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1 INTRODUCTION

The Mathematical Theory of Contact Mechanics is concerned with the mathematical structures which underlie general contact
problems with different constitutive laws, different contact conditions and various geometries. The aim of this theory is to predict
reliably the evolution of contact processes and provide a rigorous mathematical background for the construction of models for
contact phenomena. Contact problems with additional effects are of the special importance in applications. In particular, the
effects due to the damagemay lead to decrease the carrying capacity of the bodies in contact. The effective functioning and safety
of a mechanical system may be deteriorated by this decrease as the material undergoes damage. The damage is an extremely
important topic in engineering, since it affects directly the useful life of the designed structure or component. There exists a very
large engineering literature on it. Models taking into account the influence of the internal damage of the material on the contact
process have been investigated mathematically. General models for damage were derived in10 from the virtual power principle.
The new idea of11 was the introduction of the damage function � = �(x, t), which is the ratio between the elastic modulus of
the damage and damage-free materials. In an isotropic and homogeneous elastic material, let EY be the Young modulus of the
original material andEeff be the current modulus, then the damage function is defined by � = Eeff∕EY .Clearly, it follows from
this definition that the damage function � is restricted to have values between zero and one.When � = 1, there is no damage in the
material, when � = 0, the material is completely damaged, when 0 < � < 1 there is partial damage and the system has a reduced
load carrying capacity. Contact problems with damage have been investigated in6,9,21,22. In this paper, we investigate the dynamic
process of frictional adhesive contact with normal damped response between two electro-elasto-viscoplastic deformable bodies.
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The model we suppose the following constitutive law
�m = m"(um) + m"(u̇m) − (m)∗E('m)+
t

∫
0

m
(

�m(s) − m"(u̇m(s)) + (m)∗E('m(s)), "(um(s)), �m(s),km(s)
)

ds,
(1)

k̇m = �m
(

�m − m"(u̇m) + (m)∗E('m), "(um),km
)

, (2)
Dm = m"(um) + �mE('m), (3)

where �m denotes the stress tensor, um represents the displacement field, "(um) is the linearized strain tensor, km denotes an
internal state variable, �m is the damage field andDm is the electric displacement field. Herem and m are nonlinear operators
describing the purely elastic and the viscous properties of the material, respectively. m is a nonlinear constitutive function
describing the plastic behaviour of the material. We also consider that the plastic function m depends on the internal state
variable km. ∮m is also a nonlinear constitutive function which depends on km. There is a variety of choices for the internal state
variables, for reference in the field see5,7. Some commonly used internal state variables are the plastic strain and a number of
tensor variables that take into account the spatial display of dislocations and the work-hardening of the material. E('m) is the
electric field that satisfies E('m) = −∇'m, where 'm is the electric potential. Also, m represents the third order piezoelectric
tensor, (m)∗ is its transposition and �m denotes the electric permittivity tensor.
It follows from (1) that at each time moment, the stress tensor �m is split into three parts: �m = �mV + �

m
E + �

m
R, where

�mV = 
m"(u̇m) represents the purely viscous part of the stress, �mE = −(

m)∗E('m) represents the electric part of the stress and
�mR is the elasto-viscoplastic part of the stress which satisfies

�mR = 
m"(um) +

t

∫
0

m
(

�mR(s), "(u
m(s)), �m(s),km(s)

)

ds. (4)

Note also that when m = 0 the constitutive law (1) becomes the Kelvin-Voigt electro-viscoelastic constitutive relation,

�m = m"(u̇m) +m"(um) − (m)∗E('m). (5)

Dynamic contact problems with Kelvin-Voigt materials of the form (5) can be found in2,15. Processes of adhesion are important
in many industrial settings where parts, usually nonmetallic, are glued together. For this reason, adhesive contact between bodies,
when a glue is added to prevent the surfaces from relative motion, has recently received increased attention in the literature.
General models with adhesion can be found in8. Results on the mathematical analysis of various adhesive contact problems can
be found in3,4,12,16,20,21. In all these papers is the introduction of a surface internal variable, the bonding field, denoted in this
paper by &, it describes the point wise fractional density of adhesion of active bonds on the contact surface, and some times
referred to as the intensity of adhesion. Following13, the bonding field satisfies the restriction 0 ≤ & ≤ 1, when & = 1 at a point
of the contact surface, the adhesion is complete and all the bonds are active, when & = 0 all the bonds are inactive, severed, and
there is no adhesion, when 0 < & < 1 the adhesion is partial and only a fraction & of the bonds is active. We turn now to describe
the contact conditions. We assume that the normal stress �� satisfies a general normal damped response condition with adhesion

�� = −p�(u̇1� + u̇
2
�) + 
�&

2R�(u1� + u
2
�), (6)

where p� is a prescribed function and 
� is a given adhesion coefficient. Equality (6) states a general dependence of the normal
stress on the normal velocity. A commonly used example of the normal damped function p� , is

p�(r) = �r, (7)

with � ≥ 0. This type of behavior was considered in19 modeling the motion of a deformable bodies on sand or a granular
materials. We may also consider the case (see18)

p�(r) = �r+ + p0, (8)
where � ≥ 0 and p0 > 0. Here � is the damping resistance coefficient, assumed positive, r+ = max(0, r) and p0 is the oil
pressure, which is given and nonnegative. .
The associated friction law is chosen as

�� = −p�(u̇1� − u̇
2
�) + q�(&)R�(u1� − u

2
�), (9)
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where p� is a prescribed vector-valued function, q� is a given positive function and �� represents the tangential force on contact
boundary. As an example we may consider the function

p�(r) = �|r|�−1r, (10)

where � represents the coefficient of friction, assumed positive, and 0 < � ≤ 1. This is the case when the contact surface is
lubricated with a thin layer of a non-Newtonian fluid, see e.g.22.
The paper is organized as follows. In Section 2we describe themathematical models for the frictional contact problem between

two electro-elasto-viscoplastic bodies with internal state variables and damage. The contact is modelled with normal damped
and adhesion. In Section 3 We introduce some notation, list the assumptions on the problem’s data, and derive the variational
formulation of the model, and state an existence and uniqueness result stated in Theorem 1. We prove in Section 4 the existence
and uniqueness of the solution, where it is carried out in several steps and is based on arguments of time-dependent parabolic
variational inequalities, differential equations and fixed point.

2 PROBLEM STATEMENT

We consider two electro-elastic-viscoplastics bodies whose material particles occupy bounded domainsΩ1 andΩ2 ofℝd (d ≤ 3
in applications). We put a superscriptm to indicate that the quantity is related to the domainΩm. In the following, the superscript
m ranges between 1 and 2. For each domain Ωm, the boundary Γm is assumed to be Lipschitz continuous. We use the notation
x = (xi) for a typical point inΩm and we denote by �m = (�mi ) the outward unit normal at Γm. For each domainΩm, the boundary
Γm is partitioned into three disjoint measurable parts Γm1 , Γ

m
2 and Γm3 , on one hand, and on two measurable parts Γma and Γmb , on

the other hand, such thatmeasΓm1 > 0, measΓ
m
a > 0.We are interested in the quasistatic process of evolution of the bodies on the

time interval [0, T ], with T > 0. The Ωm body is submitted to fm0 forces and volume electric charges of density qm0 . The bodies
are assumed to be clamped on Γm1 × [0, T ]. The surface tractions f

m
2 act on Γm2 × [0, T ]. The two bodies are in contact along

the common part Γ13 = Γ
2
3, which will be denoted Γ3 below. The bodies are in adhesive contact with normal damped response

condition. We also assume that the electrical potential vanishes on Γma × [0, T ] and a surface electric charge of density qm2 is
prescribed on Γmb × [0, T ]. Then, the classical formulation of the mechanical frictional contact problem with damped, internal
state variable, adhesion and damage between two electro-elastic-viscoplastics bodies is the following.

