Neurosci.2003;23(12):5031-5040. 10.1523/JNEUROSCI.23-12-05031.2003
21. Dore K, Stein IS, Brock JA, Castillo PE, Zito K, Sjostrom PJ.
Unconventional NMDA Receptor Signaling. J Neurosci.2017;37(45):10800-10807. 10.1523/JNEUROSCI.1825-17.2017
22. Wong HHW, Rannio S, Jones V, Thomazeau A, Sjöström PJ. NMDA
receptors in axons: there’s no coincidence. The Journal of
Physiology. 2021;599(2):367-387.
23. Kavalali ET. The mechanisms and functions of spontaneous
neurotransmitter release. Nat Rev Neurosci. 2015;16(1):5-16.
10.1038/nrn3875
24. Corlew R, Brasier DJ, Feldman DE, Philpot BD. Presynaptic NMDA
receptors: newly appreciated roles in cortical synaptic function and
plasticity. Neuroscientist. 2008;14(6):609-625.
10.1177/1073858408322675
25. Deng M, Chen SR, Chen H, Luo Y, Dong Y, Pan HL. Mitogen-activated
protein kinase signaling mediates opioid-induced presynaptic NMDA
receptor activation and analgesic tolerance. J Neurochem.2019;148(2):275-290. 10.1111/jnc.14628
26. Yan X, Jiang E, Gao M, Weng HR. Endogenous activation of presynaptic
NMDA receptors enhances glutamate release from the primary afferents in
the spinal dorsal horn in a rat model of neuropathic pain. J
Physiol. 2013;591(7):2001-2019. 10.1113/jphysiol.2012.250522
27. Li L, Chen SR, Chen H, et al. Chloride Homeostasis Critically
Regulates Synaptic NMDA Receptor Activity in Neuropathic Pain.Cell Rep. 2016;15(7):1376-1383. 10.1016/j.celrep.2016.04.039
28. Chen SR, Hu YM, Chen H, Pan HL. Calcineurin inhibitor induces pain
hypersensitivity by potentiating pre- and postsynaptic NMDA receptor
activity in spinal cords. J Physiol. 2014;592(1):215-227.
10.1113/jphysiol.2013.263814
29. Chen W, Walwyn W, Ennes HS, Kim H, McRoberts JA, Marvizon JC. BDNF
released during neuropathic pain potentiates NMDA receptors in primary
afferent terminals. Eur J Neurosci. 2014;39(9):1439-1454.
10.1111/ejn.12516
30. McRoberts JA, Ennes HS, Marvizon JC, Fanselow MS, Mayer EA, Vissel
B. Selective knockdown of NMDA receptors in primary afferent neurons
decreases pain during phase 2 of the formalin test. Neuroscience.2011;172:474-482. 10.1016/j.neuroscience.2010.10.045
31. Davidson EM, Carlton SM. Intraplantar injection of dextrorphan,
ketamine or memantine attenuates formalin-induced behaviors. Brain
Res. 1998;785(1):136-142. 10.1016/s0006-8993(97)01396-6
32. Davidson EM, Coggeshall RE, Carlton SM. Peripheral NMDA and non-NMDA
glutamate receptors contribute to nociceptive behaviors in the rat
formalin test. Neuroreport. 1997;8(4):941-946.
10.1097/00001756-199703030-00025
33. Scholz J, Broom DC, Youn DH, et al. Blocking caspase activity
prevents transsynaptic neuronal apoptosis and the loss of inhibition in
lamina II of the dorsal horn after peripheral nerve injury. J
Neurosci. 2005;25(32):7317-7323. 10.1523/JNEUROSCI.1526-05.2005
34. Inquimbert P, Moll M, Latremoliere A, et al. NMDA Receptor
Activation Underlies the Loss of Spinal Dorsal Horn Neurons and the
Transition to Persistent Pain after Peripheral Nerve Injury. Cell
Rep. 2018;23(9):2678-2689. 10.1016/j.celrep.2018.04.107
35. Schafe GE, Nader K, Blair HT, LeDoux JE. Memory consolidation of
Pavlovian fear conditioning: a cellular and molecular perspective.Trends Neurosci. 2001;24(9):540-546.
