REFERENCES
1. Bean, D., Kraljevic, Z., Searle, T.,Bendayan, R., Pickles, A., Folarin, A.,Roguski, L., Noor, K., Shek, A., O’gallagher, K.,Zakeri, R., Shah, A., Teo, J., Dobson, R. J. B. (2020). Treatment with ACE-inhibitors is Associated with Less Severe Disease with SARS-Covid-19 Infection in a Multi-site UK acute Hospital Trust. medRxiv, .04.07.20056788; doi: https://doi.org/10.1101/2020.04.07.20056788
2. Blanco-Melo, D., Nilsson-Payant, B. E., Liu, W., Møller, R., Panis, M., Sachs, D., Albrecht, R. A., tenOever, B. R. (2020). SARS-CoV-2 Launches a Unique Transcriptional Signature from In-vitro, Ex-vivo,and In-vivo Systems. bioRxiv, doi: https://doi.org/10.1101/2020.03.24.004655
3. Caldeira, D., Alarcão, J., Vaz-Carneiro, A., Costa, J. (2012). Risk of pneumonia associated with use of angiotensin converting enzyme inhibitors and angiotensin receptor blockers: systematic review and meta-analysis. BMJ, Jul 11;345:e4260. doi: 10.1136/bmj.e4260.
4. Cha, S. A., Park, B. M., Kim, S. H. (2018) Angiotensin-(1-9) Ameliorates Pulmonary Arterial Hypertension via Angiotensin type II Receptor. Korean Journal of Physiology and Pharmacology, 22(4):447-456447 doi: 10.4196/kjpp.2018.22.4.447
5. Essig, M., Matt, M., Massy, Z. (2020). The COVID-19 outbreak and the angiotensin-converting enzyme 2: too little or too much? Nephrology Dialysis Transplantation, doi: https://doi.org/10.1093/ndt/gfaa113
6. Fang, L., Karakiulakis, G., Roth, M. (2020). Are patients with hypertension and diabetesmellitus at increased risk for COVID-19 infection? The Lancet Respiratory Medicine, doi: https://doi.org/10.1016/S2213-2600(20)30116-8.
7. Ferrario, C. M., Jessup, J., Chappell, M. C., Averill, D. B., Brosnihan, K. B.,Tallant, E. A.,Diz, D. I., Gallagher, P. E. (2005). Effect of Angiotensin-converting enzyme Inhibition and Angiotensin II Receptor Blockers on Cardiac Angiotensin-converting enzyme 2. Circulation, 111 (20), 2605–2610.
8. Focosi, D., Tuccori, M., Maggi, F. (2020). Ace Inhibitors and AT1R Blockers for COVID-2019: Friends or Foes?. Preprints, 2020040151 (doi:10.20944/preprints202004.0151.v1).
9. Furuhashi, M., Moniwa, N., Mita T.,Fuseya, T., Ishimura S., Ohno K., Shibata, S., Tanaka, M., Watanabe, Y.,Akasaka, H., Ohnishi, H., Yoshida, H., Takizawa, H.,Saitoh, S.,Ura, N.,Shimamoto, K., Miura ,T. (2015). Urinary angiotensin-converting enzyme 2 in hypertensive patients may be increased by olmesartan, an angiotensin II receptor blocker. American Journal of Hypertension ,28(1), 15–21. doi: https://doi.org/10.1093/ajh/hpu086.
10.Ganguly, D. (2018) Do Type I Interferons Link Systemic Autoimmunities and Metabolic Syndrome in a Pathogenetic Continuum? Trends in Immunology, 39(1), 28-43. doi: 10.1016/j.it.2017.07.001.
11. Gonzalez, L., Novoa, U., Moya, J., Gabrielli, L., Jalil, J. E., García, L., Chiong, M., Lavandero, S., Ocaranza, M. P. (2018). Angiotensin-(1-9) Reduces Cardiovascular and Renal Inflammation in Experimental Renin-Independent Hypertension. Biochemical Pharmacology,156, 357-370. doi: 10.1016/j.bcp.2018.08.045.
