References
Alila, Y., Kuraś, P.K., Schnorbus, M., & Hudson, R. (2009). Forests and floods: A new paradigm sheds light on age-old controversies. Water Resources Research 45 . https://doi.org/10.1029/2008WR007207
Andre, F., Jonard, M., Jonard, F., & Ponette, Q. (2011). Spatial and temporal patterns of throughfall volume in a deciduous mixed-species stand. Journal of Hydrology, 400(1-2) , 244–254. https://doi.org/10.1016/j.jhydrol.2011.01.037
Aussenac, G. (1968). Interception des précipitations par le couvert forestier, in: Annales Des Sciences Forestieres . EDP Sciences, 135–156.
Bathurst, J., Birkinshaw, S., Johnson, H., Kenny, A., Napier, A., Raven, S., Robinson, J., & Stroud, R. (2018). Runoff, flood peaks and proportional response in a combined nested and paired forest plantation/peat grassland catchment. Journal of Hydrology 564 , 916–927. https://doi.org/10.1016/j.jhydrol.2018.07.039
Bathurst, J.C., Iroume, A., Cisneros, F., Fallas, J., Iturraspe, R., Gavino Novillo, M., Urciuolo, A., de Bievre, B., Guerrero Borges, V., Coello, C., Cisneros, P., Gayoso, J., Miranda, M., & Ramirez, M. (2011). Forest impact on floods due to extreme rainfall and snowmelt in four Latin American environments 1: Field data analysis. Journal of Hydrology 400 , 281–291. https://doi.org/10.1016/j.jhydrol.2010.11.044
Belcher, S.E., Harman, I.N., & Finnigan, J.J. (2012). The Wind in the Willows: Flows in Forest Canopies in Complex Terrain, in: Davis, SH and Moin, P (Ed.), Annual review of fluid mechanics, 44 , 479-504. https://doi.org/10.1146/annurev-fluid-120710-101036
Belmar, O., Barquín, J., Álvarez-Martínez, J.M., Peñas, F.J., & Del Jesus, M. (2018). The role of forest maturity in extreme hydrological events. Ecohydrology 11 , e1947. https://doi.org/10.1002/eco.1947
Beven, K. (1979). Sensitivity analysis of the Penman-Monteith actual evapotranspiration estimates. Journal of Hydrology 44 , 169–190. https://doi.org/10.1016/0022-1694(79)90130-6
Beschta, R.L., Pyles, M.R., Skaugset, A.E., & Surfleet, C.G. (2000). Peakflow responses to forest practices in the western cascades of Oregon, USA. Journal of Hydrology, 233(1-4) , pp.102-120.
Blackie, J., & Simpson, T. (1993). Climatic variability within the Balquhidder catchments and its effect on penman potential evaporation.Journal of Hydrology 145 , 371–387. https://doi.org/10.1016/0022-1694(93)90064-G
Bosveld, F.C., 1999. Exchange Processes between a Coniferous Forest and the Atmosphere. Ph.D. thesis, Universiteit van Amsterdam, the Netherlands, 169 p.
Brutstaert, W. (1982). Evaporation into the atmosphere: theory history and applications. D. Reidel Publishing Company, London, England, 295p.
Bulcock, H.H., & Jewitt, G.P.W. (2012). Field data collection and analysis of canopy and litter interception in commercial forest plantations in the KwaZulu-Natal Midlands, South Africa. Hydrology and Earth System Sciences 16 , 3717–3728. https://doi.org/10.5194/hess-16-3717-2012
Birkinshaw, S.J., Bathurst, J.C., & Robinson, M. (2014). 45 years of non-stationary hydrology over a forest plantation growth cycle, Coalburn catchment, Northern England. Journal of Hydrology 519 , 559–573. https://doi.org/10.1016/j.jhydrol.2014.07.050
Calder, I.R., 1976. The measurement of water losses from a forested area using a “natural” lysimeter. Journal of Hydrology 30 , 311–325. https://doi.org/10.1016/0022-1694(76)90115-3
Calder, I. (1977). Model of transpiration and interception loss from a spruce forest in Plynlimon, Central Wales. Journal of Hydrology 33 , 247–265. https://doi.org/10.1016/0022-1694(77)90038-5
Calder, I.R. (1981). Report on collaborative project with the British Waterways Board on the effects of afforestation on the runoff from the catchments supplying the Crinan canal reservoirs (Report No. 1980/003 ). Institute of Hydrology, Wallingford, UK. 80p (accessed May 2018: http://nora.nerc.ac.uk/id/eprint/14633/1/N014633CR.pdf).