10.1016/s0166-2236(00)01969-x
36. Ji G, Yakhnitsa V, Kiritoshi T, Presto P, Neugebauer V. Fear
extinction learning ability predicts neuropathic pain behaviors and
amygdala activity in male rats. Mol Pain.2018;14:1744806918804441. 10.1177/1744806918804441
37. Risbrough VB, Glenn DE, Baker DG. On the road to translation
for PTSD treatment: theoretical and practical considerations of the use
of human models of conditioned fear for drug development. Springer;
2016.
38. Falls WA, Miserendino MJ, Davis M. Extinction of fear-potentiated
startle: blockade by infusion of an NMDA antagonist into the amygdala.J Neurosci. 1992;12(3):854-863.
10.1523/JNEUROSCI.12-03-00854.1992
39. Milad MR, Quirk GJ. Neurons in medial prefrontal cortex signal
memory for fear extinction. Nature. 2002;420(6911):70-74.
10.1038/nature01138
40. Santini E, Ge H, Ren K, Pena de Ortiz S, Quirk GJ. Consolidation of
fear extinction requires protein synthesis in the medial prefrontal
cortex. J Neurosci. 2004;24(25):5704-5710.
10.1523/JNEUROSCI.0786-04.2004
41. Niesters M, Dahan A. Pharmacokinetic and pharmacodynamic
considerations for NMDA receptor antagonists in the treatment of chronic
neuropathic pain. Expert Opin Drug Metab Toxicol.2012;8(11):1409-1417. 10.1517/17425255.2012.712686
42. Wu LJ, Zhuo M. Targeting the NMDA receptor subunit NR2B for the
treatment of neuropathic pain. Neurotherapeutics.2009;6(4):693-702. 10.1016/j.nurt.2009.07.008
43. Millecamps M, Centeno MV, Berra HH, et al. D-cycloserine reduces
neuropathic pain behavior through limbic NMDA-mediated circuitry.Pain. 2007;132(1-2):108-123. 10.1016/j.pain.2007.03.003
44. Schnitzer TJ, Torbey S, Herrmann K, Kaushal G, Yeasted R, Vania
Apkarian A. A randomized placebo-controlled pilot study of the efficacy
and safety of D-cycloserine in people with chronic back pain. Mol
Pain. 2016;12. 10.1177/1744806916678627
45. Walker DL, Ressler KJ, Lu KT, Davis M. Facilitation of conditioned
fear extinction by systemic administration or intra-amygdala infusions
of D-cycloserine as assessed with fear-potentiated startle in rats.J Neurosci. 2002;22(6):2343-2351.
10.1523/JNEUROSCI.22-06-02343.2002
46. Medeiros P, Negrini-Ferrari SE, Palazzo E, et al.
N-methyl-D-aspartate Receptors in the Prelimbic Cortex are Critical for
the Maintenance of Neuropathic Pain. Neurochem Res.2019;44(9):2068-2080. 10.1007/s11064-019-02843-z
47. Childress AR, McLellan AT, O’Brien CP. Abstinent opiate abusers
exhibit conditioned craving, conditioned withdrawal and reductions in
both through extinction. Br J Addict. 1986;81(5):655-660.
10.1111/j.1360-0443.1986.tb00385.x
48. Chartoff EH, Mague SD, Barhight MF, Smith AM, Carlezon WA, Jr.
Behavioral and molecular effects of dopamine D1 receptor stimulation
during naloxone-precipitated morphine withdrawal. J Neurosci.2006;26(24):6450-6457. 10.1523/JNEUROSCI.0491-06.2006
49. Myers KM, Carlezon WA, Jr. D-cycloserine facilitates extinction of
naloxone-induced conditioned place aversion in morphine-dependent rats.Biol Psychiatry. 2010;67(1):85-87. 10.1016/j.biopsych.2009.08.015
50. Organization WH. Rapid сommunication: key changes to treatment
of multidrug-and rifampicin-resistant tuberculosis (MDR/RR-TB). World
Health Organization;2018.
