References
1. Bousquet J, Anto J, Czarlewski W, et al. Sulforaphane: from death
rate heterogeneity in countries to candidate for prevention of severe
COVID-19 Allergy 2020;in press.
2. Bousquet J, Anto JM, Iaccarino G, et al. Is diet partly responsible
for differences in COVID-19 death rates between and within countries?
Clin Transl Allergy 2020;10:16.
3. Fonseca S, Rivas I, Romaguera D, et al. Association between
consumption of fermented vegetables and COVID-19 mortality at a country
level in Europe MEDRXIV/2020/147025 2020.
4. Fonseca S, Rivas I, Romaguera D, et al. Association between
consumption of vegetables and COVID-19 mortality at a country level in
Europe. MedRix 2020.
5. Azam M, Mohsin M, Ijaz H, et al. Review - Lactic acid bacteria in
traditional fermented Asian foods. Pak J Pharm Sci 2017;30:1803-14.
6. Rhee SJ, Lee JE, Lee CH. Importance of lactic acid bacteria in Asian
fermented foods. Microb Cell Fact 2011;10 Suppl 1:S5.
7. Zhang J-j, Dong X, Cao Y-y, et al. Clinical characteristics of 140
patients infected with SARS-CoV-2 in Wuhan, China.n/a.
8. Azkur AK, Akdis M, Azkur D, et al. Immune response to SARS-CoV-2 and
mechanisms of immunopathological changes in COVID-19.n/a.
9. Radzikowska U, Ding M, Tan G, et al. Distribution of ACE2, CD147,
CD26 and other SARS-CoV-2 associated molecules in tissues and immune
cells in health and in asthma, COPD, obesity, hypertension, and COVID-19
risk factors.n/a.
10. Pfaar O, Torres MJ, Akdis CA. COVID-19: A series of important recent
clinical and laboratory reports in immunology and pathogenesis of
SARS-CoV-2 infection and care of allergy patients.n/a.
11. Du H, Dong X, Zhang J-j, et al. Clinical characteristics of 182
pediatric COVID-19 patients with different severities and allergic
status.n/a.
12. Sokolowska M, Lukasik Z, Agache I, et al. Immunology of COVID-19:
mechanisms, clinical outcome, diagnostics and perspectives – a report
of the European Academy of Allergy and Clinical Immunology (EAACI).n/a.
13. Riggioni C, Comberiati P, Giovannini M, et al. A compendium
answering 150 questions on COVID-19 and SARS-CoV-2.n/a.
14. Zabetakis I, Lordan R, Norton C, Tsoupras A. COVID-19: The
Inflammation Link and the Role of Nutrition in Potential Mitigation.
Nutrients 2020;12.
15. Finucane FM, Davenport C. Coronavirus and Obesity: Could Insulin
Resistance Mediate the Severity of Covid-19 Infection? Front Public
Health 2020;8:184.
16. Zhu J, Ji P, Pang J, et al. Clinical characteristics of 3,062
COVID-19 patients: a meta-analysis. J Med Virol 2020.
17. The Novel Coronavirus Pneumonia Emergency Response Epidemiology Team
. The epidemiological characteristics of an outbreak of 2019 novel
coronavirus diseases (COVID‐19)—China, 2020. China CDC Weekly
2020;2:113-22.
18. Argenziano MG, Bruce SL, Slater CL, et al. Characterization and
clinical course of 1000 Patients with COVID-19 in New York:
retrospective case series. medRxiv 2020.
19. Petrilli CM, Jones SA, Yang J, et al. Factors associated with
hospital admission and critical illness among 5279 people with
coronavirus disease 2019 in New York City: prospective cohort study. BMJ
2020;369:m1966.
20. Docherty AB, Harrison EM, Green CA, et al. Features of 20 133 UK
patients in hospital with covid-19 using the ISARIC WHO Clinical
Characterisation Protocol: prospective observational cohort study. BMJ
2020;369:m1985.
21. Dalan R, Bornstein SR, El-Armouche A, et al. The ACE-2 in COVID-19:
Foe or Friend? Horm Metab Res 2020;52:257-63.
22. Wen H, Gwathmey JK, Xie LH. Oxidative stress-mediated effects of
angiotensin II in the cardiovascular system. World J Hypertens
2012;2:34-44.
23. Sarzani R, Giulietti F, Di Pentima C, Giordano P, Spannella F.
Disequilibrium between the Classic Renin-Angiotensin System and Its
Opposing Arm in Sars-Cov-2 Related Lung Injury. Am J Physiol Lung Cell
Mol Physiol 2020.
24. Bousquet J, Anto J, Czarlewski W, et al. Sulforaphane: from death
rate heterogeneity in countries to candidate for prevention of severe
COVID-19 Allergy 2020;submitted.
25. Ren H, Yang Y, Wang F, et al. Association of the insulin resistance
marker TyG index with the severity and mortality of COVID-19. Cardiovasc
Diabetol 2020;19:58.