Problem P. For m = 1, 2, find a displacement field um ∶ Ωm × [0, T ] ←→ ℝd , a stress field �m ∶ Ωm × [0, T ] ←→ Sd , an electric
potential field 'm ∶ Ωm × [0, T ] ←→ ℝ, a damage field �m ∶ Ωm × [0, T ] ←→ ℝ, a bonding field & ∶ Γ3 × [0, T ] ←→ ℝ , an internal
state variable field km ∶ Ωm × [0, T ] ←→ ℝl and a electric displacement field Dm ∶ Ωm × [0, T ] ←→ ℝd such that

�m = m"(u̇m) +m"(um)+(m)∗∇'m+
t

∫
0

m
(

�m(s) − m"(u̇m(s)) − (m)∗∇'m(s), "(um(s)), �m(s),km(s)
)

ds
in Ωm × (0, T ), (11)

k̇m = �m
(

�m − m"(u̇m) − (m)∗∇'m, "(um),km
)

in Ωm × (0, T ), (12)
Dm = m"(um) − �m∇'m in Ωm × (0, T ), (13)

�̇m − �mΔ�m + ) Km(�m) ∋ Ψm
(

�m − m"(u̇m) − (m)∗∇'m, "(um), �m
)

in Ωm × (0, T ), (14)
Div�m + fm0 = �

müm in Ωm × (0, T ), (15)
divDm − qm0 = 0 in Ωm × (0, T ), (16)

um = 0 on Γm1 × (0, T ), (17)
�m�m = fm2 on Γm2 × (0, T ), (18)

{

�1� = �
2
� ≡ �� ,

�� = −p�(u̇1� + u̇
2
�) + 
�&

2R�(u1� + u
2
�)

on Γ3 × (0, T ), (19)
{

�1� = −�
2
� ≡ �� ,

�� = −p�(u̇1� − u̇
2
�) + q�(&)R�(u1� − u

2
�)

on Γ3 × (0, T ), (20)
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&̇ = Had(&, R�(u1� + u
2
�),R�(u1� − u

2
�)) on Γ3 × (0, T ), (21)

)�m

)�m
= 0 on Γm × (0, T ), (22)

'm = 0 on Γma × (0, T ), (23)
Dm.�m = qm2 on Γmb × (0, T ), (24)

um(0) = um0 , u̇
m(0) = vm0 , �

m(0) = �m0 , k
m(0) = km0 in Ωm, (25)

&(0) = &0 on Γ3. (26)

First, (11), (12) and (13) represent the electro-elastic-viscoplastic constitutive law with internal state variable and damage.
Inclusion (14) describes the evolution of the damage field, whereKm denotes the set of admissible damage functions defined by

Km = {� ∈ H1(Ωm); 0 ≤ � ≤ 1, a.e. in Ωm}, (27)

�m is a positive coefficient, ) Km represents the subdifferential of the indicator function of the set Km and Ψm is a given con-
stitutive function which describes the sources of the damage in the system. Equations (15) and (16) are the equations of motion
written for the stress field and of balance written for the electric displacement field, respectively, �m denotes the mass density.
Next, (17) and (18) are the displacement and traction boundary condition, respectively. Condition (19) represents the normal
damped response with adhesion, in this condition the interpenetrability between two bodies is allowed, that is εu1� + u

2
�ε can

be positive on Γ3. The contribution of the adhesive to the normal traction is represented by the term 
�&2R�(u1� + u
2
�), the adhe-

sive traction is tensile and is proportional, with proportionality coefficient 
� , to the square of the intensity of adhesion and to
the normal displacement, but as long as it does not exceed the bond length L. The maximal tensile traction is 
�&2L. R� is the
truncation operator defined by

R�(s) =

⎧

⎪

⎨

⎪

⎩

L if s < −L,
−s if − L ≤ s ≤ 0,
0 if s > 0.

Here L > 0 is the characteristic length of the bond, beyond which it does not offer any additional traction. The introduction of
the operator R� , together with the operator R� defined below, is motivated by mathematical arguments but it is not restrictive
for physical point of view, since no restriction on the size of the parameter L is made in what follows. Condition (20) represents
the adhesive contact condition on the tangential plane, where u1� − u

2
� stands for the jump of the displacements in tangential

direction. R� is the truncation operator given by

R�(v) =

{

v if |v| ≤ L,
L v

|v|
if |v| > L.

This condition shows that the shear on the contact surface depends on the bonding field and on the tangential displacement,
but as long as it does not exceed the bond length L. The frictional tangential traction is assumed to be much smaller than the
adhesive one and, therefore, omitted.
Next, the equation (21) represents the ordinary differential equation which describes the evolution of the bonding field, where

Had is the adhesion evolution rate function and it was already used in4,3, see also21 for more details. Notice that in this model
once debonding occurs bonding cannot be reestablished since, as it follows from (21), &̇ ≤ 0. Boundary condition (22) describes
a homogeneous Neumann boundary condition where )�m

)�m
is the normal derivative of �m. (23) and (24) represent the electric

boundary conditions. (25) represents the initial displacement field, the initial velocity , the initial internal state variable and the
initial damage. Finally, (26) represents the initial condition in which &0 is the given initial bonding field.

3 VARIATIONAL FORMULATIONS AND MAIN RESULT

In this section we list the assumptions on the data, derive a variational formulation for the contact problem (11)–(26) and state
our main existence and uniqueness result, Theorem 1. To this end we need to introduce notation and preliminary material.
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We denote by Sd the space of second-order symmetric tensors onℝd , we recall that the inner products and the corresponding
norms on Sd and ℝd are given by

u.v = ui.vi, |v| = (v.v)
1
2 , ∀u, v ∈ ℝd ,

�.� = �ij .�ij , |�| = (� .�)
1
2 , ∀�, � ∈ Sd .

Here and below the indices i and j run between 1 and d and, unless stated otherwise, the summation convention over repeated
indices is used. An index that follows a comma represents the partial derivative with respect to the corresponding component
of the spatial variable x, for example ui,j = )ui∕)xj .
Everywhere below we use the classical notation for Lp and Sobolev spaces associated to Ωm and Γm. Moreover, we use the

notation

Hm = L2(Ωm)d = {vm = (vmi )1≤i≤d ; v
m
i ∈ L

2(Ωm)},
m = {�m = (�mij )1≤i,j≤d ; �mij = �

m
ji ∈ L

2(Ωm)},

Hm
1 = {v

m = (vmi )1≤i≤d ; vmi ∈ H
1(Ωm)},

m
1 = {�

m = (�mij )1≤i,j≤d ; �
m
ij ∈ 

m; div�m ∈ Hm},

Y m =
{

�m = (�mi )1≤i≤l; �
m
i ∈ L

2(Ωm)
}

.

The spacesHm, m,Hm
1 , 

m
1 and Y m are real Hilbert spaces endowed with the canonical inner products given by

(um, vm)Hm = ∫
Ωm

umi .v
m
i dx,

(�m, �m)m = ∫
Ωm

�mij .�
m
ijdx,

(um, vm)Hm
1
= ∫
Ωm

umi .v
m
i dx + ∫

Ωm

"ij(um)."ij(vm)dx,

(�m, �m)m
1
= ∫
Ωm

�mij .�
m
ijdx + ∫

Ωm

Div�m.Div �mdx,

(�m, �m)Y m = ∫
Ωm

�mi .�
m
i dx,

and the associated norms ‖.‖
Hm
, ‖.‖

Hm1
, ‖.‖

m
, ‖.‖

m1
and ‖.‖

Y m
, respectively. Let HΓm = H

1
2 (Γm)d and 
m ∶ H1(Ωm)d → HΓm

be the trace map. For every element vm ∈ H1(Ωm)d , we also use the notation vm to denote the trace 
mvm of vm on Γm and we
denote by vm� and vm� the normal and the tangential components of vm on Γm given by

vm� = v
m.�m, vm� = v

m − vm� �
m.

We note that vm� is a scalar, whereas vm� is a tangent vector to Γm. In particular, in what follows, vm� and vm� will represent the
normal and tangential displacement. Similarly, for a regular (say C1) tensor field �m ∶ Ωm → Sd we define its normal and
tangential components

�m� = (�
m�m).�m, �m� = �

m�m − �m� �
m.

and we recall that the following Green’s formula holds:

(�m, "(vm))m + (Div�m, vm)Hm = ∫
Γm

�m�m.vmda ∀vm ∈ Hm
1 .

Let us now consider the bonding field the set

 =
{

� ∈ L∞
(

0, T ;L2(Γ3)
)

; 0 ≤ �(t) ≤ 1 ∀t ∈ [0, T ], a.e. on Γ3
}

,

and for the displacement field we need the closed subspace ofHm
1 defined by

V m =
{

vm ∈ Hm
1 ; v

m = 0 on Γm1
}

.
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Since measΓm1 > 0, the following Korn’s inequality holds :

‖"(vm)‖m ≥ cK‖vm‖Hm
1

∀vm ∈ V m, (28)

where the constant cK denotes a positive constant which may depends only on Ωm, Γm1 (see17). Over the space V m we consider
the inner product given by

(um, vm)V m = ("(um), "(vm))m , ∀um, vm ∈ V m, (29)

and let ‖.‖V m be the associated norm. It follows from Korn’s inequality (28) that the norms ‖.‖Hm
1
and ‖.‖V m are equivalent on

V m. Then (V m, ‖.‖V m) is a real Hilbert space. Moreover, by the Sobolev trace theorem and (29), there exists a constant c0 > 0,
depending only on Ωm, Γm1 and Γ3 such that

‖vm‖L2(Γ3)d ≤ c0‖v
m
‖V m ∀vm ∈ V m. (30)

We also introduce the spaces

Im0 = L
2(Ωm), Im1 = H

1(Ωm), W m =
{

 m ∈ Im1 ;  
m = 0 on Γma

}

,
m =

{

Dm = (Dm
i ); D

m
i ∈ L

2(Ωm), divDm ∈ L2(Ωm)
}

.

