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1 | INTRODUCTION AND PRELIMINARIES

The theory of incomplete gamma functions was studied by Tricomi® in 1950 . These functions are very essential special func-
tions and that are used in number of problems in mathematical physics, astrophysics, applied statistics and engineering. These
functions are also useful in the study of various transform such as Fourier transform and Laplace transforms and probability
theory.

Srivastava et al.?? defined the familiar incomplete gamma functions y (e, x) and I'(w, x) as,

P

y(w,x) := /u”_le_“du, R(w) > 0;x > 0), 6))
0
and
IN'w, x) := /u“’_le_”du, R(w) > 0;x > 0), 2)

respectively and also satisfy the following decomposition relation:
Y@, x) + (o, x) =T'), Rw)>0). 3)
The incomplete Pochhammer symbols (w; x), and [w; x], can also be represented in terms of incomplete gamma functions
y(w, x) and T(w, x)?V as,
_Yw+nx)

(w;x), = W’ (w,n e C;x >0), (@]

This is an example for title footnote.
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and
F £
[wix], 1= —2FBY (e Cix>0). 5)
I'w)
In the view of (3), @) and (5)) give the following decomposition relation:
Fa)+n 1 n=0,we C\ {0}
(@), + [@:x], = (@), i= ~o \ ©®)
F( ) wow+1)...(w+n-1) mneN,w € Q).
where (@), is the Pochhammer symbol!®. In particular, the generalized pochhammer symbol (w),, can be represented in the
following form'8
1 wo+k-1
= kkn (9) (&) ...... <_) . 7
(@ K\ k) kK Ja @
The generalized hypergeometric function is defined by
o W), (r), ... (),
JF, | Sttt o N 12 "2 z<1, ®)
U1, Uy -ee s Uy = 0),(vy),, .. (V) n!’

where p,q € Z* U {0} and u;, u,, ... Ju, € Cand v, v,,..., v, € C\ Za. Here, (u), is a Pochhammer symbol defined in (@

Recently, Desai and Shukla”® introduced the PRq(a, B; z) function, this defined as,

a,ﬂ;Z] ,

i 1 W), .- (up)n 2

& T(an+ ) (v), ... 0,), n’ ©)

where a, f € C, R(a) > 0,R(f) > 0 and R(w;) > 0,R(v;) > O;foralli = 1,2,...,pand j = 1,2,...,q. Here, (), is a
Pochhammer symbol defined by (6).

Up, Uy, .. s Uy,

U1, Ugy e 5 Uy

(aﬂz)—qul

The series (@) is defined when v; € C\ Z; . If any numerator parameter u; (i = 1,2,..., p) is zero or negative integer, then
the series ceases to polynomial in z.

The ,R,(a, f; z) function satisfies the following modified convergence criteria:
i. If R(a) > p — g, the series converges for all finite values of z.
ii. If R(a) = p — g — 1, the series converges for all |z| < 1 and diverges for |z| > 1.

iii. When R(a) = p—q— 1 and |z| = 1, the series can converges on condition depending on the parameters. If « = p— g — 1,

q p
the series in (9) is absolutely convergent on the circle |z| = 1if, R | a+ X v; — Yy
j=1

2 | THE INCOMPLETE EXPONENTIAL . R,(a, ; Z) FUNCTION

In 2005, Chaudhry and Qadir? motivated to study the incomplete gamma function (Erdélyi et al.®). Further, they gave the
incomplete exponential functions as mentioned below,

e (x,1): i) : Z yr(’(’::n);) ;, (10)

['(u+nx)t"

IACHINEEDY TEEE (1

n=0
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From (T0) and (TT), one can obtain the following result,
e((x,0); )+ E((x,1); p) = €. (12)

The following integral representations” of the incomplete exponential functions (10} and (1 1) are important for our further study.

