References
Abe H., Urao T., Ito T., Seki M., Shinozaki K. & Yamaguchi-Shinozaki K.
(2003) Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as
transcriptional activators in abscisic acid signaling. The Plant
cell 15 , 63–78.
Almoguera C., Prieto-Dapena P., Personat J.-M., Tejedor-Cano J., Lindahl
M., Diaz-Espejo A. & Jordano J. (2012) Protection of the photosynthetic
apparatus from extreme dehydration and oxidative stress in seedlings of
transgenic tobacco. PLOS ONE 7 .
Almoguera C., Rojas A., Diaz-Martin J., Prieto-Dapena P., Carranco R. &
Jordano J. (2002) A seed-specific heat-shock transcription factor
involved in developmental regulation during embryogenesis in sunflower.Journal of Biological Chemistry 277 , 43866–43872.
Ballesteros D. & Walters C. (2019) Solid-state biology and seed
longevity: a mechanical analysis of glasses in pea and soybean embryonic
axes. Frontiers in plant science 10 , 920.
Bettey M. & Finch-Savage W.E. (1998) Stress protein content of mature
Brassica seeds and their germination performance. Seed Science
Research 8 , 347–355.
Boisson-Dernier A., Chabaud M., Garcia F., Bécard G., Rosenberg C. &
Barker D.G. (2001) Agrobacterium rhizogenes-transformed roots of
Medicago truncatula for the study of nitrogen-fixing and endomycorrhizal
symbiotic associations. Molecular Plant-Microbe Interactions14 , 695–700.
Bolingue W., Vu B.L., Leprince O. & Buitink J. (2010) Characterization
of dormancy behaviour in seeds of the model legume Medicago truncatula.Seed Science Research 20 , 97–107.
Buitink J. & Leprince O. (2008) Intracellular glasses and seed survival
in the dry state. 331 , 788–795.
Bulgakov V.P., Wu H.-C. & Jinn T.-L. (2019) Coordination of ABA and
chaperone signaling in plant stress responses. Trends in Plant
Science 24 , 636–651.
Carranco R., Almoguera C. & Jordano J. (1999) An imperfect heat shock
element and different upstream sequences are required for the
seed-specific expression of a small heat shock protein gene. Plant
Physiology 121 , 723–730.
Chahtane H., Kim W. & Lopez-Molina L. (2016) Primary seed dormancy: a
temporally multilayered riddle waiting to be unlocked. Journal of
Experimental Botany 68 , 857–869.
Charng Y., Liu H., Liu N., Chi W., Wang C., Chang S. & Wang T. (2007) A
heat-inducible transcription factor, HsfA2, is required for extension of
acquired thermotolerance in Arabidopsis. Plant Physiology143 , 251 LP – 262.
Chatelain E., Hundertmark M., Leprince O., Le, Gall S., Satour P.,
… Buitink J. (2012) Temporal profiling of the heat-stable
proteome during late maturation of Medicago truncatula seeds identifies
a restricted subset of late embryogenesis abundant proteins associated
with longevity. Plant, Cell and Environment 35 ,
1440–1455.
Chauhan H., Khurana N., Agarwal P., Khurana J.P. & Khurana P. (2013) A
seed preferential heat shock transcription factor from wheat provides
abiotic stress tolerance and yield enhancement in transgenic Arabidopsis
under heat stress environment. PLoS ONE 8 , e79577.
Chauhan H., Khurana N., Agarwal P. & Khurana P. (2011) Heat shock
factors in rice (Oryza sativa L.): genome-wide expression analysis
during reproductive development and abiotic stress. Molecular
Genetics and Genomics 286 , 171.
Dekkers B.J.W., He H., Hanson J., Willems L.A.J., Jamar D.C.L., Cueff
G., … Bentsink L. (2016) The Arabidopsis DELAY OF
GERMINATION 1 gene affects ABSCISIC ACID INSENSITIVE 5 (ABI5)expression and genetically interacts with ABI3 during Arabidopsis
seed development. The Plant Journal 85 , 451–465.
Echevarría-Zomeño S., Fernández-Calvino L., Castro-Sanz A.B., López
J.A., Vázquez J. & Castellano M.M. (2016) Dissecting the proteome
dynamics of the early heat stress response leading to plant survival or
death in Arabidopsis. Plant, Cell & Environment 39 ,
1264–1278.
Finch-Savage W.E. & Bassel G.W. (2015) Seed vigour and crop
establishment: extending performance beyond adaptation. Journal of
Experimental Botany 67 , 567–591.
Footitt S., Walley P.G., Lynn J.R., Hambidge A.J., Penfield S. &
Finch-Savage W.E. (2020) Trait analysis reveals DOG1 determines initial
depth of seed dormancy, but not changes during dormancy cycling that
result in seedling emergence timing. New Phytologist225 , 2035–2047.