Since measΓma > 0, the following Friedrichs-Poincaré inequality holds:

‖∇ m
‖L2(Ωm)d ≥ cF‖ m

‖H1(Ωm) ∀ m ∈ W m, (31)

where cF > 0 is a constant which depends only on Ωm, Γma .
Over the spaceW m, we consider the inner product given by

('m,  m)W m = ∫Ωm ∇'
m.∇ mdx

and let ‖.‖W m be the associated norm. It follows from (31) that ‖.‖H1(Ωm) and ‖.‖W m are equivalent norms onW m and therefore
(W m, ‖.‖W m) is areal Hilbert space. On the spacem, we use the inner product

(Dm,	m)m = ∫
Ωm

Dm.	mdx + ∫
Ωm

divDm. div	mdx,

where divDm = (Dm
i,i), and the associated norm ‖.‖m .

In order to simplify the notations, we define the product spaces

V = V 1 × V 2, H = H1 ×H2, H1 = H1
1 ×H

2
1 ,  = 1 ×2,

1 = 1
1 ×

2
1 , Y = Y

1 × Y 2, I0 = I10 × I
2
0 , I1 = I

1
1 × I

2
1 ,

W = W 1 ×W 2,  =1 ×2.

The spaces V , Y , I1, W and  are real Hilbert spaces endowed with the canonical inner products denoted by (., .)V , (., .)Y ,
(., .)I1 , (., .)W , and (., .) . The associate norms will be denoted by ‖.‖V , ‖.‖Y , ‖.‖I1 , ‖.‖W and ‖.‖ , respectively.

We will use a modified inner product onH, given by

((u, v))H =
2
∑

m=1
(�mum, vm)Hm , ∀u, v ∈ H,

that is, it is weighted with �m, and we let |||.|||H be the associated norm, i.e.,

|||v|||H = ((v, v))
1
2
H , ∀v ∈ H.

It follows from assumption (43) that |||.|||H and ‖.‖H are equivalent norms on H, and the inclusion mapping of (V , ‖.‖V ) into
(H, |||.|||H ) is continuous and dense. We denote by V ′ the dual of V . IdentifyingH with its own dual, we can write the Gelfand
triple V ⊂ H ⊂ V ′. Using the notation (., .)V ′×V to represent the duality pairing between V ′ and V we have

(u, v)V ′×V = ((u, v))H , ∀u ∈ H,∀v ∈ V .
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In the study of the mechanical problem (11)–(26), we assume that.

The viscosity operator m ∶ Ωm × Sd → Sd satisfies:
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

(a) There exists Lm > 0 such that
|m(x, �1) − m(x, �2)| ≤ Lm |�1 − �2|, ∀ �1, �2 ∈ Sd , a.e. x ∈ Ωm.

(b) There exists mm > 0 such that
(m(x, �1) − m(x, �2)) ⋅ (�1 − �2) ≥ nm |�1 − �2|2, ∀ �1, �2 ∈ Sd , a.e. x ∈ Ωm.

(c) The mapping x → m(x, �) is Lebesgue measurable on Ωm, for any � ∈ Sd .
(d) The mapping � → m(x, �) is continuous on Sd , a.e. x ∈ Ωm.

(32)

The elasticity operator m ∶ Ωm × Sd → Sd satisfies:
⎧

⎪

⎪

⎨

⎪

⎪

⎩

(a) There exists Lm > 0 such that
|m(x, �1) −m(x, �2)| ≤ Lm |�1 − �2| ∀ �1, �2 ∈ Sd , a.e. x ∈ Ωm.

(b) The mapping x → m(x, �) is Lebesgue measurable on Ωm, for any � ∈ Sd .
(c) The mapping x → m(x, 0) belongs to m.

(33)

The viscoplasticity operator m ∶ Ωm × Sd × Sd ×ℝ → Sd satisfies:
⎧

⎪

⎪

⎨

⎪

⎪

⎩

(a) There exists Lm > 0 such that
|m(x, �1, �1, d1) −m(x, �2, �2, d2)| ≤ Lm

(

|�1 − �2| + |�1 − �2| + |d1 − d2|
)

,
∀ �1, �2, �1, �2 ∈ Sd , ∀d1, d2 ∈ ℝ, a.e. x ∈ Ωm.

(b) The mapping x → m(x, �, �, d) is Lebesgue measurable in Ωm, for any �, � ∈ Sd , d ∈ ℝ.
(c) The mapping x → m(x, 0, 0, 0) belongs to m.

(34)

The piezoelectric tensor m ∶ Ωm × Sd → ℝd satisfies:
{

(a) m(x, �) = (emijk(x)�jk), ∀� = (�ij) ∈ Sd a.e. x ∈ Ωm.
(b) emijk = e

m
ikj ∈ L

∞(Ωm), 1 ≤ i, j, k ≤ d. (35)

The function �m ∶ Ωm × Sd × Sd ×ℝl → ℝl satisfies:
⎧

⎪

⎪

⎨

⎪

⎪

⎩

(a) There exists L�m > 0 such that
|�m(x, �1, �1, k1) − �m(x, �2, �2, k2)| ≤ L�m

(

|�1 − �2| + |�1 − �2| + |d1 − d2|
)

,
∀ �1, �2, �1, �2 ∈ Sd , and k1, k2 ∈ ℝl , a.e. x ∈ Ωm.

(b) The mapping x → �m(x, �, �, k) is Lebesgue measurable in Ωm, for any �, � ∈ Sd , k ∈ ℝl .
(c) The mapping x → �m(x, 0, 0, 0) belongs to L2(Ωm)l .

(36)

The adhesion rate functionHad ∶ Γ3 ×ℝ ×ℝ ×ℝd−1 → ℝ satisfies:

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

(a) There exists Lad > 0 such that ∶
|Had(x, &1, r1, d1) −Had(x, &2, r2, d2)| ≤ L�

(

|&1 − &2| + |r1 − r2| + | d1 − d2|
)

,
∀ &1, &2, r1, r2 ∈ ℝ, d1, d2 ∈ ℝd−1, a.e.x ∈ Γ3.

(b) The mapping x → Had(x, &, r, d) is measurable onΓ3, for any &, r ∈ ℝ, d ∈ ℝd−1,
(c) The mapping (&, r, d) → Had(x, &, r, d) is continuous on ℝ ×ℝ ×ℝd−1 , a.e. x ∈ Γ3,
(d)Had(x, 0, r, d) = 0,∀ r ∈ ℝ, d ∈ ℝd−1 , a.e. x ∈ Γ3,
(e)Had(x, &, r, d) ≥ 0, ∀ & ≤ 0, r ∈ ℝ, d ∈ ℝd−1 , a.e. x ∈ Γ3, and

Had(x, &, r, d) ≤ 0, ∀ & ≥ 1, r ∈ ℝ, d ∈ ℝd−1 , a.e. x ∈ Γ3.

(37)

The damage source function Ψm ∶ Ωm × Sd × Sd ×ℝ → ℝ satisfies:
⎧

⎪

⎪

⎨

⎪

⎪

⎩

(a) There exists LΨm > 0 such that
|Ψm(x, �1, �1, �1) − Ψm(x, �2, �2, �2)| ≤ LΨm

(

|�1 − �2| + |�1 − �2| + |�1 − �2|
)

,
∀ �1, �2, �1, �2 ∈ Sd and �1, �2 ∈ ℝ a.e. x ∈ Ωm.

(b) The mapping x → Ψm(x, �, �, �) is Lebesgue measurable on Ωm, for any �, � ∈ Sd and � ∈ ℝ.
(c) The mapping x → Ψm(x, 0, 0, 0) belongs to L2(Ωm).

(38)

The electric permittivity operator �m = (�mij ) ∶ Ω
m ×ℝd → ℝd verifies:

⎧

⎪

⎨

⎪

⎩

(a) �m(x,d) = (�mij (x)dj) ∀d = (di) ∈ ℝd , a.e. x ∈ Ωm.
(b) �mij = �

m
ji ∈ L

∞(Ωm), 1 ≤ i, j ≤ d.
(c) There exists m�m > 0 such that �md.d ≥ mm |d|2, ∀d ∈ ℝd , a.e. x ∈ Ωm.