Calder, I.R. (1985). What are the limits on forest evaporation? — Comment. Journal of Hydrology 82 , 179–184. https://doi.org/10.1016/0022-1694(85)90053-8
Calder, I.R. (1990). Evaporation in the uplands. Chichester: John Wiley & Sons Ltd, 148p.
Calder, I.R., Smyle, J., & Aylward, B. (2007). Debate over flood-proofing effects of planting forests. Nature 450 , 945. https://doi.org/10.1038/450945b
Carlisle, A., H. F. Brown, A., J. & White, E. (1967). The Nutrient Content of Tree Stem Flow and Ground Flora Litter and Leachates in a Sessile Oak Woodland. The Journal of Ecology 55 , 615. https://doi.org/10.2307/2258413
Carrick, J., Abdul Rahim, M.S.A.B., Adjei, C., Ashraa Kalee, H.H.H., Banks, S.J., Bolam, F.C., Campos Luna, I.M., Clark, B., Cowton, J., Domingos, I.F.N., Golicha, D.D., Gupta, G., Grainger, M., Hasanaliyeva, G., Hodgson, D.J., Lopez-Capel, E., Magistrali, A.J., Merrell, I.G., Oikeh, I., Othman, M.S., Ranathunga Mudiyanselage, T.K.R., Samuel, C.W.C., Sufar, E.K., Watson, P.A., Zakaria, N.N.A.B., & Stewart, G. (2019). Is planting trees the solution to reducing flood risks?Journal of Flood Risk Management 12 , e12484. https://doi.org/10.1111/jfr3.12484
Cellier, P., & Brunet, Y. (1992). Flux gradient relationships above tall plant canopies. Agricultural and Forest Meteorology 58 , 93–117. https://doi.org/10.1016/0168-1923(92)90113-I
Chappell, N.A. (2018a). Gross and net rainfall at Law Lysimeter on days with high rainfall and daily net rainfall observations (Stocks_raw_data_xlsx). Lancaster University, UK.
Chappell, N.A. (2018b). Gross and net rainfall at Dolydd on days with high rainfall and daily net rainfall observations (Dolydd_raw_data_xlsx). Obtained from Centre of Ecology and Hydrology raw data archive, Lancaster University, UK.
Chen, D., & Chen, H.W. (2013). Using the Köppen classification to quantify climate variation and change: An example for 1901–2010.Environmental Development 6 , 69–79. https://doi.org/10.1016/j.envdev.2013.03.007
Cisneros Vaca, C., van der Tol, C., & Ghimire, C.P. (2018). The influence of long-term changes in canopy structure on rainfall interception loss: a case study in Speulderbos, the Netherlands.Hydrology and Earth System Sciences 22 , 3701–3719. https://doi.org/10.5194/hess-22-3701-2018
Collier, C.G., Fox, N.I. & Hand. W.H. (2002). Extreme Rainfall and Flood Event Recognition. Contract Report FD2201, Report to Defra and the Environment Agency, 57p.
Crabtree, R., & Trudgill, S. (1985). Hillslope hydrochemistry and stream response on a wooded, permeable bedrock - the role of stemflow.Journal of Hydrology 80 , 161–178. https://doi.org/10.1016/0022-1694(85)90079-4
Crockford, R., & Richardson, D. (1990). Partitioning of rainfall in a eucalypt forest and pine plantation in Southeastern Australia. 1. Throughfall measurement in a eucalypt forest - effect of method and species composition. Hydrological Processes 4 , 131–144. https://doi.org/10.1002/hyp.3360040204
Crockford, R., & Richardson, D. (2000). Partitioning of rainfall into throughfall, stemflow and interception: effect of forest type, ground cover and climate. Hydrological Processes 14 , 2903–2920. https://doi.org/10.1002/1099-1085(200011/12)14:16/17<2903::AID-HYP126>3.0.CO;2-6
Dadson, S.J., Hall, J.W., Murgatroyd, A., Acreman, M., Bates, P., Beven, K., Heathwaite, … Wilby, R. (2017). A restatement of the natural science evidence concerning catchment-based ‘natural’flood management in the UK. Proc. R. Soc. A 473 , 20160706.
Deguchi, A., Hattori, S., & Park, H.T. (2006). The influence of seasonal changes in canopy structure on interception loss: application of the revised Gash model. Journal of Hydrology 318 , 80–102.