51. Li Y, Wang F, Wu L, et al. Cycloserine for treatment of
multidrug-resistant tuberculosis: a retrospective cohort study in China.Infect Drug Resist. 2019;12:721-731. 10.2147/IDR.S195555
52. Intini E, Kishore G, Richeldi L, Udwadia ZF. Neuropsychiatric
reactions induced by cycloserine in the treatment of multidrug-resistant
tuberculosis: what an Indian female patient tells us. BMJ Case
Rep. 2019;12(12). 10.1136/bcr-2019-230993
53. Pachi A, Bratis D, Moussas G, Tselebis A. Psychiatric morbidity and
other factors affecting treatment adherence in pulmonary tuberculosis
patients. Tuberc Res Treat. 2013;2013:489865. 10.1155/2013/489865
54. Javed A, Arthur H, Curtis L, Hansen L, Pappa S. Practical Guidance
on the Use of Lurasidone for the Treatment of Adults with Schizophrenia.Neurol Ther. 2019;8(2):215-230. 10.1007/s40120-019-0138-z
55. Stroup TS, Gray N. Management of common adverse effects of
antipsychotic medications. World Psychiatry. 2018;17(3):341-356.
56. Javitt DC. Composition and method for treatment of depression and
psychosis in humans. US Patent US10583138B2 E, Tables 1 and 2.
https://patents.google.com/patent/US10583138B2/en.
57. Ishibashi T, Horisawa T, Tokuda K, et al. Pharmacological profile of
lurasidone, a novel antipsychotic agent with potent 5-hydroxytryptamine
7 (5-HT7) and 5-HT1A receptor activity. J Pharmacol Exp Ther.2010;334(1):171-181. 10.1124/jpet.110.167346
58. Sommer C. Serotonin in pain and analgesia: actions in the periphery.Mol Neurobiol. 2004;30(2):117-125. 10.1385/MN:30:2:117
59. Taiwo YO, Levine JD. Serotonin is a directly-acting hyperalgesic
agent in the rat. Neuroscience. 1992;48(2):485-490.
10.1016/0306-4522(92)90508-y
60. Sufka KJ, Schomburg FM, Giordano J. Receptor mediation of
5-HT-induced inflammation and nociception in rats. Pharmacol
Biochem Behav. 1992;41(1):53-56. 10.1016/0091-3057(92)90058-n
61. Jensen K, Tuxen C, Pedersen-Bjergaard U, Jansen I, Edvinsson L,
Olesen J. Pain, wheal and flare in human forearm skin induced by
bradykinin and 5-hydroxytryptamine. Peptides.1990;11(6):1133-1138. 10.1016/0196-9781(90)90142-r
62. Maeno Y, Takabe F, Mori Y, Iwasa M, Inoue H. Simultaneous
observation of catecholamine, serotonin and their metabolites in incised
skin wounds of guinea pig. Forensic Sci Int. 1991;51(1):51-63.
10.1016/0379-0738(91)90205-w
63. Andén NE, Olsson Y. 5–HYDROXYTRYPTAMINE IN NORMAL AND SECTIONED RAT
SCIATIC NERVE. Acta Pathologica Microbiologica Scandinavica.1967;70(4):537-540.
64. Abbott FV, Hong Y, Blier P. Activation of 5-HT2A receptors
potentiates pain produced by inflammatory mediators.Neuropharmacology. 1996;35(1):99-110.