(39)
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The normal contact functions p� ∶ Γ3 ×ℝ → ℝ satisfies:
⎧

⎪

⎪

⎨

⎪

⎪

⎩

(a) There exists a constant C�
1 , C

�
2 > 0 such that

|p�(x, r)| ≤ C�
1 |r| + C

�
2 , ∀ r ∈ ℝ a.e. x ∈ Γ3

(b) (p�(x, r1) − p�(x, r2))(r1 − r2) ≥ 0, ∀ r1, r2 ∈ ℝ a.e. x ∈ Γ3
(c) The mapping x → p�(x, r) is measurable on Γ3 for any r ∈ ℝ
(d) The mapping x → p�(x, r) is continuous on ℝ a.e. x ∈ Γ3.

(40)

The tangential contact functions p� ∶ Γ3 ×ℝd → ℝd satisfies:
⎧

⎪

⎪

⎨

⎪

⎪

⎩

(a) There exists a constant C�
1 , C

�
2 such that

|p�(x,d)| ≤ C�
1 |d| + C

�
2 , ∀d ∈ ℝd a.e. x ∈ Γ3

(b) (p�(x,d1) − p�(x,d2))(d1 − d2) ≥ 0, ∀d1,d2 ∈ ℝd a.e. x ∈ Γ3.
(c) The mapping x → p�(x,d) is measurable on Γ3 for any d ∈ ℝd .
(d) The mapping x → p�(x,d) is continuous on ℝd a.e. x ∈ Γ3.

(41)

The The tangential contact functions q� ∶ Γ3 ×ℝ → ℝ+ satisfies:
⎧

⎪

⎪

⎨

⎪

⎪

⎩

(a) ∃L� > 0 such that |q�(x, d1) − q�(x, d2)| ≤ L� |d1 − d2|, ∀ d1, d2 ∈ ℝ, a.e. x ∈ Γ3.
(b) ∃M� > 0 such that |q�(x, d)| ≤M� ∀ d ∈ ℝ, a.e. x ∈ Γ3.
(c) The mapping x → q�(x, d) is measurable onΓ3, ∀d ∈ ℝ.
(d) The mapping x → q�(x, 0) ∈ L2(Γ3).

(42)

We suppose that the mass density satisfies

�m ∈ L∞(Ωm) and ∃�0 > 0 such that �m(x) ≥ �0 a.e. x ∈ Ωm, m = 1, 2. (43)

The following regularity is assumed on the density of volume forces, traction, volume electric charges and surface electric
charges:

fm0 ∈ L
2(0, T ;L2(Ωm)d), fm2 ∈ L

2(0, T ;L2(Γm2 )
d),

qm0 ∈ C(0, T ;L
2(Ωm)), qm2 ∈ C(0, T ;L

2(Γmb )).
(44)

The adhesion coefficient 
� satisfy the condition


� ∈ L∞(Γ3), 
� ≥ 0, a.e. on Γ3. (45)

The microcrack diffusion coefficient verifies
�m > 0, (46)

and, finally, the initial data satisfy
um0 ∈ V

m, vm0 ∈ H
m, km0 ∈ Y

m, �m0 ∈ K
m, m = 1, 2,

&0 ∈ L2(Γ3), 0 ≤ &0 ≤ 1, a.e. on Γ3.
(47)

We define four mappings f ∶ [0, T ]→ V ′, q ∶ [0, T ]→ W , a ∶ I1×I1 → ℝ, j
dm
∶ V ×V → ℝ and j

ad
∶ L∞(Γ3)×V ×V → ℝ

respectively, by

(f (t), v)V ′×V =
2
∑

m=1
∫
Ωm

fm0 (t) ⋅ v
m dx +

2
∑

m=1
∫
Γm2

fm2 (t) ⋅ v
m da ∀v ∈ V , (48)

(q(t), �)W =
2
∑

m=1
∫
Ωm

qm0 (t)�
m dx −

2
∑

m=1
∫
Γmb

qm2 (t)�
m da ∀� ∈ W , (49)

a(�, �) =
2
∑

m=1
�m ∫

Ωm

∇�m.∇�mdx, (50)
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j
dm
(u, v) = ∫

Γ3

p�(u1� + u
2
�)v�da + ∫

Γ3

p�(u1� − u
2
�).v�da, (51)

j
ad
(&, u, v) = ∫

Γ3

(

− 
�&2R�(u1� + u
2
�)v� + q�(&)R�(u1� − u

2
�).v�

)

da. (52)

We note that the definitions of f and q are based on the Riesz representation theorem, moreover, it follows from assumptions
(40), (41) and (42), that the integrals in (51) and (52) are well-defined and we note that conditions (44) imply

f ∈ L2(0, T ;V ′), q ∈ C(0, T ;W ). (53)

By a standard procedure based on Green’s formula, we derive the following variational formulation of Problem P.

Problem PV. Find a displacement field u = (u1, u2) ∶ [0, T ] → V , a stress field � = (�1,�2) ∶ [0, T ] → , an electric
potential field ' = ('1, '2) ∶ [0, T ] → W , a damage field � = (�1, �2) ∶ [0, T ] → I1, a bonding field & ∶ [0, T ] → L∞(Γ3),
and an internal state variable field k = (k1,k2) ∶ [0, T ] ←→ Y such that

�m = m"(u̇m) +m"(um)+(m)∗∇'m+
t

∫
0

m
(

�m(s) − m"(u̇m(s)) − (m)∗∇'m(s), "(um(s)), �m(s),km(s)
)

ds
in Ωm × (0, T ) (54)

k̇m = �m
(

�m − m"(u̇m) − (m)∗∇'m(s), "(um),km
)

in Ωm × (0, T ), (55)

(ü, v)V ′×V +
2
∑

m=1
(�m, "(vm))m + jdm(u̇(t), v) + jad(&(t), u(t), v) = (f (t), v)V ′×V ,

∀v ∈ V , a.e. t ∈ (0, T ),

(56)

�(t) ∈ K,
2
∑

m=1
(�̇m(t), �m − �m(t))L2(Ωm) + a(�(t), � − �(t)) ≥

2
∑

m=1

(

Ψm
(

�m − m"(u̇m) − (m)∗∇'m, "(um), �m
)

, �m − �m(t)
)

L2(Ωm)
, ∀� ∈ K, a.e. t ∈ (0, T ), (57)

2
∑

m=1
(�m∇'m(t),∇Ψm)Hm−

2
∑

m=1
(m"(um(t)),∇Ψm)Hm = (q(t), �)W , ∀Ψ ∈ W , a.e. t ∈ (0, T ), (58)

&̇ = Had(&, R�(u1� + u
2
�),R�(u1� − u

2
�)) a.e. t ∈ (0, T ), (59)

u(0) = u0, u̇(0) = v0, k(0) = k0, �(0) = �0, �(0) = �0, (60)

where K = K1 ×K2.
We notice that the variational Problem PV is formulated in terms of a displacement field, a stress field, an electrical potential
field and a bonding field. The existence of the unique solution of Problem PV is stated and proved in the next section.

Remark 1. We note that, in Problem P and in Problem PV, we do not need to impose explicitly the restriction 0 ≤ & ≤ 1. Indeed,
equation (59) guarantees that &(x, t) ≤ &0(x) and, therefore, assumption (47) shows that &(x, t) ≤ 1 for t ≥ 0, a.e. x ∈ Γ3. On
the other hand, if &(x, t0) = 0 at time t0, then it follows from (59) that &̇(x, t) = 0 for all t ≥ t0 and therefore, &(x, t) = 0 for all
t ≥ t0, a.e. x ∈ Γ3. We conclude that 0 ≤ &(x, t) ≤ 1 for all t ∈ [0, T ], a.e. x ∈ Γ3.

Now, we propose our existence and uniqueness result
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Theorem 1 (Existence and uniqueness). Assume that (32)–(47) hold. Then there exists a unique solution {u,�, K, ', �, &} to
Problem PV, Moreover, the solution satisfies

u ∈ H1(0, T ;V ) ∩ C1(0, T ;H), (61)
ü ∈ L2(0, T ;V ′), (62)
� ∈ L2(0, T ;), (63)

(Div�1,Div�2) ∈ L2(0, T ;V ′), (64)
' ∈ C(0, T ;W ), (65)

� ∈ H1(0, T ; I0) ∩ L2(0, T ; I1), (66)
& ∈ W 1,∞(0, T ;L2(Γ3)) ∩, (67)

k ∈ W 1,2(0, T ; Y ). (68)

The functions {u,�, ', �, &,k,D} which satisfy (54)–(60) and (13) are called weak solution of the piezoelectric contact
Problem P. We conclude by Theorem 1 that, under the assumptions (32)– (47), the mechanical problem (11)–(26) has a unique
weak solution {u,�, ', �, &,k,D}. To precise the regularity of the weak solution, we note that the constitutive relation (13), the
assumptions (35) and (39), and the regularities (61)–(65) show that D ∈ C(0, T ;H); moreover, using (58) and notation (49),
we obtain

divDm(t) = qm0 (t) ∀t ∈ [0, T ], m = 1, 2.