Lemma 1. The following integral representations holds true for e ((x, t); 4) and E ((x, 1); u):

Ul (S 1y
i) = =—— d
e (6,1 ) HMZQ e <;0mn!>u

1 1 -
=—— [ ut e F,(—; u; tu)du, (13)
F(”)O/ o= H

and

E((x,t);p) = ﬁ/u“_l e (Z(:) (ﬂl)” (L:lt') >du

1 / syl —u
=—— [ e F(—; u;tu)du, (14)
(u) o

In sequel to the study of the generalized incomplete exponential functions (I0) and (TTJ), we define the following generalized
incomplete exponential qu(a, p; z) functions as,

2e (X, Bi0) = e, l(x, a, f;v)

ul,uz,...,up
B
UI’U2""’Uq

_ i y(an + f,x) W), (a)y - W)), o s
S T(@n+p) 0,02, W), n!’
and
nesanfeandi 2]
_ i T(an + B, x) @), (), .. (W,), "

T & Tan+ ) 0,0, (v, n!

where a,f € C, uj,uy,...,u, € Cand v},v,,...,v, € C\ Z; provided that the series defined by and on r.h.s.
converges.

From (T3) and (T6), we can obtain the following decomposition formula:

Up, Uy, ..yl Uty oostly | g | Uity sl
Uy, Ugyens U Pl v,0,,...,0

U"] +,E, l(x, a, f;v)

1,U2,..., q q

22 l(x, a, f;v) U] , (17

where ,F,(-) recognize as the generalized hypergeometric function defined by (@)

Remark 1. Forp=0,g=0and a =1, and (16) reduces to incomplete exponential functions (I0) and (TT):

_ NIt B

~ I'n+p) n!
=e((x,0);8), (18)

Oe()(x’ 17 ﬁa U) = OeO l(x7 17 ﬂa U)
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2F(n+ﬂ x)u

I'(n+ p) n!
= E((x, v); p). (19)

Theorem 1 (First integral representation). The generalized incomplete exponential ,E (x,a, f;v) function satisfies the
following integral representation:

and

oEo(x, 1, B;0) = (K, l(x’ 1, B;v)

o0
Uy, Uy, ... U

p — uﬂ_l e_u R ul,uZ, cee ,up
vy, D v Py, o v
1>V -5 U4 1>U25 -+ 5 Uy

X

»Eq l(x, a, p;v)

a, p; Uu"‘] du, (20)

where a,ﬂ,ui,uj € Cand R(a) > 0,R(P) > 0, R(y;) > O,ER(Uj) >0,Vi=1,2,....,p, Vj=1,2,...,q

Proof. On using the integral representation of incomplete gamma function defined by (2)), we arrive at

(e

- (Ll )n...(u )n n
qu (x,a, f;v) Up, ...,y — / yonth=1 o—u Z 1 1 p/n U™ du.
Vg s Uy J = T(an+ ) (v), ... (vy), n!
Further simplification by reversing the order of summation and integration yields the r.h.s. of assertion (20). O

Corollary 1 3. By settinga =1,f=c,andp=1,g=01e.u; =a, reduces to

1= L/u"_1 e F “Vou|du.
- I'(c) c
Corollary 2. For qu(a, f; z) function, the following integral representation holds true:
Uy, Uy, U 1 Uy, ..., U
R 1> %2> »%p ,B; — u =1 —u R 2 >%p
4 "lvl,vz,...,vq aﬁz] F(ul)/u ¢ 1% V1, Vg, +ev s Uy
0

where p < g+ 1, R(u;) > 0and R(a) > 0,R(B) > 0and R(;) > 0,R(v;) >0,Vi=2,....,p, Vj=2,....,q

1EO l(x3 ls C; U)

(s8]

a,ﬂ;uz] du.

Theorem 2 (Second integral representation). The generalized incomplete exponential qu(x, a, f;v) function have the
following integral representation:

Uy, Uy, ..., U

p l—‘(Ul / ul_l(l )Ul u;—1
U5 Ugy v 5 Uy F(ul)F(vl —up)

uz,...,up]du’ @n
aUq

PXRED

»Eq l(x, a, p;v)

X p_lEq_l l(x, a, f;uv)

where R(v) > R(u;) > 0 and R(a) > 0,R(B) > 0 and R(y;) > 0,R(v;) >0,Vi=2,...,p, Vj=2,...,q.