10.1016/0028-3908(95)00136-0
65. Nitanda A, Yasunami N, Tokumo K, Fujii H, Hirai T, Nishio H.
Contribution of the peripheral 5-HT 2A receptor to mechanical
hyperalgesia in a rat model of neuropathic pain. Neurochem Int.2005;47(6):394-400. 10.1016/j.neuint.2005.06.002
66. Thibault K, Van Steenwinckel J, Brisorgueil MJ, et al. Serotonin
5-HT2A receptor involvement and Fos expression at the spinal level in
vincristine-induced neuropathy in the rat. Pain.2008;140(2):305-322. 10.1016/j.pain.2008.09.006
67. Cortes-Altamirano JL, Olmos-Hernandez A, Jaime HB, et al. Review:
5-HT1, 5-HT2, 5-HT3 and 5-HT7 Receptors and their Role in the Modulation
of Pain Response in the Central Nervous System. Curr
Neuropharmacol. 2018;16(2):210-221. 10.2174/1570159X15666170911121027
68. Amaya-Castellanos E, Pineda-Farias JB, Castaneda-Corral G, et al.
Blockade of 5-HT7 receptors reduces tactile allodynia in the rat.Pharmacol Biochem Behav. 2011;99(4):591-597.
10.1016/j.pbb.2011.06.005
69. Meuser T, Pietruck C, Gabriel A, Xie GX, Lim KJ, Pierce Palmer P.
5-HT7 receptors are involved in mediating 5-HT-induced activation of rat
primary afferent neurons. Life Sci. 2002;71(19):2279-2289.
10.1016/s0024-3205(02)02011-8
70. Rocha-Gonzalez HI, Meneses A, Carlton SM, Granados-Soto V.
Pronociceptive role of peripheral and spinal 5-HT7 receptors in the
formalin test. Pain. 2005;117(1-2):182-192.
10.1016/j.pain.2005.06.011
71. Nascimento EB, Jr., Romero TRL, Dutra M, Fiebich BL, Duarte IDG,
Coelho MM. Role of peripheral 5-HT(1D), 5-HT(3) and 5-HT(7) receptors in
the mechanical allodynia induced by serotonin in mice. Biomed
Pharmacother. 2021;135:111210. 10.1016/j.biopha.2020.111210
72. Kocher R. [The treatment of chronic pain symptoms with
psychotropic drugs (author’s transl)]. Pharmakopsychiatr
Neuropsychopharmakol. 1976;9(6):337-341. 10.1055/s-0028-1094510
73. Raft D, Toomey T, Gregg JM. Behavior modification and haloperidol in
chronic facial pain. South Med J. 1979;72(2):155-159.
10.1097/00007611-197902000-00013
74. Jimenez XF, Sundararajan T, Covington EC. A Systematic Review of
Atypical Antipsychotics in Chronic Pain Management: Olanzapine
Demonstrates Potential in Central Sensitization, Fibromyalgia, and
Headache/Migraine. Clin J Pain. 2018;34(6):585-591.
10.1097/AJP.0000000000000567
75. Aguera-Ortiz L, Failde I, Mico JA, Cervilla J, Lopez-Ibor JJ. Pain
as a symptom of depression: prevalence and clinical correlates in
patients attending psychiatric clinics. J Affect Disord.2011;130(1-2):106-112. 10.1016/j.jad.2010.10.022
76. Williams LS, Jones WJ, Shen J, Robinson RL, Weinberger M, Kroenke K.
Prevalence and impact of depression and pain in neurology outpatients.J Neurol Neurosurg Psychiatry. 2003;74(11):1587-1589.
10.1136/jnnp.74.11.1587
77. Bair MJ, Robinson RL, Katon W, Kroenke K. Depression and pain
comorbidity: a literature review. Arch Intern Med.2003;163(20):2433-2445. 10.1001/archinte.163.20.2433
78. Gureje O, Von Korff M, Simon GE, Gater R. Persistent pain and
well-being: a World Health Organization Study in Primary Care.JAMA. 1998;280(2):147-151. 10.1001/jama.280.2.147
79. Gambassi G. Pain and depression: the egg and the chicken story
revisited. Arch Gerontol Geriatr. 2009;49 Suppl 1:103-112.
10.1016/j.archger.2009.09.018
80. Middleton P, Pollard H. Are chronic low back pain outcomes improved
with co-management of concurrent depression? Chiropr Osteopat.2005;13(1):8. 10.1186/1746-1340-13-8
81. Turk DC, Audette J, Levy RM, Mackey SC, Stanos S. Assessment and
treatment of psychosocial comorbidities in patients with neuropathic
pain. Mayo Clin Proc. 2010;85(3 Suppl):S42-50.
10.4065/mcp.2009.0648
82. Katon W, Ciechanowski P. Impact of major depression on chronic
medical illness. J Psychosom Res. 2002;53(4):859-863.
83. Burns JW, Johnson BJ, Mahoney N, Devine J, Pawl R. Cognitive and
physical capacity process variables predict long-term outcome after
treatment of chronic pain. J Consult Clin Psychol.1998;66(2):434-439.
84. Fishbain DA, Cutler R, Rosomoff HL, Rosomoff RS. Chronic
pain-associated depression: antecedent or consequence of chronic pain? A
review. Clin J Pain. 1997;13(2):116-137.
10.1097/00002508-199706000-00006
85. Gruber AJ, Hudson JI, Pope HG, Jr. The management of
treatment-resistant depression in disorders on the interface of
psychiatry and medicine. Fibromyalgia, chronic fatigue syndrome,
migraine, irritable bowel syndrome, atypical facial pain, and
premenstrual dysphoric disorder. Psychiatr Clin North Am.1996;19(2):351-369.
86. Orenius TI, Koskela T, Koho P, et al. Anxiety and Depression Are
Independent Predictors of Quality of Life of Patients with Chronic
Musculoskeletal Pain. J Health Psychol. 2012.
10.1177/1359105311434605
87. Cheatle MD. Depression, chronic pain, and suicide by overdose: on
the edge. Pain Med. 2011;12 Suppl 2:S43-48.
10.1111/j.1526-4637.2011.01131.x
88. Yang H, Hurwitz EL, Li J, et al. Bidirectional Comorbid Associations
between Back Pain and Major Depression in US Adults. Int J Environ
Res Public Health. 2023;20(5). 10.3390/ijerph20054217
89. Yang S, Chang MC. Chronic Pain: Structural and Functional Changes in
Brain Structures and Associated Negative Affective States. Int J
Mol Sci. 2019;20(13). 10.3390/ijms20133130
90. Li H, Penzo MA, Taniguchi H, Kopec CD, Huang ZJ, Li B.
Experience-dependent modification of a central amygdala fear circuit.Nat Neurosci. 2013;16(3):332-339. 10.1038/nn.3322
91. Thompson JM, Neugebauer V. Cortico-limbic pain mechanisms.Neurosci Lett. 2019;702:15-23. 10.1016/j.neulet.2018.11.037
92. Meda RT, Nuguru SP, Rachakonda S, Sripathi S, Khan MI, Patel N.
Chronic Pain-Induced Depression: A Review of Prevalence and Management.Cureus. 2022;14(8):e28416. 10.7759/cureus.28416
93. Suppes T, Silva R, Cucchiaro J, et al. Lurasidone for the Treatment
of Major Depressive Disorder With Mixed Features: A Randomized,
Double-Blind, Placebo-Controlled Study. Am J Psychiatry.2016;173(4):400-407. 10.1176/appi.ajp.2015.15060770
94. Crane GE. Cyloserine as an antidepressant agent. Am J
Psychiatry. 1959;115(11):1025-1026.
95. Crane GE. The psychotropic effects of cycloserine: A new use for an
antibiotic. Compr Psychiatry. 1961;2(1):51-59.
96. Heresco-Levy U, Gelfin G, Bloch B, et al. A randomized add-on trial
of high-dose D-cycloserine for treatment-resistant depression. Int
J Neuropsychopharmacol. 2013;16(3):501-506. 10.1017/s1461145712000910