Dolman, A.J. (1986). Estimates of roughness length and zero plane displacement for a foliated and non-foliated oak canopy.Agricultural and Forest Meteorology 36 , 241–248. https://doi.org/10.1016/0168-1923(86)90038-9
Dunin, F., Oloughlin, E., & Reyenga, W. (1988). Interception loss from eucalypt forest - lysimeter determination of hourly rates for long-term evaluation. Hydrological Processes 2 , 315–329. https://doi.org/10.1002/hyp.3360020403
Eden, P.,& Burt, S. (2010). Extreme monthly rainfall: November 2009.Weather 65 , 82–83. https://doi.org/10.1002/wea.568
Environment Agency (2019). Working with Natural Processes – Using the evidence base to make the case for Natural Flood Management. Hankin, B., Burgess-Gamble, L., Rose, S. Eds. Environment Agency, Bristol 29 p.
Fahey, B., & Payne, J. (2017). The Glendhu experimental catchment study, upland east Otago, New Zealand: 34 years of hydrological observations on the afforestation of tussock grasslands.Hydrological Processes 31 , 2921–2934. https://doi.org/10.1002/hyp.11234
Ferranti, E.J.S., Whyatt, J.D., & Timmis, R.J. (2009). Development and application of topographic descriptors for conditional analysis of rainfall. Atmospheric Science Letters 10 , 177–184. https://doi.org/10.1002/asl.228
Gash, J.H.C., Wright, I.R., & Lloyd, C.R. (1980). Comparative estimates of interception loss from three coniferous forests in Great Britain.Journal of Hydrology 48 , 89–105. https://doi.org/10.1016/0022-1694(80)90068-2
Gash, J., Valente, F., & David, J. (1999). Estimates and measurements of evaporation from wet, sparse pine forest in Portugal.Agricultural and Forest Meteorology 94 , 149–158. https://doi.org/10.1016/S0168-1923(99)00008-8.
Gavazzi, M.J., Sun, G., McNulty, S.G., Treasure, E.A., & Wightman, M.G. (2016). Canopy rainfall interception measured over ten years in a coastal plain loblolly pine (pinus taeda l.) plantation.Transactions of the ASABE 59 , 601–610.
Gerrits, A., Pfister, L., & Savenije, H. (2010). Spatial and temporal variability of canopy and forest floor interception in a beech forest.Hydrological Processes 24, 3011–3025.
Gerrits, A.M.J., Savenije, H.H.G., Hoffmann, L., & Pfister, L. (2007). New technique to measure forest floor interception - an application in a beech forest in Luxembourg. Hydrology and Earth System Sciences 11 , 695–701. https://doi.org/10.5194/hess-11-695-2007
Giacomin, A., & Trucchi, P. (1992). Rainfall interception in a beech coppice (Acquerino, Italy). Journal of Hydrology 137 , 141–147.
Guillemette, F., Plamondon, A.P., Prévost, M., & Lévesque, D. (2005). Rainfall generated stormflow response to clearcutting a boreal forest: peak flow comparison with 50 world-wide basin studies. Journal of Hydrology 302 , 137–153. https://doi.org/10.1016/j.jhydrol.2004.06.043
Hankin, B., Metcalfe, P.W., Johnson, D., Chappell, N.A., Page, T.J.C., Craigen, I., Lamb, R., & Beven, K.J. (2017). In: Flood Risk Management. InTech p. 1-39. https://doi.org/10.5772/intechopen.68677
Hashino, M., Yao, H., & Yoshida, H. (2002). Studies and evaluations on interception processes during rainfall based on a tank model.Journal of Hydrology 255 , 1–11. https://doi.org/10.1016/S0022-1694(01)00506-6
Holwerda, F., Bruijnzeel, L.A., Scatena, F.N., Vugts, H.F., & Meesters, A.G.C.A. (2012). Wet-canopy evaporation from a Puerto Rican lower montane rain forest: The importance of realistically estimated aerodynamic conductance. Journal of Hydrology 414 , 1–15. https://doi.org/10.1016/j.jhydrol.2011.07.033
Horton, R., E. (1919). Rainfall interception. Monthly. Weather Review 47 , 603–623. https://doi.org/10.1175/1520-0493(1919)47<603:RI>2.0.CO;2
Iroumé, A., & Huber, A. (2002). Comparison of interception losses in a broadleaved native forest and a Pseudotsuga menziesii (Douglas fir) plantation in the Andes Mountains of southern Chile. Hydrological Processes 16 , 2347–2361.