Giraudat J., Hauge B.M., Valon C., Smalle J., Parcy F. & Goodman H.M.
(1992) Isolation of the Arabidopsis ABI3 gene by positional cloning.The Plant cell 4 , 1251–1261.
Goggin D.E., Powles S.B. & Steadman K.J. (2010) Selection for low or
high primary dormancy in Lolium rigidum Gaud seeds results in
constitutive differences in stress protein expression and peroxidase
activity. Journal of Experimental Botany 62 , 1037–1047.
Graeber K., Nakabayashi K., Miatton E., Leubner-Metzger G. & Soppe W.
(2012) Molecular mechanisms of seed dormancy. Plant, Cell &
Environment 35 , 1769–1786.
Guo L., Chen S., Liu K., Liu Y., Ni L., Zhang K. & Zhang L. (2008)
Isolation of heat shock factor HsfA1a-binding sites in vivo revealed
variations of heat shock elements in Arabidopsis thaliana. Plant
& Cell Physiology 49 , 1306–1315.
Hay F.R., Valdez R., Lee J.-S., Sta Cruz P.C. & Sta. Cruz P.C. (2018)
Seed longevity phenotyping: recommendations on research methodology.Journal of Experimental Botany 70 , 425–434.
Huang Y.-C., Niu C.-Y., Yang C.-R. & Jinn T.-L. (2016) The heat stress
factor HSFA6b connects ABA signaling and ABA-mediated heat responses.Plant Physiology 172 , 1182–1199.
Jacob P., Hirt H. & Bendahmane A. (2017) The heat-shock
protein/chaperone network and multiple stress resistance. Plant
Biotechnology Journal 15 , 405–414.
Karimi M., Inzé D. & Depicker A. (2002) GATEWAY vectors for
Agrobacterium-mediated plant transformation. Trends in Plant
Science 7 , 193–195.
Kaur H., Petla B.P., Kamble N.U., Singh A., Rao V., Salvi P., …
Majee M. (2015) Differentially expressed seed aging responsive heat
shock protein OsHSP18.2 implicates in seed vigor, longevity and improves
germination and seedling establishment under abiotic stress.Frontiers in Plant Science 6 , 713.
Kotak S., Vierling E., Bäumlein H. & Von Koskull-Dörlng P. (2007) A
novel transcriptional cascade regulating expression of heat stress
proteins during seed development of Arabidopsis. Plant Cell19 , 182–195.
Kumar S., Stecher G. & Tamura K. (2016) MEGA7: Molecular Evolutionary
Genetics Analysis Version 7.0 for Bigger Datasets. Molecular
Biology and Evolution 33 , 1870–1874.
Leprince O., Pellizzaro A., Berriri S. & Buitink J. (2017) Late seed
maturation: drying without dying. Journal of Experimental Botany68 , 827–841.
Li Z., Tian Y., Zhao W., Xu J., Wang L., Peng R. & Yao Q. (2015)
Functional characterization of a grape heat stress transcription factor
VvHsfA9 in transgenic Arabidopsis. Acta Physiologiae Plantarum37 , 133.
Lima J.J.P., Buitink J., Lalanne D., Rossi R.F., Pelletier S., Da Silva
E.A.A. & Leprince O. (2017) Molecular characterization of the
acquisition of longevity during seed maturation in soybean. PLoS
ONE 12 .
Long R.L., Gorecki M.J., Renton M., Scott J.K., Colville L., Goggin
D.E., … Finch-Savage W.E. (2015) The ecophysiology of seed
persistence: A mechanistic view of the journey to germination or demise.Biological Reviews 90 , 31–59.
MacGregor D.R., Zhang N., Iwasaki M., Chen M., Dave A., Lopez-Molina L.
& Penfield S. (2019) ICE1 and ZOU determine the depth of primary seed
dormancy in Arabidopsis independently of their role in endosperm
development. The Plant Journal 98 , 277–290.
Meiri D. & Breiman A. (2009) Arabidopsis ROF1 (FKBP62) modulates
thermotolerance by interacting with HSP90.1 and affecting the
accumulation of HsfA2-regulated sHSPs. The Plant Journal59 , 387–399.
Nagel M., Kranner I., Neumann K., Rolletschek H., Seal C.E., Colville
L., … Börner A. (2015) Genome-wide association mapping and
biochemical markers reveal that seed ageing and longevity are
intricately affected by genetic background and developmental and
environmental conditions in barley. Plant, Cell and Environment38 , 1011–1022.