26. Peters A, Krumbholz P, Jager E, et al. Metabolites of lactic acid
bacteria present in fermented foods are highly potent agonists of human
hydroxycarboxylic acid receptor 3. PLoS Genet 2019;15:e1008145.
27. Marco ML, Heeney D, Binda S, et al. Health benefits of fermented
foods: microbiota and beyond. Curr Opin Biotechnol 2017;44:94-102.
28. Patra JK, Das G, Paramithiotis S, Shin HS. Kimchi and Other Widely
Consumed Traditional Fermented Foods of Korea: A Review. Front Microbiol
2016;7:1493.
29. Jung JY, Lee SH, Jeon CO. Kimchi microflora: history, current
status, and perspectives for industrial kimchi production. Appl
Microbiol Biotechnol 2014;98:2385-93.
30. Yoon KY, Woodams EE, Hang YD. Production of probiotic cabbage juice
by lactic acid bacteria. Bioresour Technol 2006;97:1427-30.
31. Bibbo S, Ianiro G, Giorgio V, et al. The role of diet on gut
microbiota composition. Eur Rev Med Pharmacol Sci 2016;20:4742-9.
32. Tian S, Liu X, Lei P, Zhang X, Shan Y. Microbiota: a mediator to
transform glucosinolate precursors in cruciferous vegetables to the
active isothiocyanates. J Sci Food Agric 2018;98:1255-60.
33. An SY, Lee MS, Jeon JY, et al. Beneficial effects of fresh and
fermented kimchi in prediabetic individuals. Ann Nutr Metab
2013;63:111-9.
34. Kim EK, An SY, Lee MS, et al. Fermented kimchi reduces body weight
and improves metabolic parameters in overweight and obese patients. Nutr
Res 2011;31:436-43.
35. Lavefve L, Marasini D, Carbonero F. Microbial Ecology of Fermented
Vegetables and Non-Alcoholic Drinks and Current Knowledge on Their
Impact on Human Health. Adv Food Nutr Res 2019;87:147-85.
36. Kim SA, Joung H, Shin S. Dietary pattern, dietary total antioxidant
capacity, and dyslipidemia in Korean adults. Nutr J 2019;18:37.
37. Das G, Paramithiotis S, Sundaram Sivamaruthi B, et al. Traditional
fermented foods with anti-aging effect: A concentric review. Food Res
Int 2020;134:109269.
38. Lee E, Jung SR, Lee SY, Lee NK, Paik HD, Lim SI. Lactobacillus
plantarum Strain Ln4 Attenuates Diet-Induced Obesity, Insulin
Resistance, and Changes in Hepatic mRNA Levels Associated with Glucose
and Lipid Metabolism. Nutrients 2018;10.
39. An H, Zhai Z, Yin S, Luo Y, Han B, Hao Y. Coexpression of the
superoxide dismutase and the catalase provides remarkable oxidative
stress resistance in Lactobacillus rhamnosus. J Agric Food Chem
2011;59:3851-6.
40. Serata M, Iino T, Yasuda E, Sako T. Roles of thioredoxin and
thioredoxin reductase in the resistance to oxidative stress in
Lactobacillus casei. Microbiology 2012;158:953-62.
41. Kong Y, Olejar KJ, On SLW, Chelikani V. The Potential of
Lactobacillus spp. for Modulating Oxidative Stress in the
Gastrointestinal Tract. Antioxidants (Basel) 2020;9.
42. Hong E, Kim GH. GC-MS Analysis of the Extracts from Korean Cabbage
(Brassica campestris L. ssp. pekinensis) and Its Seed. Prev Nutr Food
Sci 2013;18:218-21.
43. Park CH, Yeo HJ, Park SY, Kim JK, Park SU. Comparative Phytochemical
Analyses and Metabolic Profiling of Different Phenotypes of Chinese
Cabbage (Brassica Rapa ssp. Pekinensis). Foods 2019;8.
44. Xu L, Nagata N, Ota T. Glucoraphanin: a broccoli sprout extract that
ameliorates obesity-induced inflammation and insulin resistance.
Adipocyte 2018;7:218-25.
45. Teng W, Li Y, Du M, Lei X, Xie S, Ren F. Sulforaphane Prevents
Hepatic Insulin Resistance by Blocking Serine Palmitoyltransferase
3-Mediated Ceramide Biosynthesis. Nutrients 2019;11.
46. Sun Y, Zhou S, Guo H, et al. Protective effects of sulforaphane on
type 2 diabetes-induced cardiomyopathy via AMPK-mediated activation of
lipid metabolic pathways and NRF2 function. Metabolism 2020;102:154002.
47. Vomund S, Schafer A, Parnham MJ, Brune B, von Knethen A. Nrf2, the
Master Regulator of Anti-Oxidative Responses. Int J Mol Sci 2017;18.