Jones, J. A., and Grant, G. E. ( 1996), Peak Flow Responses to Clear‐Cutting and Roads in Small and Large Basins, Western Cascades, Oregon, Water Resour. Res., 32( 4), 959– 974, doi:10.1029/95WR03493.
Jongman, B., Winsemius, H. C., Fraser, S., Muis, S., & Ward, P. J. (2018). Assessment and Adaptation to Climate Change-Related Floods Risks. In D. Benouar (Ed.), Natural Hazard Science (pp. 1-29). (Oxford Research Encyclopedias). Oxford, UK: Oxford University Press. https://doi.org/10.1093/acrefore/9780199389407.013.278
Keim, R., Skaugset, A., Link, & T., Iroumé, A. (2004). A stochastic model of throughfall for extreme events. Hydrology and Earth System Sciences 8 , 23–34. https://doi.org/10.5194/hess-8-23-2004
Kelliher, F., Whitehead, D., & Pollock, D. (1992). Rainfall interception by trees and slash in a young pinus-radiata d donstand. Journal of Hydrology 131 , 187–204. https://doi.org/10.1016/0022-1694(92)90217-J
Kirby, C., Newson, M.D., & Gillman, K. (1991). Plynlimon research: The first two decades (Report No. 109 ). Institute of Hydrology, Wallingford, UK, 197p
Klaassen, W., & Lankreijer, H., Veen, A. (1996). Rainfall interception near a forest edge. Journal of Hydrology 185, 349–361. https://doi.org/10.1016/0022-1694(95)03011-5
Klingaman, N.P., & Levia, D.F., & Frost, E.E. (2007). A comparison of three canopy interception models for a leafless mixed deciduous forest stand in the eastern United States. Journal of Hydrometeorology 8 , 825–836. https://doi.org/10.1175/JHM564.1
Lalic, B., Mihailovic, D., Rajkovic, B., Arsenic, I., & Radlovic, D. (2003). Wind profile within the forest canopy and in the transition layer above it. Environmental Modelling & Software 18 , 943–950. https://doi.org/10.1016/S1364-8152(03)00067-9
Lane, S. N. (2017) Natural flood management. Wiley Interdisciplinary Reviews: Water 4 , e1211. https://doi.org/10.1002/wat2.1211.
Lavers, D.A., Allan, R.P., Wood, E.F., Villarini, G., Brayshaw, D.J., & Wade, A.J. (2011). Winter floods in Britain are connected to atmospheric rivers. Geophysical Research Letters 38 . https://doi.org/10.1029/2011GL049783
Lavers, D.A., Allan, R.P., Villarini, G., Lloyd-Hughes, B., Brayshaw, D.J., & Wade, A.J. (2013). Future changes in atmospheric rivers and their implications for winter flooding in Britain. Environmental research letters 8 . https://doi.org/10.1088/1748-9326/8/3/034010
Law, F. (1956). Effect of afforestation upon the yield of water catchment areas. Journal of the British Waterworks Association 38 , 489–494.
Lankreijer, H., Hendriks, M., & Klaassen, W. (1993). A comparison of models simulating rainfall interception of forests. Agricultural and Forest Meteorology 64 , 187–199. https://doi.org/10.1016/0168-1923(93)90028-G
Lankreijer, H., Lundberg, A., Grelle, A., Lindroth, A., & Seibert, J. (1999). Evaporation and storage of intercepted rain analysed by comparing two models applied to a boreal forest. Agricultural and Forest Meteorology 98 , 595–604.
Lewis, J., Reid, L. M., & Thomas, R. B. (2010), Comment on “Forest and floods: A new paradigm sheds light on age‐old controversies” by Younes Alila et al. Water Resourses Research 46 , W05801, doi:10.1029/2009WR008766
Link, T.E., Unsworth, M., & Marks, D. (2004). The dynamics of rainfall interception by a seasonal temperate rainforest. Agricultural and Forest Meteorology 124 , 171–191.