Proof. By adopting the following elementary integral definition of Beta function B(y, §):

(ll) B(ll +n, 12 1) / I +n— 1(1 )12 I - ldbl
@, BULL-1) B(ll,lz )
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in the Lh.s. of 1)), this yields

o (W) - () g
E |[(x,a,B;0) Uty ooty =Z (an+ §.x) pin U”
b Uy, U505 Uy poar Dlan+ B) (v)), ... (v), n!
3 1 < D(an + f,x) ), - (up), o
B, v, —u) & I'lan+p) (vy),...(v,), n!
1
></u“1+"_1 (1 —w)r ™~ du.
0
Further simplification by reversing the order of summation and integration yields the r.h.s. of assertion (21)). O

Corollary 3 (%). For the »R,(a, f; z) function, we have the following integral representation:

R ul,U2,...,up a,ﬂ;z _ F(Ul / ul—l(l )Ul —u;—1
P, vy, F(ul)F(Ul—ul)

’7q
Uy, ..., U
Xp_qu_l 29 »“p
v v

2, -5 Uy

a, p; uz] du,

where p < g+ 1, R(vy) > R(y;) > 0and R(a) > 0, R(F) > 0and R(y;) > 0,R(;) >0,Vi=2,...,p, Vj=2,....¢q

Theorem 3 (Derivative formula). The generalized incomplete exponential ,

tive formula:
dl’l
T {qu l(x, a, f;v)

where @, f,u;,v; € Cand R(a) > 0, R(F) > 0 and R(y;) > 0,R(v;) >0,Vi=1,2,...

E q(x, a, f; v) function have the following deriva-

Up, Uy, ..., U, _ (“1)n---(up)n
U1, U, .ty Uy (v,)n...(vq)n

x ,E, [(x,a,a + p;v)

u1+n,...,up+n 22)
N ’

,0, Vj=1,2,...,q
Proof. Differentiating with respect to v and replacing n by n + 1, we arrive at
< I %) Uy -
d JE, | .0 pr0) Up, Uy, ... s U, _ Z (an+a+ f,x) WUy
dv V15 Vg, e Uy =~ IMan+a+p) 0y -
Using the relation (u),,,; = u(u + 1), we get
Up...u 1,... 1
i qu (x. . f: 1) Up,ly, ..., a, _A L up+ 1, .. u,+ .
dv U5 Vg ee 5 Uy Uy ... U, vl+1,...,vq+1

By repeating above procedure n-times yields the r.h.s. of assertion (22). [

(up)n+l V"

(Uq)n+l n!’

E, l(x, a,a+ fiv)

Corollary 4. For the ,R

d" R Up, Uy, ..., 4a,
dzt |79 vy, 0,050,

q(a, f; z) function, we have the following derivative formula:

Uy, - (uy),
apiz| p=——m—
Wy - (),

up+n

y u+nuy,+n,...,
4 vy +n,v,+n,...

where a, f,u;, v

Ut n

; € Cand R(a) > 0,R(P) > 0 and R(w,) > 0, R(v)) > 0, Vi = 1,2,...

a,a+ﬁ;z],

0. Vji=1,2,...,q
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Theorem 4 (Partial Derivatives). For the generalized incomplete exponential ,E (x, a, f; v) function, the following partial

derivatives holds true:
Up, Uy, ... U, S R
Uy, Ugy ven s Uy Uy ... U,

% {qu l(x, a, p;v)

u+1,...,u, +1
X E s Wy ; ! ’ T b 23
p ql(xaa+ﬂv) vl+1,...,vq+1] (23)
0 U, Uy, .. U —x f—1 U, Uy, .oy U
— < E |(x,a,p; P =—ex""" R | a, B x|, 24
0x {” ql(xaﬂ V) ul,uz,...,vq]} R U1, 0g, +e0 5 Uy @ f: vx @4

where a,ﬂ,u[,uj € Cand R(a) > 0, R(P) > 0 and R(y;) > O,ER(UJ-) >0,vVi=1,2,...,p,Vj=1,2,...,q.

Proof. Differentiating partially (T6) with respect to v and treating x as a constant, we have

o {,,Eq l(x, @, f;0)

By replacing n by n + 1, this leads to proof of (23).