Nishizawa-Yokoi A., Yoshida E., Yabuta Y. & Shigeoka S. (2009) Analysis
of the regulation of target genes by an Arabidopsis heat shock
transcription factor, HsfA2. Bioscience, Biotechnology, and
Biochemistry 73 , 890–895.
Ohama N., Sato H., Shinozaki K. & Yamaguchi-Shinozaki K. (2017)
Transcriptional Regulatory Network of Plant Heat Stress Response.Trends in Plant Science 22 , 53–65.
Okamoto M., Kuwahara A., Seo M., Kushiro T., Asami T., Hirai N.,
… Nambara E. (2006) CYP707A1 and CYP707A2, which encode abscisic
acid 8’-hydroxylases, are indispensable for proper control of seed
dormancy and germination in Arabidopsis. Plant Physiology141 , 97–107.
Penfield S. (2017) Seed dormancy and germination. Current Biology27 , R874–R878.
Penfield S. & MacGregor D.R. (2017) Effects of environmental variation
during seed production on seed dormancy and germination. Journal
of Experimental Botany 68 , 819–825.
Personat J.-M., Tejedor-Cano J., Prieto-Dapena P., Almoguera C. &
Jordano J. (2014) Co-overexpression of two Heat Shock Factors results in
enhanced seed longevity and in synergistic effects on seedling tolerance
to severe dehydration and oxidative stress. BMC Plant Biology14 , 56.
Prieto-Dapena P., Castano R., Almoguera C. & Jordano J. (2008) The
ectopic overexpression of a seed-specific transcription factor, HaHSFA9,
confers tolerance to severe dehydration in vegetative organs.Plant Journal 54 , 1004–1014.
Prieto-Dapena P., Castaño R., Almoguera C. & Jordano J. (2006) Improved
resistance to controlled deterioration in transgenic seeds. Plant
Physiology 142 , 1102–1112.
Roach T., Nagel M., Börner A., Eberle C. & Kranner I. (2018) Changes in
tocochromanols and glutathione reveal differences in the mechanisms of
seed ageing under seedbank conditions and controlled deterioration in
barley. Environmental and Experimental Botany 156 ,
8–15.
Sano N., Rajjou L., North H.M., Debeaujon I., Marion-Poll A. & Seo M.
(2016) Staying alive: Molecular aspects of seed longevity. Plant
and Cell Physiology 57 , 660–674.
Schwember A.R. & Bradford K.J. (2010) Quantitative trait loci
associated with longevity of lettuce seeds under conventional and
controlled deterioration storage conditions. Journal of
Experimental Botany 61 , 4423–4436.
Tejedor-Cano J., Prieto-Dapena P., Almoguera C., Carranco R., Hiratsu
K., Ohme-Takagi M. & Jordano J. (2010) Loss of function of the HSFA9
seed longevity program. Plant, Cell and Environment 33 ,
1408–1417.
Terrasson E., Buitink J., Righetti K., Vu B.L., Pelletier S.,
Zinsmeister J., … Leprince O. (2013) An emerging picture of the
seed desiccome: Confirmed regulators and newcomers identified using
transcriptome comparison. Frontiers in Plant Science 4 ,
497.
Verdier J., Lalanne D., Pelletier S., Torres-Jerez I., Righetti K.,
Bandyopadhyay K., … Buitink J. (2013) A regulatory network-based
approach dissects late maturation processes related to the acquisition
of desiccation tolerance and longevity of Medicago truncatula seeds.Plant Physiology 163 , 757–774.
Vertucci C.W. & Roos E.E. (1990) Theoretical basis of protocols for
seed storage. Plant Physiology 94 , 1019–1023.
Wehmeyer N., Hernandez L.D., Finkelstein R.R. & Vierling E. (1996)
Synthesis of small heat-shock proteins is part of the developmental
program of late seed maturation. Plant Physiology 112 ,
747–757.
Wehmeyer N. & Vierling E. (2000) The expression of small heat shock
proteins in seeds responds to discrete developmental signals and
suggests a general protective role in desiccation tolerance. Plant
Physiology 122 , 1099–1108.
Yang L., Jiang Z., Liu S. & Lin R. (2020) Interplay between REVEILLE1
and RGA-LIKE2 regulates seed dormancy and germination in Arabidopsis.New Phytologist 225 , 1593–1605.
Zinsmeister J., Lalanne D., Terrasson E., Chatelain E., Vandecasteele
C., Ly Vu B., … Leprince O. (2016) ABI5 is a regulator of seed
maturation and longevity in legumes. Plant Cell 28 ,
2735–2754.
Zinsmeister J., Leprince O. & Buitink J. (2020) Molecular and
environmental factors regulating seed longevity. Biochemical
Journal 477 , 305–323.