López-Moreno, J. I. S. Beguería & J. M. García-Ruiz (2006) Trends in high flows in the central Spanish Pyrenees: response to climatic factors or to land-use change? Hydrological Sciences Journal 51:6 , 1039-1050, DOI: 10.1623/hysj.51.6.1039
Loustau, D., Berbigier, P., & Granier, A. (1992). Interception loss, throughfall and stemflow in a maritime pine stand .2. An application of gash analytical model of interception. Journal of Hydrology 138 , 469–485. https://doi.org/10.1016/0022-1694(92)90131-E
Lu, J., Sun, G., McNulty, S.G. & Amatya, D.M. (2005), A comparison of six potential evapotranspiration methods for regional use in the South Eastern Unites States. Journal of the American Water Resources Association 41 , 621-633. doi:10.1111/j.1752-1688.2005.tb03759.x
Lull, H. W., & K. G. Reinhart (1972). Forests and floods in the eastern United States, Res. Pap. NE‐226, For. Serv., U.S. Dep. of Agric., Washington, D. C.
Massman, W. (1983). The derivation and validation of a new model for the interception of rainfall by forests. Agricultural Meteorology 28 , 261–286. https://doi.org/10.1016/0002-1571(83)90031-6
Matthews, T., Murphy, C., McCarthy, G., Broderick, C., & Wilby, R.L. (2018). Super Storm Desmond: a process-based assessment.Environmental Research Letters 13(1) , 014024. https://doi.org/10.1088%2F1748-9326%2Faa98c8
Mayes, C. (2013). Regional weather and climates of the British Isles – Part 5: Wales. Weather 68 , 227–232.
Met. Office, (2006). MIDAS UK Hourly Rainfall Data. NCAS British Atmospheric Data Centre. Accessed June 2018. http://catalogue.ceda.ac.uk/uuid/bbd6916225e7475514e17fdbf11141c1
Met. Office (2018). UK Climate extremes. Accessed June 2018. https://www.metoffice.gov.uk/public/weather/climate-extremes/#?tab=climateExtremes
Monteith, J. L. (1965). Evaporation and environment. Symp. Soc. Exp. Biol. 19 , 205-234.
Moors, E. (2012). Water Use of Forests in the Netherlands, Ph.D. thesis. Vrije Universiteit Amsterdam, Netherlands. 209p.
Morton, F. (1984). What are the limits on forest evaporation?Journal of Hydrology 74 , 373–398. https://doi.org/10.1016/0022-1694(84)90025-8
Muzylo, A., Llorens, P., Valente, F., Keizer, J.J., Domingo, F., & Gash, J.H.C., 2009. A review of rainfall interception modelling.Journal of Hydrology 370 , 191–206. https://doi.org/10.1016/j.jhydrol.2009.02.058
Newson, M.D., & Calder, I.R. (1989). Forests and water resources: problems of prediction on a regional scale. Philosophical Transactions of the Royal Society of London. B, Biological Sciences 324 , 283–298. https://doi.org/10.1098/rstb.1989.0049
Pearce, A., Gash, J., & Stewart, J. (1980b). Rainfall interception in a forest stand estimated from grassland meteorological data. Journal of Hydrology 46 , 147–163. https://doi.org/10.1016/0022-1694(80)90040-2
Pook, E., Moore, P., & Hall, T. (1991). Rainfall interception by trees of pinus-radiata and eucalyptus-viminalis in a 1300 mm rainfall area of Southeastern New-South-Wales .1. Gross Losses and Their Variability. Hydrological Processes 5 , 127–141. https://doi.org/10.1002/hyp.3360050202
Price, A., & Carlyle-Moses, D. (2003). Measurement and modelling of growing-season canopy water fluxes in a mature mixed deciduous forest stand, southern Ontario, Canada. Agricultural and Forest Meteorology 119 , 69–85. https://doi.org/10.1016/S0168-1923(03)00117-5
Raupach, M.R. (1979). Anomalies in Flux-Gradient Relationships Over Forest. Boundary-Layer Meteorology 16 , 467–486. https://doi.org/10.1007/BF03335385
Reynolds, C., Irish, A., & Elliott, J. (2001). The ecological basis for simulating phytoplankton responses to environmental change (PROTECH).Ecological Modelling 140 , 271–291. https://doi.org/10.1016/S0304-3800(01)00330-1
Reynolds, E., & Henderson, C. (1967). Rainfall interception by beech, larch and Norway spruce. Forestry: An International Journal of Forest Research 40 , 165–184.
Robins, P. C. (1969). Comparative Studies of Evaporation fromPinus nigra and Pseudotsuga menziesii , with Particular Reference to Air and Stomatal Resistances. Ph.D. thesis, Univ. London, 151p.