It follows now from the regularities (44) that divDm ∈ C(0, T ;Hm), m = 1, 2, which shows that

D ∈ C(0, T ;). (69)

We conclude that the weak solution {u,�, ', �, &,k,D} of the electro-elastic-viscoplastic contact problem has the regularity
(61)–(69).

4 PROOF OF THEOREM

The proof of Theorem 1 which will be carried out in several steps and is based on arguments of nonlinear equations with
monotone operators, a classical existence and uniqueness result on parabolic inequalities and fixed-point arguments, similar to
those used in1,4. To this end, we assume in what follows that (32)–(47) hold, and we consider thatC is a generic positive constant
which depends on Ωm, Γm1 , Γ

m
2 , Γ3, Γ

m
a , Γ

m
b , p� , p� , q� , 

m, m, m, ⨎m, m, �m, Had , 
� , �m and T with m = 1, 2. But does not
depend on t nor of the rest of input data, and whose value may change from place to place.

Let a � ∈ L2(0, T ;V ′) be given. In the first step we consider the following variational problem.

Problem PVu
� . Find u� = (u1� , u

2
�) ∶ [0, T ]→ V such that

(ü�(t), v)V ′×V +
2
∑

m=1
(m"(u̇m� (t)), "(v

m))m + jdm(u̇�(t), v)

+(�(t), v)V ′×V = (f (t), v)V ′×V ∀v ∈ V , a.e. t ∈ (0, T ),

(70)

um� (0) = u
m
0 , u̇

m
� (0) = v

m
0 in Ωm. (71)

To solve Problem PVu
� , we apply an abstract existence and uniqueness result which we recall now, for the convenience of the

reader. In the sequel, V and ℍ denote real Hilbert spaces such that V is dense in ℍ and the inclusion map is continuous, ℍ is
identified with its dual and with a subspace of the dual V ′ of V , i.e., V ⊂ ℍ ⊂ V ′, and we say that the inclusions above define
a Gelfand triple. The notations ‖.‖V , ‖.‖V ′ and (., .)V ′×V represent the norms on V and on V ′ and the duality pairing between V ′
them, respectively. The following abstract result may be found in21 p.48.

Theorem 2. Let V , ℍ be as above, and let A ∶ V → V ′ be a hemicontinuous and monotone operator which satisfies

∃w > 0, � ∈ ℝ, such that, (Av, v)V ′×V ≥ w‖v‖2V + � ∀v ∈ V , (72)
∃C > 0, such that ‖Av‖V ′ ≤ C(‖v‖V + 1), ∀v ∈ V . (73)



MAIZA ET AL 11

Then, given v0 ∈ ℍ and f ∈ L2(0, T ;V ′), there exists a unique function v which satisfies

v ∈ L2(0, T ;V ) ∩ C(0, T ;ℍ), v̇ ∈ L2(0, T ;V ′),
v̇(t) + Av(t) = f (t) a.e. t ∈ (0, T ),

v(0) = v0.

The first step in the proof of Theorem 1 concerns the variational Problem PVu
� .We have the following result.

Lemma 1. There exists a unique solution to Problem PVu
� and it has its regularity expressed in (61)-(62).

Proof. Using Riesz representation theorem we define the operator A ∶ V → V ′ by

(Au, v)V ′×V =
2
∑

m=1
(m"(um), "(vm))m + jdm(u, v) ∀u, v ∈ V . (74)

Let u1, u2 ∈ V , using (51) and (74) we find

(Au1 − Au2, u1 − u2)V ′×V =
2
∑

m=1
(m"(um1 ) − 

m"(um2 ), "(u
m
1 − u

m
2 ))m

+∫
Γ3

(p�(u11� + u
2
1�) − p�(u

1
2� + u

2
2�))(u1� − u2�)da

+∫
Γ3

(p�(u11� − u
2
1�) − p�(u

1
2� − u

2
2�)).(u1� − u2�)da

and keeping in mind (32), (40) and (41), we obtain

(Au1 − Au2, u1 − u2)V ′×V ≥ min(n1 , n2)‖u1 − u2‖2V , ∀u1, u2 ∈ V . (75)

On the other hand, by (51) and (74) we obtain

(Au1 − Au2, v)V ′×V =
2
∑

m=1
(m"(um1 ) − 

m"(um2 ), "(v
m))m

+∫
Γ3

(p�(u11� + u
2
1�) − p�(u

1
2� + u

2
2�))v�da

+∫
Γ3

(p�(u11� − u
2
1�) − p�(u

1
2� − u

2
2�)).v�da, ∀u1, u2, v ∈ V ,

and by (30) and (32), we deduce that

‖Au1 − Au2‖V ′ ≤ max(L1 , L2)|u1 − u2|V + C0|p�(u11� + u
2
1�) − p�(u

1
2� + u

2
2�)|L2(Γ3)

+C1|p�(u11� − u
2
1�) − p�(u

1
2� − u

2
2�)|L2(Γ3)d ∀u1, u2 ∈ V ,

and keeping in mind the Krasnoselski Theorem (see14 p.60), we deduce that A ∶ V → V ′ is a continuous operator. From
(75) we deduce that A ∶ V → V ′ is a monotone operator. Now, by (32), (29) and (74), we find where the positive constant
n = min{n1 , n2}. Choosing u2 = 0V in (75) we obtain

(Au1, u1)V ′×V ≥ n‖u1‖2V − ‖A0V ‖2V ′‖u1‖V

≥ 1
2
n‖u1‖2V −

1
2n

‖A0V ‖2V ′ ∀u1 ∈ V ,

which implies that A satisfies condition (72) with ! = n
2
and � = − 1

2n
‖A0V ‖2V ′ .Moreover, by (32) and (74) we find

‖Au1‖V ′ ≤ C1‖u1‖V + C2 ∀u1 ∈ V

where C1 = max{C11 , C
1
2} and C

2 = max{C21 , C
2
2}. This inequality and (29) imply that A satisfies condition (73). Finally,

we recall that by (44) and (48) we have f − � ∈ L2(0, T ;V ′) and v0 ∈ H.
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It follows now from Theorem 2 that there exists a unique function v� which satisfies

v� ∈ L2(0, T ;V ) ∩ C(0, T ;H), v̇� ∈ L2(0, T ;V ′), (76)
v̇�(t) + Av�(t) + �(t) = f (t), a.e. t ∈ [0, T ] (77)

v�(0) = v0. (78)

Let u� ∶ [0, T ]→ V be the function defined by

u�(t) =

t

∫
0

v�(s)ds + u0 ∀t ∈ [0, T ]. (79)

It follows from (74) and (76)–(79) that u� is a unique solution of the problem PVu
� , and it satisfies the regularity expressed in

(61)-(62).

In the second step, we use the displacement field u� obtained in Lemma 1 and we consider the following variational problem.

Problem PV'
� . Find '� ∶ [0, T ]→ W such that

2
∑

m=1
(�m∇'m� (t),∇Ψ

m)Hm −
2
∑

m=1
(m"(um� (t)),∇Ψ

m)Hm = (q(t),Ψ)W , ∀Ψ ∈ W , a.e. t ∈ (0, T ). (80)

We have the following result.

Lemma 2. Problem PV'
� has a unique solution '� which satisfies the regularity (65).

Proof. We define a bilinear form: b(., .) ∶ W ×W → ℝ such that

b(', �) =
2
∑

m=1
(m∇'m,∇�m)Hm ∀', � ∈ W . (81)

We use (31), (39) and (81) to show that the bilinear form b(., .) is continuous, symmetric and coercive on W , moreover using
(49) and the Riesz representation Theorem we may define an element q� ∶ [0, T ]→ W such that

(q�(t), �)W = (q(t), �)W +
2
∑

m=1
(m"(um� (t)),∇�

m)Hm ∀� ∈ W .

We apply the Lax-Milgram Theorem to deduce that there exists a unique element '�(t) ∈ W such that

b('�(t), �) = (q�(t), �)W ∀� ∈ W . (82)

We conclude that '�(t) is a solution of Problem PV'
� . Let t1, t2 ∈ [0, T ], it follows from (80) that

‖'�(t1) − '�(t2)‖W ≤ C
(

‖u�(t1) − u�(t2)‖V + ‖q(t1) − q(t2)‖W
)

,

and the previous inequality, the regularity of u� and q imply that '� ∈ C(0, T ;W ).

In the third step, we use the displacement field u� obtained in Lemma1 and we consider the following initial-value problem.

