References
Abe H., Urao T., Ito T., Seki M., Shinozaki K. & Yamaguchi-Shinozaki K. (2003) Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. The Plant cell 15 , 63–78.
Almoguera C., Prieto-Dapena P., Personat J.-M., Tejedor-Cano J., Lindahl M., Diaz-Espejo A. & Jordano J. (2012) Protection of the photosynthetic apparatus from extreme dehydration and oxidative stress in seedlings of transgenic tobacco. PLOS ONE 7 .
Almoguera C., Rojas A., Diaz-Martin J., Prieto-Dapena P., Carranco R. & Jordano J. (2002) A seed-specific heat-shock transcription factor involved in developmental regulation during embryogenesis in sunflower.Journal of Biological Chemistry 277 , 43866–43872.
Ballesteros D. & Walters C. (2019) Solid-state biology and seed longevity: a mechanical analysis of glasses in pea and soybean embryonic axes. Frontiers in plant science 10 , 920.
Bettey M. & Finch-Savage W.E. (1998) Stress protein content of mature Brassica seeds and their germination performance. Seed Science Research 8 , 347–355.
Boisson-Dernier A., Chabaud M., Garcia F., Bécard G., Rosenberg C. & Barker D.G. (2001) Agrobacterium rhizogenes-transformed roots of Medicago truncatula for the study of nitrogen-fixing and endomycorrhizal symbiotic associations. Molecular Plant-Microbe Interactions14 , 695–700.
Bolingue W., Vu B.L., Leprince O. & Buitink J. (2010) Characterization of dormancy behaviour in seeds of the model legume Medicago truncatula.Seed Science Research 20 , 97–107.
Buitink J. & Leprince O. (2008) Intracellular glasses and seed survival in the dry state. 331 , 788–795.
Bulgakov V.P., Wu H.-C. & Jinn T.-L. (2019) Coordination of ABA and chaperone signaling in plant stress responses. Trends in Plant Science 24 , 636–651.
Carranco R., Almoguera C. & Jordano J. (1999) An imperfect heat shock element and different upstream sequences are required for the seed-specific expression of a small heat shock protein gene. Plant Physiology 121 , 723–730.
Chahtane H., Kim W. & Lopez-Molina L. (2016) Primary seed dormancy: a temporally multilayered riddle waiting to be unlocked. Journal of Experimental Botany 68 , 857–869.
Charng Y., Liu H., Liu N., Chi W., Wang C., Chang S. & Wang T. (2007) A heat-inducible transcription factor, HsfA2, is required for extension of acquired thermotolerance in Arabidopsis. Plant Physiology143 , 251 LP – 262.
Chatelain E., Hundertmark M., Leprince O., Le, Gall S., Satour P., … Buitink J. (2012) Temporal profiling of the heat-stable proteome during late maturation of Medicago truncatula seeds identifies a restricted subset of late embryogenesis abundant proteins associated with longevity. Plant, Cell and Environment 35 , 1440–1455.
Chauhan H., Khurana N., Agarwal P., Khurana J.P. & Khurana P. (2013) A seed preferential heat shock transcription factor from wheat provides abiotic stress tolerance and yield enhancement in transgenic Arabidopsis under heat stress environment. PLoS ONE 8 , e79577.
Chauhan H., Khurana N., Agarwal P. & Khurana P. (2011) Heat shock factors in rice (Oryza sativa L.): genome-wide expression analysis during reproductive development and abiotic stress. Molecular Genetics and Genomics 286 , 171.
Dekkers B.J.W., He H., Hanson J., Willems L.A.J., Jamar D.C.L., Cueff G., … Bentsink L. (2016) The Arabidopsis DELAY OF GERMINATION 1 gene affects ABSCISIC ACID INSENSITIVE 5 (ABI5)expression and genetically interacts with ABI3 during Arabidopsis seed development. The Plant Journal 85 , 451–465.
Echevarría-Zomeño S., Fernández-Calvino L., Castro-Sanz A.B., López J.A., Vázquez J. & Castellano M.M. (2016) Dissecting the proteome dynamics of the early heat stress response leading to plant survival or death in Arabidopsis. Plant, Cell & Environment 39 , 1264–1278.
Finch-Savage W.E. & Bassel G.W. (2015) Seed vigour and crop establishment: extending performance beyond adaptation. Journal of Experimental Botany 67 , 567–591.
Footitt S., Walley P.G., Lynn J.R., Hambidge A.J., Penfield S. & Finch-Savage W.E. (2020) Trait analysis reveals DOG1 determines initial depth of seed dormancy, but not changes during dormancy cycling that result in seedling emergence timing. New Phytologist225 , 2035–2047.
Giraudat J., Hauge B.M., Valon C., Smalle J., Parcy F. & Goodman H.M. (1992) Isolation of the Arabidopsis ABI3 gene by positional cloning.The Plant cell 4 , 1251–1261.
Goggin D.E., Powles S.B. & Steadman K.J. (2010) Selection for low or high primary dormancy in Lolium rigidum Gaud seeds results in constitutive differences in stress protein expression and peroxidase activity. Journal of Experimental Botany 62 , 1037–1047.
Graeber K., Nakabayashi K., Miatton E., Leubner-Metzger G. & Soppe W. (2012) Molecular mechanisms of seed dormancy. Plant, Cell & Environment 35 , 1769–1786.
Guo L., Chen S., Liu K., Liu Y., Ni L., Zhang K. & Zhang L. (2008) Isolation of heat shock factor HsfA1a-binding sites in vivo revealed variations of heat shock elements in Arabidopsis thaliana. Plant & Cell Physiology 49 , 1306–1315.
Hay F.R., Valdez R., Lee J.-S., Sta Cruz P.C. & Sta. Cruz P.C. (2018) Seed longevity phenotyping: recommendations on research methodology.Journal of Experimental Botany 70 , 425–434.
Huang Y.-C., Niu C.-Y., Yang C.-R. & Jinn T.-L. (2016) The heat stress factor HSFA6b connects ABA signaling and ABA-mediated heat responses.Plant Physiology 172 , 1182–1199.
Jacob P., Hirt H. & Bendahmane A. (2017) The heat-shock protein/chaperone network and multiple stress resistance. Plant Biotechnology Journal 15 , 405–414.
Karimi M., Inzé D. & Depicker A. (2002) GATEWAY vectors for Agrobacterium-mediated plant transformation. Trends in Plant Science 7 , 193–195.
Kaur H., Petla B.P., Kamble N.U., Singh A., Rao V., Salvi P., … Majee M. (2015) Differentially expressed seed aging responsive heat shock protein OsHSP18.2 implicates in seed vigor, longevity and improves germination and seedling establishment under abiotic stress.Frontiers in Plant Science 6 , 713.
Kotak S., Vierling E., Bäumlein H. & Von Koskull-Dörlng P. (2007) A novel transcriptional cascade regulating expression of heat stress proteins during seed development of Arabidopsis. Plant Cell19 , 182–195.
Kumar S., Stecher G. & Tamura K. (2016) MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Molecular Biology and Evolution 33 , 1870–1874.
Leprince O., Pellizzaro A., Berriri S. & Buitink J. (2017) Late seed maturation: drying without dying. Journal of Experimental Botany68 , 827–841.
Li Z., Tian Y., Zhao W., Xu J., Wang L., Peng R. & Yao Q. (2015) Functional characterization of a grape heat stress transcription factor VvHsfA9 in transgenic Arabidopsis. Acta Physiologiae Plantarum37 , 133.
Lima J.J.P., Buitink J., Lalanne D., Rossi R.F., Pelletier S., Da Silva E.A.A. & Leprince O. (2017) Molecular characterization of the acquisition of longevity during seed maturation in soybean. PLoS ONE 12 .
Long R.L., Gorecki M.J., Renton M., Scott J.K., Colville L., Goggin D.E., … Finch-Savage W.E. (2015) The ecophysiology of seed persistence: A mechanistic view of the journey to germination or demise.Biological Reviews 90 , 31–59.
MacGregor D.R., Zhang N., Iwasaki M., Chen M., Dave A., Lopez-Molina L. & Penfield S. (2019) ICE1 and ZOU determine the depth of primary seed dormancy in Arabidopsis independently of their role in endosperm development. The Plant Journal 98 , 277–290.
Meiri D. & Breiman A. (2009) Arabidopsis ROF1 (FKBP62) modulates thermotolerance by interacting with HSP90.1 and affecting the accumulation of HsfA2-regulated sHSPs. The Plant Journal59 , 387–399.
Nagel M., Kranner I., Neumann K., Rolletschek H., Seal C.E., Colville L., … Börner A. (2015) Genome-wide association mapping and biochemical markers reveal that seed ageing and longevity are intricately affected by genetic background and developmental and environmental conditions in barley. Plant, Cell and Environment38 , 1011–1022.
Nishizawa-Yokoi A., Yoshida E., Yabuta Y. & Shigeoka S. (2009) Analysis of the regulation of target genes by an Arabidopsis heat shock transcription factor, HsfA2. Bioscience, Biotechnology, and Biochemistry 73 , 890–895.
Ohama N., Sato H., Shinozaki K. & Yamaguchi-Shinozaki K. (2017) Transcriptional Regulatory Network of Plant Heat Stress Response.Trends in Plant Science 22 , 53–65.
Okamoto M., Kuwahara A., Seo M., Kushiro T., Asami T., Hirai N., … Nambara E. (2006) CYP707A1 and CYP707A2, which encode abscisic acid 8’-hydroxylases, are indispensable for proper control of seed dormancy and germination in Arabidopsis. Plant Physiology141 , 97–107.
Penfield S. (2017) Seed dormancy and germination. Current Biology27 , R874–R878.
Penfield S. & MacGregor D.R. (2017) Effects of environmental variation during seed production on seed dormancy and germination. Journal of Experimental Botany 68 , 819–825.
Personat J.-M., Tejedor-Cano J., Prieto-Dapena P., Almoguera C. & Jordano J. (2014) Co-overexpression of two Heat Shock Factors results in enhanced seed longevity and in synergistic effects on seedling tolerance to severe dehydration and oxidative stress. BMC Plant Biology14 , 56.
Prieto-Dapena P., Castano R., Almoguera C. & Jordano J. (2008) The ectopic overexpression of a seed-specific transcription factor, HaHSFA9, confers tolerance to severe dehydration in vegetative organs.Plant Journal 54 , 1004–1014.
Prieto-Dapena P., Castaño R., Almoguera C. & Jordano J. (2006) Improved resistance to controlled deterioration in transgenic seeds. Plant Physiology 142 , 1102–1112.
Roach T., Nagel M., Börner A., Eberle C. & Kranner I. (2018) Changes in tocochromanols and glutathione reveal differences in the mechanisms of seed ageing under seedbank conditions and controlled deterioration in barley. Environmental and Experimental Botany 156 , 8–15.
Sano N., Rajjou L., North H.M., Debeaujon I., Marion-Poll A. & Seo M. (2016) Staying alive: Molecular aspects of seed longevity. Plant and Cell Physiology 57 , 660–674.
Schwember A.R. & Bradford K.J. (2010) Quantitative trait loci associated with longevity of lettuce seeds under conventional and controlled deterioration storage conditions. Journal of Experimental Botany 61 , 4423–4436.
Tejedor-Cano J., Prieto-Dapena P., Almoguera C., Carranco R., Hiratsu K., Ohme-Takagi M. & Jordano J. (2010) Loss of function of the HSFA9 seed longevity program. Plant, Cell and Environment 33 , 1408–1417.
Terrasson E., Buitink J., Righetti K., Vu B.L., Pelletier S., Zinsmeister J., … Leprince O. (2013) An emerging picture of the seed desiccome: Confirmed regulators and newcomers identified using transcriptome comparison. Frontiers in Plant Science 4 , 497.
Verdier J., Lalanne D., Pelletier S., Torres-Jerez I., Righetti K., Bandyopadhyay K., … Buitink J. (2013) A regulatory network-based approach dissects late maturation processes related to the acquisition of desiccation tolerance and longevity of Medicago truncatula seeds.Plant Physiology 163 , 757–774.
Vertucci C.W. & Roos E.E. (1990) Theoretical basis of protocols for seed storage. Plant Physiology 94 , 1019–1023.
Wehmeyer N., Hernandez L.D., Finkelstein R.R. & Vierling E. (1996) Synthesis of small heat-shock proteins is part of the developmental program of late seed maturation. Plant Physiology 112 , 747–757.
Wehmeyer N. & Vierling E. (2000) The expression of small heat shock proteins in seeds responds to discrete developmental signals and suggests a general protective role in desiccation tolerance. Plant Physiology 122 , 1099–1108.
Yang L., Jiang Z., Liu S. & Lin R. (2020) Interplay between REVEILLE1 and RGA-LIKE2 regulates seed dormancy and germination in Arabidopsis.New Phytologist 225 , 1593–1605.
Zinsmeister J., Lalanne D., Terrasson E., Chatelain E., Vandecasteele C., Ly Vu B., … Leprince O. (2016) ABI5 is a regulator of seed maturation and longevity in legumes. Plant Cell 28 , 2735–2754.
Zinsmeister J., Leprince O. & Buitink J. (2020) Molecular and environmental factors regulating seed longevity. Biochemical Journal 477 , 305–323.