12. Guan, W. J., Liang, W. H., Zhao,Y., Liang, H. R., Chen, Z. S., Li, Y. M., Liu, X. Q., Chen, R. C., Tang, C. L., Wang, T., Ou, C. Q., Li, L., Chen, P. Y., Sang, L., Wang, W., Li, J. F., Li, C. C., Ou, L. M., Cheng, B.,Xiong, S., Ni, Z. Y., Xiang, J., Hu, Y., Liu, L., Shan, H., Lei C. L.,Peng, Y. X., Wei, L., Liu, Y., Hu, Y. H.,Peng, P., Wang, J. M., Liu J. Y., Chen, Z., Li, G.,Zheng, Z. J.,Qiu, S.Q.,Luo, J., Ye, C.J., Zhu, S. Y., Cheng, L. L., Ye, F., Li, S. Y.,Zheng, J. P., Zhang, N. F., Zhong, N. S., He, J. X. (2020). Comorbidity and its Impact on 1590 Patients with Covid-19 in China: A Nationwide Analysis. European Respiratory Journal, Mar 26:2000547. doi: 10.1183/13993003.00547-2020. Epub ahead of print.
13. Guzik, T. J., Hoch, N. E., Brown, K. A., McCann, L. A., Rahman, A.,Dikalov, S., Goronzy, J., Weyand, C., Harrison, D. G. (2007). Role of the T cell in the Genesis of Angiotensin II–Induced Hypertension and Vascular Dysfunction. Journal of Experimental Medicine, 204(10), 2449–2460. doi: https://doi.org/10.1084/jem.20070657.
14. He, X., Han, B., Mura, M., Xia, S., Wang, S., Ma, T., Liu, M., Liu, Z. (2007). Angiotensin-converting enzyme inhibitor captopril prevents oleic acid-induced severe acute lung injury in rats. Shock, 28(1), 106-11.
15. Henry, C., Zaizafoun, M., Stock, E., Ghamande, S., Arroliga, A. C., White, H. D. (2018). Impact of angiotensin-converting enzyme Inhibitors and Statins on Viral Pneumonia. Proceedings (Baylor University Medical Center) ,31(4), 419-423. doi: 10.1080/08998280.2018.1499293.
16. Imai, Y., Kuba, K., Rao, S., Huan, Y., Guo, F., Guan, B., Yang, P., Sarao, R., Wada, T., Leong, P. H., Crackower, M. A., Fukamizu, A., Hui, C. C., Hein, L., Uhlig, S., Slutsky, A. S., Jiang, C., Penninger, J. M. (2005). Angiotensin-converting enzyme 2 Protects from Severe Acute Lung Failure. Nature, 436, 112–116. doi: 10.1038/nature03712.
17. Jia, H. P., Look, D. C., Tan, P., Shi, L., Hickey, M., Gakhar, L., Chappell, M. C., Wohlford-Lenane, C., McCray, P. B. Jr. (2009). Ectodomain shedding of angiotensin converting enzyme 2 in human airway epithelia. American Journal of Physiology - Lung Cellular and Molecular Physiology, 297(1), L84-96.
18. Kortekaas, K.E., Meijer, C.A., Hinnen, J.W., Dalman, R.L., Xu, B., Hamming, J.P., Lindeman, J. H. (2014). ACE Inhibitors Potently Reduce Vascular Inflammation, Results of an Open Proof-Of-Concept Study in the Abdominal Aortic Aneurysm. PLoS One ,9(12), e111952.doi: 10.1371/journal.pone.0111952.
19. Kuba, K., Imai, Y., Penninger, J. M. (2006). Angiotensin-converting enzyme 2 in Lung Diseases. Current Opinion in Pharmacology, 6(3) , 271-276. doi: 10.1016/j.coph.2006.03.001.