Problem PV&
� . Find &� ∶ [0, T ]→ L2(Γ3) such that

&̇�(t) = Had
(

&�(t), R�(u1��(t) + u
2
��(t)),R�(u1�� (t) − u

2
�� (t))

)

, (83)
&�(0) = &0. (84)

We have the following result.

Lemma 3. There exists a unique solution &� ∈ W 1,∞(0, T ;L2(Γ3)) ∩ to Problem PV&
� .

Proof. Let the mappingH� ∶ [0, T ] × L2(Γ3)→ L2(Γ3),

H�(t, &) = Had
(

&, R�(u1��(t) + u
2
��(t)),R�(u1�� (t) − u

2
�� (t))

)

,

for all t ∈ [0, T ] and & ∈ L2(Γ3). It follows from the properties of the truncation operator R� and R� that H� is Lipschitz
continuous with respect to the second variable, uniformly in time. Moreover, for all & ∈ L2(Γ3), the mapping t → H�(t, &)
belongs to L∞(0, T ;L2(Γ3)). Thus using the Cauchy–Lipschitz theorem given in21 p. 48, we deduce that there exists a unique
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function &�� ∈ W 1,∞(0, T ;L2(Γ3)) solution of the equation (83)-(84). Also, the arguments used in Remark 1 show that 0 ≤
&��(t) ≤ 1 for all t ∈ [0, T ], a.e. on Γ3. This completes the proof.

.
In the fourth step, we let � ∈ L2(0.T ; I0) be given and consider the following variational problem.

Problem PV�
�. Find �� = (�1�, �

2
�) ∶ [0, T ]→ I0 such that

��(t) ∈ K,
2
∑

m=1
(�̇m� (t), �

m − �m� (t))L2(Ωm) + a(��(t), � − ��(t)) ≥

2
∑

m=1

(

�m(t), �m − �m� (t)
)

L2(Ωm), ∀� ∈ K, a.e. t ∈ (0, T ).

(85)

The following abstract result for parabolic variational inequalities (see, e.g.,21 p.47)

Theorem 3. Let E ⊂ F = F ′ ⊂ E′ be a Gelfand triple. Let G be a nonempty, closed, and convex set of E. Assume that
a(., .) ∶ E × E → ℝ is a continuous and symmetric bilinear form such that for some constants � > 0 and c0,

a(�, �) + c0‖�‖2F ≥ �‖�‖
2
E ∀� ∈ E.

Then, for every �0 ∈ G and f ∈ L2(0, T ; F ), there exists a unique function � ∈ H1(0, T ; F ) ∩ L2(0, T ;E) such that �(0) = �0,
�(t) ∈ G ∀t ∈ [0, T ], and

(�̇(t), � − �(t))E′×E + a(�(t), � − �(t)) ≥ (f (t), � − �(t))F ∀� ∈ G a.e. t ∈ (0, T ).

We prove next the unique solvability of Problem PV�
�.

Lemma 4. There exists a unique solution �� of Problem PV�
� and it satisfies

�� ∈ H1(0, T ; I0) ∩ L2(0, T ; I1).

Proof. The inclusion mapping of (I1, ‖.‖I1) into (I0, ‖.‖I0) is continuous and its range is dense. We denote by I ′1 the dual space
of I1 and, identifying the dual of I0 with itself, we can write the Gelfand triple

I1 ⊂ I0 = I ′0 ⊂ I
′
1.

We use the notation (., .)I ′1×I1 to represent the duality pairing between I
′
1 and I1.We have

(�, �)I ′1×I1 = (�, �)I0 ∀� ∈ I0, � ∈ I1,

and we note that K is a closed convex set in I1. Then, using (46), (50) and the fact that �0 ∈ K in (47), it is easy to see that
Lemma 4 is a straight consequence of Theorem 3.

In the fifth step, we let � ∈ L2(0, T ; Y ) be given, and define k� ∈ W 1,2(0, T ; Y ) by

k�(t) = k0 +

t

∫
0

�(s)ds. (86)

We use the displacement field u� obtained in Lemma 1, '� obtained in Lemma 2, �� obtained in Lemma 4 and k� defined in
(86) to construct the following Cauchy problem.

Problem PV�
��� . Find ���� = (�1��� ,�

2
���) ∶ [0, T ]→  such that

�m���(t) = 
m"(um� (t)) +

t

∫
0

m(�m���(s), "(u
m
� (s)), �

m
� (s),k

m
� (s)) ds, (87)

for all m = 1, 2, and t ∈ [0, T ].
In the study of Problem PV�

��� we have the following result.
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Lemma 5. There exists a unique solution of Problem PV�
��� and it satisfies ���� ∈ L2(0, T ;). Moreover, if �i, ui and �i

represent the solutions of problems PV�
�i�i�i

, PVu
�i
and PV�

�i
respectively, and ki is defined in (86) for (�i, �i, �i) ∈ L2(0, T ;V ′×

I0 × Y ), i = 1, 2, then there exists c > 0 such that

‖�1(t) − �2(t)‖2 ≤ c
(

‖u1(t) − u2(t)‖2V +

t

∫
0

‖u1(s) − u2(s)‖2V ds

+

t

∫
0

‖�1(s) − �2(s)‖2I0 ds +

t

∫
0

‖k1(s) − k2(s)‖2Y ds
)

∀t ∈ [0, T ]. (88)

Proof. Let Π��� = (Π1��� ,Π
2
���) ∶ L

2(0, T ;)→ L2(0, T ;) be the operator given by

Πm����(t) = 
m"(um� (t)) +

t

∫
0

m
(

�m(s), "(um� (s)), �
m
� (s),k

m
� (s)

)

ds, (89)

for all � = (�1,�2) ∈ L2(0, T ;), t ∈ [0, T ], and m = 1, 2.
For �, � ∈ L2(0, T ;) we use (34) and (89) to obtain

‖Π��� �(t) − Π��� �(t)‖ ≤ max(L1 , L2)

t

∫
0

‖�(s) − �(s)‖ ds

for all t ∈ [0, T ]. It follows from this inequality that for n large enough, a power Πn��� of the operator Π��� is a contraction on
the Banach space L2(0, T ;) and, therefore, there exists a unique element ���� ∈ L2(0, T ;) such that Π������� = ���� .
Moreover, ���� is the unique solution of Problem PV�

��� .Using (86), the regularity of u� , the regularity of k� and the properties
of the operatorsm and m, it follows that ���� ∈ W 1,2(0; T ;).
Consider now (�1, �1, �1), (�2, �2, �1),∈ L2(0, T ;V ′ × I0 × Y ) and, for i = 1, 2, denote u�i = ui, ��i�i�i = �i, ��i = �i. and

k�i = ki.We have, for m = 1, 2,

�mi (t) = 
m"(umi (t)) +

t

∫
0

m
(

�mi (s), "(u
m
i (s)), �

m
i (s),k

m
i (s)

)

ds,

and, using the properties (33) and (34) of m, andm we find

‖�1(t) − �2(t)‖2 ≤ c
(

‖u1(t) − u2(t)‖2V +

t

∫
0

‖�1(s) − �2(s)‖2 ds +

t

∫
0

‖u1(s) − u2(s)‖2V ds

+

t

∫
0

‖�1(s) − �2(s)‖2I0 ds +

t

∫
0

‖k1(s) − k2(s)‖2Y ds
)

∀t ∈ [0, T ].

Using now a Gronwall argument in the previous inequality we deduce (88), which concludes the proof.

Finally as a consequence of these results and using the properties of the operator m, the operator m, the operator m, the
operator ∮m and the function Ψm for t ∈ [0, T ], we consider the element

Π(�, �, �)(t) =
(

Π1(�, �, �)(t), Π2(�, �, �)(t), Π3(�, �, �)(t)
)

∈ V ′ × I0 × Y , (90)
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defined by the equations

(Π1(�, �, �)(t), v)V ′×V = jad(&�(t), u�(t), v) +
2
∑

m=1

(

m"(um� (t)), "(v
m)
)

m

+
2
∑

m=1

(

(m)∗∇'m� , "(v
m)
)

m +
2
∑

m=1

(

t

∫
0

m
(

�m��� , "(u
m
� (s)), ��(s),k

m
� (s)

)

ds, "(vm)
)

m
, ∀v ∈ V , (91)

Π2(�, �, �)(t) =
(

�1
(

�1���(t), "(u
1
�(t)),k

1
�(t)

)

, �2
(

�2���(t), "(u
2
�(t)),k

2
�(t)

)

)

, (92)

Π3(�, �, �)(t) =
(

Ψ1
(

�1���(t), "(u
1
�(t)), �

1
�(t)

)

, Ψ2
(

�2���(t), "(u
2
�(t)), �

2
�(t)

)

)

. (93)

Here, for every (�, �, �) ∈ L2(0, T ;V ′ × I0 × Y ), u� , '� , &� ��, and ���� represent the displacement field, the stress field, the
the potential electric field and bonding field obtained in Lemmas 1, 2, 3, 4 , 5 respectively, and k� is the internal state variable
given by (86). We have the following result.