Up, Uy, ... s U, _ 9 i I'(an + p, x) (u),(up), ... (Mp),, I
U1, Ugs v s Uy ov | & Tlan+p) (v)),), ... (v,), n! ’

_ Z I'(an+ f,x) (ul)n(uz)n (up)n it}
“ T(an+ ) (0),(v), .- V), (n=1!

For the proof of (24)), we differentiate partially first integral representation (20) with respect to x and treating v as a constant. [

Next we evaluate the , E, (x, &, f; v) function which is a special case of generalized incomplete exponential ,E (x, a, f; v)
function.

Theorem 5 (Estimation of , E, (x, «, ; v) function). Evaluation of the incomplete exponential , E| (x, &, f; v) function is given
by

—y(an+ f,x) X ,R(a, p;0), 25)

o upuy | T —uy —uy)
LE, l(x, a,pi1) v, ] T = u)l(; = )

where @, f,u;,u,,v; € Cand R(u,), R(u,), R(v,) > 0 and R(a), R(B) > 0.

Proof. Setting v =1, p = 2,q = 1 in the decomposition formula (I7), we get

”1’“2] =,F it l] —,e l(x,a,ﬁ;v)

Uy Uy

2 E, l(x, a,f;1)

Lll,le
9
U
X
_ Up, Uy . — Up, Uy
=,F I = [ v e™,R
Uy Uy

0
x

=,F, -“1’“2 1 _/uﬂ—le—u i 1 (uy),w), sy
o ) Hlan+p) (), !

a, f; vu”] du,

By using Gauss summation formula (see'®) for v = 1 and reversing the order of summation and integration, we arrive at

2E1 l(x’ a, ﬂ? 1)

upuy | _ DOl —uy —up) i 1 (), ), )"
Uy P, —u)l'(v; —uy) S Tlan+p) (v, ®!

P

X / ul o gy,

0
Further simplification by using (I)) and (©), this leads to the right hand side of (23). O



Ankit Pal ET AL | 7

Theorem 6 (Addition formula). For the generalized incomplete exponential qu(x, a, f; v) function, the following addition
formula for addition of two argument is valid:

ul,uz,..-,u,,] D) .. T0) & Ty +n)... T, +n)

Eq l(x, a,f;y+0)

U1, Vg, een s Uy - F(uy)...Tu,) & T, +n)...T(y, +n)m
U +n,...,u,+n
x E ,a, ; LT . 26
p ql(xaan+ﬁy) U1+n,,,,,Uq+n] ( )
Proof. Proof of above theorem pursue from the derivative formula of pE q(x, a, f; v) function:
an oEq | (o, B50) Uity eees ty =—(u')""'(u”)"
dv" U1, Ugsene s Uy (U])n...(Uq)n
Uy +n,...,u,+n
x E |(x,a, : LR )
P ql(xa a+pfiv) Ul+n,...,vq+n]
]

Theorem 7 (Multiplication formula). For the generalized incomplete exponential qu(x, a, f; v) function, the following
multiplication formula for multiplication of two argument is valid:

Uyt ooty | [(vy)...T(,) & T +n)...T@w, +n) yrp— 1)

U1, Vg, een s Uy F(wy)...I'w,) & T, +n)...T(v, +n) n!

»Eq l(x,a, B; yv)

27

u+n,...,u,+n
xqu[(x,a,an+ﬂ;y) ! ? ]

U1+n,...,uq+n

Proof. Proof of above theorem is similar to Theorem 6] O

Theorem 8. For the generalized incomplete exponential qu(x, a, f; v) function, we have the following integral representation:

t

/ u e —uwlE, l(x, a, B; Aub)

0

Up, Uy, .y U)

] du = B(a, p) 1**P!

Uy, U505 Uy

X perEgin l(x, a, B Atk (28)

ul,uz,...,up,A(k,a)
U1, 0g, .0, Uy, A (K, + ) ’

where A (k, a) represents the sequence of k parameters i.e.
aat+l a+2 a+k—1
K kT oa 7T k ’
and R(a) > 0, R(F) > 0 and R(y;) > 0,R(v;) >0,Vi=1,2,....,p, Vj=1,2,....q.

Proof. Let A, be the Lh.s. of (28). Then, using (16), this gives

A = /ua_l(t ! o [(an + B, x) W), (), - W), (Auk)n "
n=0 F(an + ