Comparison of results in application of different methods of deformation strengthening
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Abstract
In exact analyses of bodies in the elastic-plastic area, the behaviour of the material above critical stress values plays a key role. In addition, under cyclic stress, important phenomena to be taken into account are the various types (modifications) of strengthening and design (adaptation) of the material or structure. In this process, it is important to define several groups of characteristics. These include for instance initial area of plasticity or load which defines the interface between elastic and plastic deformation area. The characteristics also include the relevant law of plastic deformation which specifies the velocity direction of plastic deformation during plastic deformation. The strengthening condition is also important to determine position, size and shape of the subsequent loading area. The practical part of this article is dedicated to the comparison of results obtained in the analysis of stresses and deformations of particular structural elements in the elastic-plastic area by FEM using models of different types of deformation strengthening.
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NOMENCLATURE: dissipation of plastic energy,  flexibility matrix,  elastic-plastic symmetrical matrix,  gradient (vector) of the function ,  the plasticity function,  full time differential of the loading function,  strengthening function,  stress invariants,  second invariant of the plastic deformation velocity deviator,  constants describing properties of the material,  components of stress deviators,  main values of stress deviators,  coordinate axes,  scalar variable related to the development of dislocation structures during loading,  kinematic stress tensor,  deformation vector  plastic deformation vector,  elastic deformation vector,  relative deformations for kinematic strengthening,  relative deformations for isotropic strengthening,  relative deformations for isotropic strengthening,  relative deformations  for kinematic strengthening,  residual relative deformations for isotropic strengthening, ,  residual relative deformations for kinematic strengthening,  history parameters which measure the degree of strengthening,  time change of history parameters,   time change of plastic deformation,  proportionality factor,  stress vector,  normal stress components,  shear stress components,  principal normal stresses,  mean normal stress,  time change of the stress,  actual dissipation rate,  notional dissipation rate,  certain stress,  normal stress for isotropic strengthening,  normal stress for kinematic strengthening,  reduced stresses for kinematic strengthening,  reduced normal stresses for isotropic strengthening,  residual normal stresses for kinematic strengthening,   residual normal stresses for isotropic strengthening.

1 | INTRODUCTION
Plastic deformation of a body (structural element) is a permanent (irreversible) change in the shape and dimensions of the body due to external forces. It is a macroscopic sign of a permanent change in the mutual position of deformed material particles. The stress state in which the body is permanently deformed is the state of elastic-plastic stress.
In practical engineering or in engineering application of materials is generally inadmissible to create macroplastic deformation, plastic deformation of a critical size and plastic stability failure. Under uniaxial stress (line stress), i.e. under tension, compression or bending (in edge fibres of a beam), the macroplastic deformation starts significantly at the yield stress. In other stress modes and in a multiaxial state of stress, the limit state of plastic deformation is determined by a more complex procedure using different plasticity conditions and plasticity hypotheses (theories) 1,2.
Due to the macroplastic deformation of components, the geometry is permanently changed. As long as there is a functional interrelation between these components, their partial or complete malfunction or the overall load-bearing loss might or might not occur.3,4,5
However, in certain justified or specific cases, it is possible to consider or allow plastic deformation to occur in the whole structure or in its individual elements. The possibility of allowing plastic deformation in statically certain and especially statically indeterminate tasks (structures, systems) can significantly increase the load-bearing capacity of the structure, in some cases even by several tens of percent. Magnitude of the load capacity increase depends on several factors.
The fundamental role in the analysis of structural elements in the elastic-plastic area plays the knowledge of the behaviour of materials in this area. This is particularly the case in cyclic stresses where the mutual dependence of stress and (relative) deformation is formed by a hysteresis loop (diagram). At lower stress levels, this loop is closed, at higher stresses the loop is open. Another factor (phenomenon) associated with above-mentioned phenomena, which enters and further complicates the relevant analyses, is the behaviour of materials and complete structural elements when, after reaching the ultimate limit of plastic load-bearing and relieving the element, repeated loading occurs. If the repetitive load is in its original orientation, there is an apparent increase in the yield point, or the amount of load required to create the limit state increases. On the contrary, when repeatedly loaded with the opposite orientation, there is an apparent reduction of the yield point, or the amount of load required to create the limit state is being reduced. In the first case it is a phenomenon of deformation strengthening, the so-called Bauschinger effect. 6,7
Many authors are currently dealing with the issue of assessment of structural elements in the elastic-plastic area, considering some form of deformation strengthening of classical or modern materials. A number of works can be mentioned, for example, in which the authors deal with the influence of isotropic and kinematic reinforced material in the process of sheet metal forming using simulation methods. The influence of kinematic strengthening on the properties of sheets during their drawing is discussed, for instance. Propagation of cracks in such strengthened materials is described, for instance. Isotropic and kinematic strengthening of modern, e.g. composite materials is the topic of, for instance8. 