Robinson, M. & Newson, M.D. (1986). Comparison of forest and moorland hydrology in an upland area. 551 with peat soils. International Peat Journal 1 , 46-48. 552
Rutter, A. (1963). Studies in the water relations ofPinus-Sylvestris in plantation conditions. 1. Measurements of rainfall and interception. Journal of Ecology 51 , 191–203. https://doi.org/10.2307/2257513
Rutter, A.J. (1967). An analysis of evaporation from a stand of Scots pine. In: W.E. Sopper and H.W. Lull Eds., Int. Symp. on Forest Hydrology , Pergamon Press, Oxford, pp.403-417.
Rutter, A., Robins, P., Morton, A., & Kershaw, K. (1972). Predictive model of rainfall interception in forests, .1. derivation of model from observations in a plantation of Corsican Pine. Agricultural Meteorology 9 , 367-384.
Saito, T., Matsuda, H., Komatsu, M., Xiang, Y., Takahashi, A., Shinohara, Y., & Otsuki, K. (2013). Forest canopy interception loss exceeds wet-canopy evaporation in Japanese cypress (Hinoki) and Japanese cedar (Sugi) plantations. Journal of Hydrology 507, 287–299. https://doi.org/10.1016/j.jhydrol.2013.09.053
Szeicz, G., Endrödi, G., & Tajchman, S. (1969). Aerodynamic and surface factors in evaporation. Water Resources Research 5 , 380–394. https://doi.org/10.1029/WR005i002p00380
Silva, I.C., & Okumura, T. (1996). Throughfall, stemflow and interception loss in a mixed white oak forest (Quercus serrata Thunb. ). Journal of Forest Research 1 , 123–129.
Simpson, I., Thurtell, G., Neumann, H., Den Hartog, G., & Edwards, G. (1998). The validity of similarity theory in the roughness sublayer above forests. Boundary-Layer Meteorology 87 , 69–99. https://doi.org/10.1023/A:1000809902980
Staelens, J., De Schrijver, A., Verheyen, K., & Verhoest, N.E.C. (2008). Rainfall partitioning into throughfall, stemflow, and interception within a single beech (Fagus sylvatica L. ) canopy: influence of foliation, rain event characteristics, and meteorology.Hydrological Processes 22 , 33–45. https://doi.org/10.1002/hyp.6610
Stewart, J. (1977). Evaporation from wet-canopy of a pine forest.Water Resources Research 13 , 915–921. https://doi.org/10.1029/WR013i006p00915
Stewart, J.B., & Thom, A.S. (1973). Energy budgets in pine forest.Quarterly Journal of the Royal Meteorological Society 99 , 154–170. https://doi.org/10.1002/qj.49709941913
Stratford, C., Miller, J., House, A., Old, G., Acreman, M., Dueñas-Lopez, M.A., Nisbet, … Tickner, D. (2017). Do trees in UK-relevant river catchments influence fluvial flood peaks? (Project no. NEC06063 ). NERC/Centre for Ecology & Hydrology, Wallingford, UK, 46p.
Thom, A.S., Stewart, J.B., Oliver, H.R., & Gash, J.H.C. (1975). Comparison of aerodynamic and energy budget estimates of fluxes over a pine forest. Quarterly Journal of the Royal Meteorological Society 101 , 93–105. https://doi.org/10.1002/qj.49710142708
Thomas, R.B. & Megahan, W.F. (1998). Peak flow responses to clear‐cutting and roads in small and large basins, western Cascades, Oregon: A second opinion. Water Resources Research 34(12),3393-3403.
Toba, T., & Ohta, T. (2005). An observational study of the factors that influence interception loss in boreal and temperate forests.Journal of Hydrology 313 , 208–220. https://doi.org/10.1016/j.jhydrol.2005.03.003
van Dijk, A.I.J.M., Gash, J.H., van Gorsel, E., Blanken, P.D., Cescatti, A., Emmel, C., Gielen, … Wohlfahrt, G. (2015). Rainfall interception and the coupled surface water and energy balance.Agricultural and Forest Meteorology 214 , 402–415. https://doi.org/10.1016/j.agrformet.2015.09.006
Whitehead, P.G., & Robinson, M. (1993). Experimental basin studies—an international and historical perspective of forest impacts.Journal of Hydrology 145 , 217–230. https://doi.org/10.1016/0022-1694(93)90055-E
Wingfield, T., Macdonald, N., Peters, K., Spees, J., Potter, K. (2019). Natural Flood Management: Beyond the evidence debate. Area 51 , 743–751. https://doi.org/10.1111/area.12535
World Bank (2017). Implementing nature-based flood protection: Principles and implementation guidance. Washington, DC: World Bank.