48. Yamamoto M, Kensler TW, Motohashi H. The KEAP1-NRF2 System: a
Thiol-Based Sensor-Effector Apparatus for Maintaining Redox Homeostasis.
Physiol Rev 2018;98:1169-203.
49. Senger DR, Li D, Jaminet SC, Cao S. Activation of the Nrf2 Cell
Defense Pathway by Ancient Foods: Disease Prevention by Important
Molecules and Microbes Lost from the Modern Western Diet. PLoS One
2016;11:e0148042.
50. Li B, Evivie SE, Lu J, et al. Lactobacillus helveticus KLDS1.8701
alleviates d-galactose-induced aging by regulating Nrf-2 and gut
microbiota in mice. Food Funct 2018;9:6586-98.
51. Xu H, Wang J, Cai J, et al. Protective Effect of Lactobacillus
rhamnosus GG and its Supernatant against Myocardial Dysfunction in Obese
Mice Exposed to Intermittent Hypoxia is Associated with the Activation
of Nrf2 Pathway. Int J Biol Sci 2019;15:2471-83.
52. Qian Y, Zhang J, Zhou X, et al. Lactobacillus plantarum CQPC11
Isolated from Sichuan Pickled Cabbages Antagonizes d-galactose-Induced
Oxidation and Aging in Mice. Molecules 2018;23.
53. Xu C, Qiao L, Ma L, et al. Biogenic selenium nanoparticles
synthesized by Lactobacillus casei ATCC 393 alleviate intestinal
epithelial barrier dysfunction caused by oxidative stress via Nrf2
signaling-mediated mitochondrial pathway. Int J Nanomedicine
2019;14:4491-502.
54. Mu G, Li H, Tuo Y, Gao Y, Zhang Y. Antioxidative effect of
Lactobacillus plantarum Y44 on 2,2’-azobis(2-methylpropionamidine)
dihydrochloride (ABAP)-damaged Caco-2 cells. J Dairy Sci
2019;102:6863-75.
55. Kobatake E, Nakagawa H, Seki T, Miyazaki T. Protective effects and
functional mechanisms of Lactobacillus gasseri SBT2055 against oxidative
stress. PLoS One 2017;12:e0177106.
56. Uruno A, Yagishita Y, Yamamoto M. The Keap1-Nrf2 system and diabetes
mellitus. Arch Biochem Biophys 2015;566:76-84.
57. Vasileva LV, Savova MS, Amirova KM, Dinkova-Kostova AT, Georgiev MI.
Obesity and NRF2-mediated cytoprotection: Where is the missing link?
Pharmacol Res 2020;156:104760.
58. Guo Z, Mo Z. Keap1-Nrf2 signaling pathway in angiogenesis and
vascular diseases. J Tissue Eng Regen Med 2020;14:869-83.
59. Hassan SM, Jawad MJ, Ahjel SW, et al. The Nrf2 Activator (DMF) and
Covid-19: Is there a Possible Role? Med Arch 2020;74:134-8.
60. Romero A, San Hipolito-Luengo A, Villalobos LA, et al. The
angiotensin-(1-7)/Mas receptor axis protects from endothelial cell
senescence via klotho and Nrf2 activation. Aging Cell 2019;18:e12913.
61. Cai SM, Yang RQ, Li Y, et al. Angiotensin-(1-7) Improves Liver
Fibrosis by Regulating the NLRP3 Inflammasome via Redox Balance
Modulation. Antioxid Redox Signal 2016;24:795-812.
62. Liu Q, Gao Y, Ci X. Role of Nrf2 and Its Activators in Respiratory
Diseases. Oxid Med Cell Longev 2019;2019:7090534.
63. Zhao H, Eguchi S, Alam A, Ma D. The role of nuclear factor-erythroid
2 related factor 2 (Nrf-2) in the protection against lung injury. Am J
Physiol Lung Cell Mol Physiol 2017;312:L155-L62.
64. Chen B, Lu Y, Chen Y, Cheng J. The role of Nrf2 in oxidative
stress-induced endothelial injuries. J Endocrinol 2015;225:R83-99.
65. Keleku-Lukwete N, Suzuki M, Yamamoto M. An Overview of the
Advantages of KEAP1-NRF2 System Activation During Inflammatory Disease
Treatment. Antioxid Redox Signal 2018;29:1746-55.
66. Hati S, Bhattacharyya S. Impact of Thiol-Disulfide Balance on the
Binding of Covid-19 Spike Protein with Angiotensin-Converting Enzyme 2
Receptor. ACS Omega 2020;5:16292-8.
67. Smith RE. The Effects of Dietary Supplements that Overactivate the
Nrf2/ARE System. Curr Med Chem 2020;27:2077-94.
68. Textor J, van der Zander B, Gilthorpe MS, Liskiewicz M, Ellison GT.
Robust causal inference using directed acyclic graphs: the R package
’dagitty’. Int J Epidemiol 2016;45:1887-94.