Lemma 6. The operator Π has a unique fixed point (�∗, �∗, �∗) ∈ L2(0, T ;V ′ × I0 × Y ).

Proof. We show that, for a positive integer n, the mappingΠn is a contraction on L2(0, T ;V ′×I0×Y ). To this end, we suppose
that (�1, �1, �1) and (�2, �2, �2) are two functions in L2(0, T ;V ′ × I0 × Y ) and denote u�i = ui, u̇�i = vi, '�i = 'i, &�i = &i,
��i = �i, ��i�i�i = �i and k�i = ki for i = 1, 2.We use (52) and (91) we have

‖Π1(�1, �1, �1)(t) − Π1(�2, �2, �2)(t)‖2V ′ ≤ C‖R�(u11� + u
2
1�) − R�(u

1
2� + u

2
2�)‖

2
L2(Γ3)

+ C‖R�(u11� − u
2
1�) −R�(u12� − u

2
2�)‖

2
L2(Γ3)

+ C‖q�(&1(t))R�(u11� − u
2
1�) − q�(&2)R�(u12� − u

2
2�)‖

2
L2(Γ3)

+
2
∑

m=1
‖m"(um1 (t)) −

m"(um2 (t))‖
2
m

+
2
∑

m=1
‖(m)∗∇'m1 (t) − (

m)∗∇'m2 (t)‖
2
m + C‖&1 − &2‖2L2(Γ3)

+
2
∑

m=1

t

∫
0

(

‖

‖

‖

m
(

�m1 (s), "(u
m
1 (s)), �

m
1 (s),k

m
1 (s)

)

− m
(

�m2 (s), "(u
m
2 (s)), �

m
2 (s),k

m
2 (s)

)

‖

‖

‖

2

m

)

ds.

Therefore, from (33), (34), (35)–(42) and the definition of R� , R� , we obtain

‖Π1(�1, �1, �1)(t) − Π1(�2, �2, �2)(t)‖2V ′ ≤ C
(

‖u1(t) − u2(t)‖2V +

t

∫
0

‖u1(s) − u2(s))‖2V ds

+

t

∫
0

‖�1(s) − �2(s))‖2 ds +

t

∫
0

‖�1(s) − �2(s))‖2I0 ds +

t

∫
0

‖k1(s) − k2(s))‖2Y ds

+ C‖'1(t) − '2(t)‖2W + ‖&1(t) − &2(t)‖2L2(Γ3)

)

.

We use estimate (88) to obtain

‖Π1(�1, �1, �1)(t) − Π1(�2, �2, �2)(t)‖2V ′ ≤ C
(

‖u1(t) − u2(t)‖2V

+

t

∫
0

‖u1(s) − u2(s))‖2V ds +

t

∫
0

‖�1(s) − �2(s))‖2I0 ds

+

t

∫
0

‖k1(s) − k2(s))‖2Y ds + ‖'1(t) − '2(t)‖2W + ‖&1(t) − &2(t)‖2L2(Γ3)

)

.
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Recall that above um�� and um�� denote the normal and the tangential component of the function um� respectively. By similar
arguments, from (36), (86) and (92) it follows that

‖Π2(�1, �1, �1)(t) − Π2(�2, �2, �2)(t)‖2Y ≤ C
(

t

∫
0

‖�1(s) − �2(s))‖2 ds + ‖u1(t) − u2(t)‖2V + ‖k1(t) − k2(t))‖2Y

)

.

≤ C
(

‖u1(t) − u2(t)‖2V + ‖k1(t) − k2(t))‖2Y +

t

∫
0

‖u1(s) − u2(s)‖2V ds +

t

∫
0

‖k1(s) − k2(s))‖2Y ds
)

.

On the other hand by (38), (88) and (93), we get

‖Π3(�1, �1, �1)(t) − Π3(�2, �2, �2)(t)‖2I0 ≤ C
(

‖u1(t) − u2(t)‖2V + ‖'1(t) − '2(t)‖2W

+

t

∫
0

‖u1(s) − u2(s))‖2V ds + ‖�1(t) − �2(t))‖2I0 +

t

∫
0

‖�1(s) − �2(s))‖2I0 ds
)

.

Also, since

umi (t) =

t

∫
0

vmi (s)ds + u
m
0 , t ∈ [0, T ], m = 1, 2,

we have

‖u1(t) − u2(t)‖V ≤

t

∫
0

‖v1(s) − v2(s))‖V ds

which implies

‖u1(t) − u2(t)‖2V +

t

∫
0

‖u1(s) − u2(s))‖2V ds ≤ c

t

∫
0

‖v1(s) − v2(s))‖2V ds. (94)

Therefore

‖Π(�1, �1, �1)(t) − Π(�2, �2, �2)(t)‖2V ′×I0×Y
≤ C

(

‖u1(t) − u2(t)‖2V +

t

∫
0

‖u1(s) − u2(s))‖2V ds

+ ‖�1(t) − �2(t))‖2I0 +

t

∫
0

‖�1(s) − �2(s))‖2I0 ds + ‖k1(t) − k2(t))‖2Y +

t

∫
0

‖k1(s) − k2(s))‖2Y ds

+ ‖'1(t) − '2(t)‖2W + ‖&1(t) − &2(t)‖2L2(Γ3)

)

. (95)

Moreover, from (70) we obtain

(v̇1 − v̇2, v1 − v2)V ′×V +
2
∑

m=1
(m"(vm1 ) − 

m"(vm2 ), "(v
m
1 − v

m
2 ))m

+jdm(v1, v1 − v2) − jdm(v2, v1 − v2) + (�1 − �2, v1 − v2)V ′×V = 0.

(96)

We use (40), (41) and (51) to deduce that

jdm(v1, v1 − v2) − jdm(v2, v1 − v2) ≥ 0. (97)

It follows from (96) and (97) that

(v̇1 − v̇2, v1 − v2)V ′×V +
2
∑

m=1
(m"(vm1 ) − 

m"(vm2 ), "(v
m
1 − v

m
2 ))m ≤ −(�1 − �2, v1 − v2)V ′×V . (98)



MAIZA ET AL 17

We integrate this equality with respect to time, use the initial conditions v1(0) = v2(0) = v0 and condition (32) to find

min(n1 , n2)

t

∫
0

‖v1(s) − v2(s))‖2V ds ≤ −

t

∫
0

(�1(s) − �2(s), v1(s) − v2(s))V ′×V ds,

for all t ∈ [0, T ]. Then, using the inequality 2ab ≤ a2

�
+ �b2, we obtain

t

∫
0

‖v1(s) − v2(s)‖2V ds ≤ C

t

∫
0

‖�1(s) − �2(s)‖2V ′ ds ∀t ∈ [0, T ]. (99)

On the other hand, from the Cauchy problem (83)–(84) we can write

&i(t) = &0 −

t

∫
0

Had
(

&i(s), R�(u1i�(s) + u
2
i�(s)),R�(u1i�(s) − u

2
i�(s))

)

ds

and then

‖

‖

‖

&1(t) − &2(t)
‖

‖

‖L2(Γ3)
≤ C

t

∫
0

‖

‖

‖

&1(s) − &2(s)
‖

‖

‖L2(Γ3)
ds + C

t

∫
0

‖

‖

‖

R�(u11� + u
2
1�) − R�(u

1
2� + u

2
2�)

‖

‖

‖L2(Γ3)
ds

+ C

t

∫
0

‖

‖

‖

R�(u11� − u
1
1�) −R�(u12� − u

2
2�)

‖

‖

‖L2(Γ3)
ds.

Using the definition of R� and R� and writing &1 = &1 − &2 + &2, we get

‖

‖

‖

&1(t) − &2(t)
‖

‖

‖L2(Γ3)
≤ C

(

t

∫
0

‖&1(s) − &2(s)‖L2(Γ3)ds +

t

∫
0

‖

‖

‖

u1(s) − u2(s)
‖

‖

‖L2(Γ3)d
ds
)

.