2 | IMPLEMENTATION OF MATERIAL MODELS INTO FEM PROGRAM PRODUCTS
In engineering practice, when designing and assessing structural elements (components, nodes, and entire structures) loaded under elastic-plastic deformation conditions, the designer must also rely on methodologies and algorithms in the form offered by commercial software systems for the numerical analysis using finite element methods (FEM). One of the basic analyses that is required in such cases is the analysis simulating specific properties and behaviour of materials in the elastic-plastic area under cyclic loading. Preferably, the aim is to capture the Bauschinger effect and strengthen the materials by the effect (influence) of repeated cyclic plastic deformation. The strengthening of materials can be of a different basic nature, determined both by the material itself and by the effect of various external factors. The basic mechanisms (methods) of strengthening used in numerical analyses and simulations include isotropic, kinematic, combined isotropic-kinematic and other methods. The effect of applying different methods of deformation strengthening can be obtained by the comparison of results of stress and strain analyses of mutually identical or similar tasks (practice).

3 | ANALYTICAL DESCRIPTION OF THE BEHAVIOUR OF A STRENGTHENED ELASTIC-PLASTIC MATERIAL
When analysing the behaviour of structural elements made of elastic-plastic material with reinforcement, an analytical description of the mechanical behaviour of such material is necessary (needed).9,10 In particular, it is necessary to define and (or) formulate:
a) Initial area of plasticity
This area specifies the interface between the elastic and plastic deformation area. It is generally defined for the state of triaxial stress, applying the principle of the corresponding theory (hypothesis) for the condition of plasticity.
b) Law of plastic transformation
This law specifies the direction of plastic deformation velocity during plastic deformation (transformation).
c) Strengthening condition
This condition specifies the position, size and shape of the subsequent load area.
3.1 | Initial area of plasticity
For the spatial (three-axial) stress state, the criterion characterising the transition of a material from the elastic to the plastic state can be described by the condition of plasticity, expressed by the function
	
	(1)


where	
	
	(2)


is the stress vector with three normal and three shear stress components,  are constants sufficiently describing properties of the material.
The stress vector can generally also be determined by the three principal stresses  and the corresponding three direction angles. When considering the isotropic material in both the elastic and the plastic region, these stresses, corresponding to a given stress state, do not depend on the choice of coordinate axes . In such a case, the number of stress vector variables can be reduced to three using stress invariants. The plasticity function can then be written in the form
	
	(3)


In the spatial Cartesian coordinate system described by the principal normal stresses , the plasticity condition can be represented graphically by the so-called flat plasticity. The plasticity area divides the stress space into two areas. For the inner area, that is the area of elastic deformations, applies the following: . For the outer area, that is the area of plastic deformations, applies the following: . For the area of plasticity itself, the interface between elastic and plastic regions, then applies the following .
If this area is fixed, i.e. unchanged relative to the coordinate system, and there is no change in stresses in space when loading, unloading and reloading, this area is referred to as the initial surface of plasticity. This area then corresponds ideally to the plastic material. 11,12,13 
When considering a material which plastic state is not influenced by the mean normal stress
	
	(4)


the plasticity function can be expressed as a dependent variable on components of stress deviators in the following form
	
	(5)


Assuming isotropy of the material, this function is then expressed using main values of stress deviators
	
	(6)


The particular geometric shape of the plasticity area in the three-dimensional space of principal stresses depends on the applied theory (hypothesis) for the plasticity condition. In the case of shear stress stability (von Mises), the plasticity condition is expressed by the limit cylindrical area of plasticity. In the case of maximum shear stress stability (Tresca), the plasticity condition is expressed by the boundary area of the regular hexagonal prism of plasticity (Figure 1), which is inscribed in the limit cylindrical area of plasticity.  is the relevant critical stress (yield strength of the material). Figure 1 also marks three spatial limit hexagons of plasticity 1-2, 2-3 and 1-3 as intersections of the limit prism of plasticity and three coordinate planes. The axis of the respective area is identical to the so-called hydrostatic axis. The hydrostatic axis is a line that passes through the origin of the coordinate system and is equally diverted from all three major axes. Therefore, for the coordinates of its points applies the following
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FIGURE 1 Limit prism of plasticity
3.2 | Loading function and area
The mathematical expression of initial and subsequent surfaces of plasticity is generally a complex function of state variables and is referred to as the loading area. This area is defined by a certain load function related to the load process. The process can be characterised as a course in a 6-dimensional stress space. Each point of this path is associated with plastic deformation variables   which, together with stress , describe the mechanical state of the material. The parameters  and  are also associated with history parameters  which measure the degree of strengthening and material constants . These parameters are not generally point functions in the stress space, but depend on the history and the course of the loading. Subsequently, the loading area can be defined using the function14,15, 16
	
	(8)


The points of the loading area at which the loading function has derivation according to  are the co-called regular points. In such points, there is a single normal to the loading area. The loading area can also have singularities in the form of edges, angular and conical points. In singular points of such a singular loading area, the normal of the area is not clearly defined (Figure 2). The singular, i.e. partially smooth loading area can be described by the finite number  of smooth loading functions
	
	(9)


for .
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FIGURE 2 Plane section of the loading area with corresponding vectors
The stress state determined by the vector  corresponds to the so-called loading point on the loading surface or curve. The load point under plastic load remains on this surface even if this surface changes.
Next, the speed function of the loading function is introduced as a time derivative (complete time differential) of this function according to
	
	(10)


where
	
	(11)


is the gradient (vector) of the function  that is perpendicular to the instantaneous loading area, thus having the direction of the externa l normal.  is the velocity vector, i.e. the time change of the stress,  is the velocity vector, i. e. the time change of plastic deformation, and  is velocity, i. e. the time change of history parameters.
3.3 | Law of plastic transformation
The law of plastic deformation, specifying the direction of plastic deformation velocity during plastic deformation is closely related to the condition of plasticity on the basis of the so-called plastic potential theory. The relevant theory which applies to strengthened materials can be formulated in terms of convexity and normality.
Depending on the convexity condition, the loading or plasticity area decomposes on one side of its tangent plane and is therefore convex. Depending on the normality condition at regular points of the loading area, the plastic deformation velocity vector  is normal to the loading area (Figure 2).
The law of plastic transformation is directly formulated from the condition of normality. The law of plastic transformation is also an associative or associated law. It assumes functional identity of loading areas with the function of plastic potential. If vectors  and   act in the direction of the outer normal to the loading area and at the end point of the vector , i. e. at the loading point, then both vectors act on the same beam (Figure 2) and the rate of plastic deformation is expressed in the form
	
	(12)


The parameter  is a proportionality factor that is always non-negative and of indeterminate size. Therefore, vector  is also of indeterminate size.
The last relation shows that in the incremental theory of plasticity, the rate (increment) of plastic deformation  is expressed as a function of instantaneous stress, strain rate and stress rate,
	
	(13)


The plastic potential theory is equivalent to the principle of maximum dissipation rate. According to this principle, the actual dissipation rate  corresponding to a given plastic deformation rate  is greater than the notional dissipation rate , which is expressed from the actual plastic deformation rate  and a certain stress  on or within the surface (Figure 3). Thus, the principle of maximum dissipation rate implies
	
	(14)


The sign of equality applies only in the special case of neutral loading.
The scalar product of vectors  and  defines a blunt, i. e. right or acute angle between these vectors for any . At the same time, the plastic deformation velocity vector  must be normal to the loading area and the loading area itself must be convex. 
[image: ]
FIGURE 3 Convexity of the loading area shown on its planar section
3.4 | Condition and function of strengthening
The reinforcement condition, specifying the position, size and shape of the subsequent loading area, is determined by the dependence on the plastic history  which corresponds to  and . History parameters can be expressed in simpler cases either by dissipation of plastic energy  according to
	
	(15)


or by an equivalent plastic deformation that is proportional to the second invariant of the plastic deformation velocity deviator  according to
	
	(16)


The strengthening condition then defines a strengthening function  which determines the subsequent loading area during plastic deformation. The strengthening function is expressed as
	
	(17)


The full time differential of the loading function is expressed according to (10) by relation
	
	(18)


or using (17) according to
	
	(19)


Components of deformation vector  or deformation rate occurring in the elastic-plastic body can be additively decomposed into the elastic portion  and the plastic portion . Then applies
	
	(20)


Elastic components of the deformation vector  are coupled to stress vector components  and the flexibility matrix  by the linear Hook's law according to
	 or .
	(21)


At the same time, when using (12),
	.
	(22)


Using (19), the following applies
	
	(23)


From the relation (22) dependencies (relationships) can be expressed
	 
	(24)


and
	
	(25)


From the last relation it is possible to express the proportionality factor
	
	(26)


Using relations (24), (26) and the elastic-plastic symmetrical matrix , the stress velocity vector is expressed
	
	(27)


By specifying the previous relationships to specific cases it is then possible to accurately describe individual modifications of material models, such as e.g. a thermoplastic or elastic-plastic material, either with or without deformation strengthening, etc.
3.5 | Isotropic strengthening
In the case of isotropic strengthening, the loading or plasticity area increases in all directions equally. At the same time, its origin in the stress space does not change and the actual loading area is geometrically similar to the initial area. However, material isotropy in terms of mechanical properties is assumed, while the material remains isotropic even during plastic deformation. For isotropic strengthening, e.g. in the case of the von Mises plasticity condition, only the radius of the plasticity area changes (Figure 4). Generally for the isotropic state of the loading area applies
	
	(28)


 is a scalar variable related to the development of dislocation structures during loading.
The material model with pure (exclusively) isotropic strengthening can be used with sufficient accuracy only in the case of monotonous loading. In the case of cyclic loading, this principle of strengthening is not sufficiently precise, as it fails to describe the Bauschinger effect well (satisfactorily) (Figure 4). It also does not correspond to the typical behaviour of ductile materials. Pure isotropic strengthening is used only for modelling technological operations such as forming.
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FIGURE 4 Loading areas for an isotropically strengthened material
3.6 | Kinematic strengthening
Physical isotropic particles of a body prior to loading may become physically anisotropic due to plastic deformation. This phenomenon then generally leads to asymmetric displacement and deformation of the loading area relative to the origin of the coordinate system in the stress space. The origin of anisotropy can be described analytically in the actual area by its dependence on invariants , , parameters i and their various combinations. For anisotropic strengthening, the ideal Bauschinger effect can be considered in a simple case, where the plasticity limit in one direction (in a certain sense), e.g. in tension, is increasing as much (to the same extent) as the plasticity limit is decreasing in the opposite direction (sense), i.e. under pressure. Here the kinematic strengthening is applied, where the centre of the loading or plasticity area is displaced non-symmetrically with respect to the origin of the coordinate system. The size and shape of the area does not change at all in this case, but moves as a rigid unit beyond the loading point (Figure 5). Depending on the displacement variant applied, displacement may occur either in the direction of the vector (deformation rate) , i. e. in the normal direction to this area, or in the direction of the vector (stress rate) .
In the case of uniaxial stress state when the yield point is exceeded and then relieved, there is a change in plastic deformation when relieved by the value of . If the stress is alternately symmetrical, the response of the model with this type of strengthening is a closed hysteresis loop.17,18,19
The internal control variable for this type of reinforcement is the kinematic stress tensor  which defines the actual position of the centre of the plasticity area. This tensor is related to the internal stress that occurs in the material due to the development of dislocation structures. Then, in purely kinematic strengthening, the plasticity condition is expressed in the form of
	
	(29)


Purely kinematic strengthening can be used for steel which yield strength is similar in both the static and cyclic deformation curve. At the same time, these types of steel exhibit very small isotropic strengthening which can be neglected.
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FIGURE 5 Loading areas for an kinematically strengthened material
3.7 | Combined strengthening
The combined isotropic-kinematic strengthening is formed by superposing isotropic and kinematic strengthening. There is a change in the position of the centre of the plasticity area. The condition of plasticity is then expressed in the form
	
	(30)


This type of strengthening is suitable for cases where materials have different values of yield strength in the static and cyclic deformation curve.

4 | NUMERICAL SIMULATIONS OF THE EFFECTS OF ISOTROPIC AND KINEMATIC STRENGTHENING
A series of analyses was performed in the SolidWorks programming environment to verify the degree of consistency of simulation results of different methods of material strengthening. These analyses were methodology based on the application of different material models in conditions of uniaxial or multiaxial stress for basic stress modes. 20,21
Virtual objects of these analyses were a group of structural elements (components) – universal joints in the form of elastic elements (components), internally designated as , , . In fact, their real images (models) are part of a positioning device for positioning magnets from the accelerator of the European Organization for Nuclear Research (CERN). These elements were developed by ZTS VVÚ Košice.
In this paper, a simulation of one of these elements, internally called Element (object) is described
Two methods of virtual loading were applied, identical to the assumed stress of real elements. The first included tension above the yield strength followed by relief and the second torsion above the yield strength followed by relief. Torsion was done in both senses.
A non-linear static study was chosen for the simulation in the FEM programming environment11. The following study parameters were used:
· control method: force management method
· iterative method: Newton-Raphson method
· integration method: Newmark method.
Individual simulations were done using isotropic and kinematic model of material strengthening.
Numerical analyses included monitoring of differences or, on the contrary, the degree of conformity of relevant simulation results. These included information on the distribution and magnitude of the maximum reduced stresses, information on relative deformations and the course of mutual dependence of stresses and deformations for the individual strengthening models used. The choice of applied plasticity condition was made according to conclusions of the analyses described in (article)12. Out of two considered (assumed) plasticity conditions – shear stress intensity constancy (von Mises condition) and maximum shear stress stability condition (Tresco condition) – the von Mises condition was chosen. The von Mises plasticity model compared to the Tresca model in FEM numerical simulations was more consistent with the tensile diagrams of the real tensile tests.
4.1 | Numerical simulation with tensile stress followed by unloading
For this group of simulations, cross-linking, boundary conditions and load of the virtual object were chosen according to Figure 6. A controlled loading process with a load force acting in the direction of the time axis  according to Figure 7 was applied.
This virtual object was then subjected to a numerical simulation using an isotropic and kinematic strengthening model. In this way, fields and extremes of stresses and deformations were obtained.
Figure 8a) shows a field of normal stresses  in the longitudinal direction, that is, in the y-axis direction for isotropic strengthening, and Figure 8b) shows the stress field  for kinematic strengthening. At the same time, locations and magnitudes of extreme values, ,  and  of these stresses are identified.
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FIGURE 6 Cross-linking, marginal conditions and load for tensile simulations
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FIGURE 7 Time dependence of the loading force for tensile simulations
	[image: ]
	[image: ]

	a)
	b)


FIGURE 8 Field and extreme values of normal stresses: a)  for isotropic strengthening, b)  for kinematic strengthening

Another interesting feature is the occurrence of compressive normal stresses under tensile stress. These probably occurred due to complex shape configurations and stress concentrators. Figure 9 identifies concentration points of these compressive stresses using the isotropic material strengthening model.
Figure 10a) shows the field of relative deformations  in the longitudinal direction, that is, in the  -axis direction for isotropic strengthening, and Figure 10b) shows the field of relative deformations  for kinematic strengthening. At the same time, locations and magnitudes of extreme values , ,  and  of these deformations are identified.

[image: ]
FIGURE 9 Identification of concentration points of compressive stresses using the isotropic material strengthening model
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	a)
	b)


FIGURE 10 Field and extreme values of relative deformations: a)  for isotropic strengthening, b)  for kinematic strengthening

Figure 11a) shows the dependence of the instantaneous maximum normal stress  on the corresponding instantaneous relative deformation  at the respective isotropic strengthening point, and Figure 11b) shows dependence  on  for kinematic strengthening, in both cases for the entire loading cycle. In both dependencies, it is also possible to clearly identify residual normal stresses ,  and residual relative deformations ,  due to plastic deformation after the end of loading.
When comparing all corresponding variables  in the tensile simulation for both strengthening models, their relational dependence  was found, namely:
, , , , , .
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	a)
	b)


FIGURE 11 Dependence a) of stress  on deformation  for isotropic strengthening, b) of stress  on deformation  for kinematic strengthening

4.2 | Numerical simulation with torsional stress followed by unloading
For this group of simulations, cross-linking and marginal conditions of the virtual object were chosen according to Figure 12. A controlled loading process with a loading torque acting around the y axis with both orientations and time course according to Figure 13 was applied.
[image: ]
FIGURE 12 Cross-linking and marginal conditions for torsional simulations 
[image: ]
FIGURE 13 Time dependence of the loading torque for torsional simulations

This virtual object was then subjected to a numerical simulation using an isotropic and kinematic strengthening model. In this way, fields and extremes of stresses and deformations were obtained.
Figure 14a) shows a field of reduced normal stresses  according to Von Mises theory for isotropic strengthening, and Figure 14b) shows the field of reduced stresses  for kinematic strengthening. At the same time, locations and magnitudes of extreme values  and  of these stresses are identified. Values  and  for both isotropic and kinematic strengthening were achieved in the second loading cycle, i. e. in torsion in the opposite sense. However, unlike the isotropic strengthening simulation, in the latter case, the maximum values of the reduced stresses  exceeded the (strength) limit of the material. Simulation conditions were the same in both cases. Thus, it can be assumed that if a material model with kinematic strengthening is applied, the structural element would be damaged.
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	a)
	b)


FIGURE 14 Field and extreme value of reduced stresses: a)  for isotropic strengthening, b)  for kinematic strengthening

Figure 15a) shows a field of equivalent Von Mises relative deformations  for isotropic strengthening, and Figure 15b) shows the field of equivalent Von Mises relative deformations  for kinematic strengthening. At the same time, locations and magnitudes of extreme values  and  of these deformations are identified. As in the case of stress analysis, values  and  for both isotropic and kinematic strengthening were achieved in the second loading cycle, i. e. in torsion in the opposite sense.
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	a)
	b)


FIGURE 15 Field and extreme value of relative deformations: a)  for isotropic strengthening, b)  for kinematic strengthening

Figure 16a) shows the dependence of the instantaneous maximum reduced stress  on the corresponding instantaneous relative deformation  at the respective isotropic strengthening point, and Figure 16b) shows dependence  on  for kinematic strengthening, in both cases for two complete loading cycles.
In both dependencies, it is also possible to clearly identify residual normal stresses ,  and residual relative deformations ,  due to plastic deformation after the end of loading. In addition, at the end of each of the two load cycles, the stresses began to increase slightly again. This involved simulations for both isotropic and kinematic strengthening.
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	a)
	b)


FIGURE 16 Dependence a) of stress  on deformation  for isotropic strengthening, b) of stress  on deformation  for kinematic strengthening

When comparing all corresponding variables  in the torsional simulation for both strengthening models, their relational dependence  was found, which is opposite as in tensile simulation, namely:
, , , .

6 | CONCLUSION
In addition to the presented numerical analyses carried out in the applied FEM programming environment on a specific structural element designated as , analyses were performed on two other structurally (by design) similar elements, internally designated as  and . Based on a thorough and detailed examination and comparison of the data obtained (from the analyses), several preliminary partial conclusions can be stated. In the case of stress models of elements in the elastic-plastic area, using specific models of plastic strengthening of the material, some analyses provided relatively the same (comparable) values of the relevant variables, in other cases significantly different values of these variables. Their difference in percentage was several units, in extreme cases even several tens of percent, depending on the quantity considered. In the case when the same elements were loaded torsionally, again using the same strengthening models, the results were even less clear. Possible differences in quantities were more pronounced, with a different tendency (sign) of change in quantities compared to cases under tension and pressure.
However, the above-stated conclusions can be considered preliminary, given for a statistically insignificant number of numerical analyses. At the same time, they were influenced by specific cases (configurations) of design and stress conditions of structural elements and without any experimental verification.
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