20. Liu, Y., Yang, Y., Zhang, C., Huang, F., Wang, F., Yuan, J., Wang, Z., Li, J., Li, J.,Feng, C., Zhang, Z., Wang, L.,Peng, L., Chen, L., Qin, Y., Zhao, D., Tan, S., Yin, L., Xu, J., Zhou, C., Jiang, C., Liu, L. (2020a). Clinical and Biochemical Indexes from 2019-nCoV Infected Patients Linked to Viral loads and Lung Injury. Science China Life Science, 63(3), 364–374. doi: :https://doi.org/10.1007/s11427-020-1643-8.
21. Liu, Y., Huang, F., Xu, J., Yang, P., Qin, Y., Cao, M., Wang, Z., Li, X., Zhang, S., Ye, L., Lv, J., Wei, J., Xie, T., Gao, H., Xu, K. F., Wang, F., Liu, L., Jiang, C. (2020b). Anti-hypertensive Angiotensin II Receptor Blockers Associated to Mitigation of Disease Severity in elderly COVID-19 Patients. medRxiv,.03.20.20039586; doi: https://doi.org/10.1101/2020.03.20.20039586.
22. Li, X.,Geng, M.,Peng, Y.,Meng, L., Lu, S. (2020a). Molecular Immune Pathogenesis and Diagnosis of COVID-19. Journal of Pharmaceutical Analysis, 10(2), 102-108. doi: https://doi.org/10.1016/j.jpha.2020.03.001. [Epub ahead of print]
23. Li, Y., Zeng, Z., Li, Y., Huang, W., Zhou, M., Zhang, X., Jiang, W. (2020b).Angiotensin-converting enzyme inhibition attenuates lipopolysaccharide-induced lung injury by regulating the balance between angiotensin-converting enzyme and angiotensin-converting enzyme 2 and inhibiting mitogen-activated protein kinase activation. Shock, 43(4), 395-404. doi: 10.1097/SHK.0000000000000302.
24. Li, X. C., Zhang, J.,Zhuo, J.L. (2017). The Vasoprotective Axes of the Renin-Angiotensin System: Physiological Relevance and Therapeutic Implications in Cardiovascular, Hypertensive and Kidney Diseases. Pharmacological Research,125(Pt A), 21–38.
25. Magalhaes, G.S., Barroso, L. C., Reis, A. C., Rodrigues-Machado, M. G.,Gregório, J.F., Motta-Santos, D., Oliveira, A.C., Perez, D. A., Barcelos, L. S., Teixeira, M. M., Santos, R. A. S., Pinho, V., Campagnole-Santos, M. J. (2018). Angiotensin-(1-7) Promotes Resolution of Eosinophilic Inflammation in an Experimental Model of Asthma. Frontiers in Immunoogy, 9, 58. doi: 10.3389/fimmu.2018.00058.
26. Mehta, P., McAuley, D. F., Brown, M., Sanchez, E., Tattersall, R. S., Manson, J. J. (2020). COVID-19: consider cytokine storm syndromes and immunosuppression. The Lancet, 395, 28.doi: https://doi.org/10.1016/S0140-6736(20)30630-9
27. Meng, J., Xiao, G., Zhang, J., He, X., Ou, M., Bi, J., Yang, R., Di, W., Wang, Z., Li, Z., Gao, H., Liu, L., Zhang, G. (2020). Renin-angiotensin system inhibitors improve the clinical outcomes of COVID-19 patients with hypertension. Emerging Microbes and Infections, 9(1), 757-760. doi: 10.1080/22221751.2020.1746200.
28. Meng, Y., Yu, C. H., Li, W., Li, T., Luo, W., Huang, S., Wu, P. S., Cai, S. X., Li, X. (2014) Angiotensin-converting enzyme 2/angiotensin-(1-7)/Mas axis protects against lung fibrosis by inhibiting the MAPK/NF-κB pathway. American Journal of Respiratory Cell and Molecular Biology, 50(4), 723-36. doi: 10.1165/rcmb.2012-0451OC.