Next, we apply Gronwall’s inequality to deduce

‖&1(t) − &2(t)‖L2(Γ3) ≤ C

t

∫
0

‖u1(s) − u2(s)‖L2(Γ3)dds

and from the relation (30) we obtain

‖&1(t) − &2(t)‖2L2(Γ3) ≤ C

t

∫
0

‖u1(s) − u2(s)‖2V ds. (100)

Furthermore, from 86 we have

‖k1(t) − k2(t)‖2W ≤ C

t

∫
0

‖�1(s) − �2(s)‖2Y ds. (101)

We use now (80), (31), (35) and (39) to find

‖'1(t) − '2(t)‖2W ≤ C‖u1(t) − u2(t)‖
2
V . (102)

We substitute (94), (100) and (102) in (95) to obtain

‖Π(�1, �1, �1)(t) − Π(�2, �1, �2)(t)‖2V ′×I0×Y

≤ C
(

t

∫
0

‖v1(s) − v2(s))‖2V ds + ‖k1(t) − k2(t))‖2Y +

t

∫
0

‖k1(s) − k2(s))‖2Y ds

+‖�1(t) − �2(t))‖2I0 +

t

∫
0

‖�1(s) − �2(s))‖2I0 ds
)

. (103)
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On the other hand, from (85) we deduce that

(�̇1 − �̇2, �1 − �2)I0 + a(�1 − �2, �1 − �2) ≤
(

�1 − �2, �1 − �2
)

I0
, a.e. t ∈ (0, T ).

Integrating the previous inequality with respect to time, using the initial conditions �1(0) = �2(0) = �0 and inequality a(�1 −
�2, �1 − �2) ≥ 0, to find

1
2
‖�1(t) − �2(t)‖2I0 ≤

t

∫
0

(

�1(s) − �2(s), �1(s) − �2(s)
)

I0
ds,

which implies that

‖�1(t) − �2(t)‖2I0 ≤

t

∫
0

‖�1(s) − �2(s)‖2I0 ds +

t

∫
0

‖�1(s) − �2(s)‖2I0 ds.

This inequality, combined with Gronwall’s inequality, leads to

‖�1(t) − �2(t)‖2I0 ≤ C

t

∫
0

‖�1(s) − �2(s)‖2I0 ds ∀t ∈ [0, T ]. (104)

We substitute (99), (101) and (104) in (103) to obtain

‖Π(�1, �1, �1)(t) − Π(�2, �2, �2)(t)‖2V ′×I0×Y
≤ C

t

∫
0

‖(�1, �1, �1)(s) − (�2, �2, �2)(s)‖2V ′×I0×Y
ds.

Reiterating this inequality n times we obtain

‖Πn(�1, �1, �1) − Πn(�2, �2, �2)‖2L2(0,T ;V ′×I0×Y )
≤ CnT n

n!
‖(�1, �1, �1) − (�2, �2, �2)‖2L2(0,T ;V ′×I0×Y )

.

Thus, for n sufficiently large,Πn is a contraction on the Banach spaceL2(0, T ;V ′×I0×Y ), and soΠ has a unique fixed point.

Now, we have all the ingredients to prove Theorem 1.

Proof of Theorem 1. Let (�∗, �∗, �∗) ∈ L2(0, T ;V ′ × I0 × Y ) be the fixed point of Π defined by (90)–(93) and denote by

u∗ = u�∗ , '∗ = '�∗ , �∗ = ��∗ , k∗ = k�∗ , &∗ = &�∗ . (105)

Let by �∗ = (�1∗,�
2
∗) ∶ [0, T ]→  the functions defined by

�m∗ = 
m"(u̇m∗ ) + (

m)∗∇'m∗ + �
m
�∗�∗�∗ , m = 1, 2. (106)

We prove that the {u∗,�∗, '∗, �∗,k∗, &∗} satisfies (54)–(60) and the regularites (61)–(68). Indeed, we write (70) for � = �∗ and
use (105) to find

(ü∗(t), v)V ′×V +
2
∑

m=1
(m"(u̇m∗ (t)), "(v

m))m + jdm(u̇∗(t), v)

+(�∗(t), v)V ′×V = (f (t), v)V ′×V ∀v ∈ V , a.e. t ∈ [0, T ]. (107)

We use equalities Π1(�∗, �∗, �∗) = �∗, Π2(�∗, �∗, �∗) = �∗ and Π3(�∗, �∗, �∗) = �∗ it follows that

(�∗(t), v)V ′×V = jad(&∗(t), u∗(t), v) +
2
∑

m=1

(

m"(um∗ (t)), "(v
m)
)

m +
2
∑

m=1

(

(m)∗∇'m∗ (t), "(v
m)
)

m

+
2
∑

m=1

(

t

∫
0

m
(

�m�∗�∗�∗(s), "(u
m
∗ (s)), �∗(s),k

m
∗ (s)

)

ds, "(vm)
)

m
, ∀v ∈ V , (108)

�m∗ (t) = �
m(�m�∗�∗�∗(t), "(u

m
∗ (t)),k

m
∗ (t)

)

, m = 1, 2, (109)
�m∗ (t) = Ψ

m(�m�∗�∗�∗(t), "(u
m
∗ (t)), �

m
∗ (t)

)

, m = 1, 2. (110)
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We now substitute (108) in (107) to obtain

(ü∗(t), v)V ′×V +
2
∑

m=1
(m"(u̇m∗ (t)), "(v

m))m + jdm(u̇∗(t), v)

+
2
∑

m=1

(

m"(um∗ (t)), "(v
m)
)

m +
2
∑

m=1

(

(m)∗∇'m∗ , "(v
m)
)

m

+
2
∑

m=1

(

t

∫
0

m
(

�m�∗�∗�∗(s), "(u
m
∗ (s)), �

m
∗ (s),k

m
∗ (s)

)

ds, "(vm)
)

m

+jad(&∗(t), u∗(t), v) = (f (t), v)V ′×V , ∀v ∈ V . (111)

From (106), (109) and (86) we see that (55) is satisfied.

k̇m∗ (t) = �
m(�m − m"(u̇m∗ ) − (

m)∗∇'m∗ (s), "(u
m
∗ ),k

m
∗
)

m = 1, 2, (112)

and we substitute (106), (110) in (85) to have

�∗(t) ∈ K,
2
∑

m=1
(�̇m∗ (t), �

m − �m∗ (t))L2(Ωm) + a(�∗(t), � − �∗(t)) ≥

2
∑

m=1

(

Ψl
(

�m∗ − 
m"(u̇m∗ ) − (

m)∗∇'m∗ , "(u
m
∗ ), �

m
∗
)

, �m − �m∗ (t)
)

L2(Ωm)
, ∀� ∈ K, a.e. t ∈ [0, T ]. (113)

We write now (80) for � = �∗ and use (105) to see that
2
∑

m=1
(�m∇'m∗ (t),∇Ψ

m)Hm −
2
∑

m=1
(m"(um∗ (t)),∇Ψ

m)Hm = (q(t),Ψ)W , ∀Ψ ∈ W , a.e. t ∈ [0, T ]. (114)

Additionally, we use u�∗ in (83) and (105) to find

&̇
∗
(t) = Had

(

&
∗
(t), R�(u1∗�(t) + u

2
∗�(t)),R�(u1∗� (t) − u

2
∗� (t))

)

, a.e. t ∈ [0, T ]. (115)

The relations (105)–(106), (111)–(115) allow us to conclude now that {u∗,�∗, '∗, �∗,k∗, &∗} satisfies (54)–(59). Next, (60) and
the regularity (61), (65), (66) and (67) follow from Lemmas 1, 2, 4 and 3. Since u∗ and '∗ satisfy (61) and (67), it follows from
lemma 5 and (106) that

�∗ ∈ L2(0, T ;). (116)

We choose v = (v1, v2) with vm = !m ∈ D(Ωm)d and v3−m = 0 in (111) and by (105) and (48):

�müm∗ = Div�
m
∗ + f

m
0 , a.e. t ∈ [0, T ], m = 1, 2.

Also, by (43), (44), (61) and (116) we have:

(Div�1∗,Div�
2
∗) ∈ L

2(0, T ;V ′).

Finally we conclude that the weak solution {u∗,�∗, '∗, �∗,k∗, &∗} of the piezoelectric contact Problem PV has the regularity
(61)–(68), which concludes the existence part of Theorem 1. The uniqueness of the solution is a consequence of the uniqueness
of the fixed point of the operator Π defined by (90)-(93) and the unique solvability of the Problems PVu

� , PV
'
� , PV

&
� , PV

�
� and

PV�
��� .

CONCLUSION

We presented a model for the dynamic process of frictional contact between two electro-elasto-viscoplastic bodies with internal
state variables and damage. The contact was modeled with the normal damped and adhesion, and the adhesion be written by
the differential equation of the form (21). The difficulty of solving this type of problem lies not only in the coupling of elasto-
viscoplastic, electrical and internal state variables, but also in the nonlinearity of the boundary conditions modeling this type of
physical phenomena (contact and friction conditions), which gives us a variational inequalities and type of nonlinear, parabolic
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variational equalities. The existence of the unique weak solution for the problem was established by using arguments from the
theory of evolutionary variational inequalities, parabolic equalities and fixed point theorem.
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