29. Mortensen, E. M., Nakashima, B., Cornell, J., Copeland, L. A., Pugh, M. J., Anzueto, A., Good, C., Restrepo, M. I., Downs, J. R., Frei, C. R., Fine, M. J. (2012). Population-based study of statins, angiotensin II receptor blockers, and angiotensin-converting enzyme inhibitors on pneumonia-related outcomes. Clinical Infectious Diseases, 55(11), 1466-73. doi: 10.1093/cid/cis733. Epub 2012 Aug 23.
30. Platten, M., Youssef, S., Hur, E. M., Ho, P.P., Han, M.H., Lanz, T.V., Phillips, L. K., Goldstein, .J.,R.; Raine, C.S., Sobel, R.A., Steinman, L. (2009). Blocking angiotensin-converting enzyme induces potent regulatory T cells and modulates TH1- and TH17-mediated autoimmunity. Proceedings of the National Academy of Sciences of the United States of America, 106(35), 14948-14953; doi: 10.1073/pnas.0903958106.
31. Rodrigues, P. T. R., Rocha, N. P., Miranda, A. S., Teixeira, A. L.,Simoes-E-Silva, A. C. (2017). The Anti-Inflammatory Potential of ACE2/Angiotensin-(1-7)/Mas Receptor Axis: Evidence from Basic and Clinical Research. Current Drug Targets, 18(11), 1301-1313. doi: 10.2174/1389450117666160727142401.
32. Saavedra, J. M. (2020). Angiotensin receptor blockers and COVID-19. Pharmacological Research, 156, 104832.
33. Santuchi, M. C., Dutra, M.F., Vago , J.P., Lima, K. M., Galvão, I., Souza-Neto, F. P., Silva, M.M., Oliveira, A.C., Oliveira, F. C. B., Gonçalves, R., Teixeira, M. M., Sousa , L.P. Santos , R. A. S., Silva, R.F. Angiotensin-(1-7) and Alamandine Promote Anti-inflammatory Response in Macrophages In Vitro and In Vivo. (2019). Mediators of Inflammation, doi: https://doi.org/10.1155/2019/2401081 Volume 2019 |Article ID 2401081 | 14 pages
34. Sepehri, Z.,Masoumi, M.,Ebrahimi, N.,Kiani, Z., Nasiri, A. A., Kohan, F., Sheikh, F M.,Kazemi A. M., Asadikaram, G. (2016). Atorvastatin, Losartan and Captopril Lead to Upregulation of TGF-β, and Downregulation of IL-6 in Coronary Artery Disease and Hypertension.Plos One, 11(12), e0168312. doi: https://doi.org/10.1371/journal.pone.0168312
35. Shen, L., Mo, H., Cai, L., Kong, T., Zheng, W., Ye, J., Qi, J., Xiao, Z. (2009). Losartan prevents sepsis-induced acute lung injury and decreases activation of nuclear factor kappaB and mitogen-activated protein kinases. Shock, 31(5), 500-6. doi: 10.1097/SHK.0b013e318189017a.
36. Sriram, K., Insel, P. A. (2020). Dangers of ACE inhibitor and ARB usage in COVID-19: evaluating the evidence MedRxiv preprint, doi: https://doi.org/10.1101/2020.03.25.20043927.
37. Vaduganathan, M., Vardeny O., Michel, T., McMurray, J.J. V., Pfeffer, M. A., Solomon, S. D. (2020). Renin-Angiotensin-Aldosterone System Inhibitors in Patients with Covid-19. New England Journal of Medicine, 382(17), 1653-1659. doi: 10.1056/NEJMsr2005760.
38. Wang, X., Khaidakov, M., Ding, Z., Mitra, S., Lu, J., Liu, S., Mehta, J. L. (2012). Cross-talk between Inflammation and Angiotensin II: Studies Based on Direct Transfection of Cardiomyocytes with AT1R and AT2R cDNA. Experimental Biology and Medicine, 237(12), 1394–1401. doi: https://doi.org/10.1258/ebm.2012.012212.
39. Wösten-van Asperen, R. M., Lutter, R., Specht, P. A., Moll, G. N., van Woensel, J. B., van der Loos, C. M., van Goor, H., Kamilic, J., Florquin, S., Bos, A. P. (2011). Acute respiratory distress syndrome leads to reduced ratio of ACE/ACE2 activities and is prevented by angiotensin-(1-7) or an angiotensin II receptor antagonist. The Journal of Pathology, 225(4), 618-27. doi: 10.1002/path.2987. Epub 2011 Oct 18.
40. Wu, H., Li, Y., Wang, Y., Xu, D., Li, C., Liu, M., Sun, X., Li, Z. (2014). Tanshinone IIA attenuates bleomycin-induced pulmonary fibrosis via modulating angiotensin-converting enzyme 2/ angiotensin-(1-7) axis in rats. International Journal of Medical Sciences, 11(6), 578-86. doi: 10.7150/ijms.8365. eCollection 2014.
41. WHO. Coronavirus disease 2019 (COVID-19) Situation Report – 52. March 12, 2020.
https://www.who.int/docs/default-source/coronaviruse/20200312-sitrep-52-covid-19.pdf?sfvrsn=e2bfc9c0_2 (accessed April 25, 2020).
42. Yang, G., Tan, Z., Zhou, L., Yang, M., Peng, L., Liu, J., Cai, J., Yang, R., Han, J., Huang, Y., He, S. (2020). Angiotensin II Receptor Blockers and Angiotensin-Converting Enzyme Inhibitors Usage is Associated with Improved Inflammatory Status and Clinical Outcomes in COVID-19 Patients With Hypertension. medRxiv, .03.31.20038935; doi: https://doi.org/10.1101/2020.03.31.20038935.
43. Yu, X., Cui, L., Hou, F., Liu, X., Wang, Y., Wen, Y.,Yin, C. (2018). Angiotensin-converting enzyme 2-angiotensin (1-7)-Mas axis prevents pancreatic acinar cell inflammatory response via inhibition of the p38 mitogen-activated protein kinase/nuclear factor-κB pathway. International Journal of Molecular Medicine, 41(1), 409-420. doi: https://doi.org/10.3892/ijmm.2017.3252.
44. Zhang,P., Zhu, L.,Cai, J., Lei, F., Qin, J. J.,Xie, J., Liu, Y. M., Zhao, Y. C., Huang, X., Lin, L., Xia, M., Chen, M. M., Cheng, X., Zhang, X.,Guo, D., Peng, Y.,Ji, Y. X., Chen, J., She, Z. G., Wang, Y.,Xu, Q., Tan, R., Wang, H., Lin, J., Luo, P., Fu, S.,Cai, H., Ye, P., Xiao, B1., Mao, W., Liu, L., Yan, Y., Liu, M., Chen, M., Zhang, X., Wang, X.,Touyz, R. M., Xia, J., Zhang, B. H., Huang, X., Yuan, Y.,Rohit, L., Liu, P. P., Li, H. (2020). Association of Inpatient Use of Angiotensin Converting Enzyme Inhibitors and Angiotensin II Receptor Blockers with Mortality Among Patients With Hypertension Hospitalized With COVID-19. Circulation Research, doi: 10.1161/CIRCRESAHA.120.317134. [Epub ahead of print]
45. Zhang, Y.; Li, Y.; Shi, C.; Fu, X.; Zhao, L.; Song, Y. (2018). Angiotensin-(1-7)-mediated Mas1 receptor/NF-κB-p65 signaling is involved in a cigarette smoke-induced chronic obstructive pulmonary disease mouse model. Environmental Toxicology, 33(1), 5-15. doi: 10.1002/tox.22454. Epub 2017 Sep 28.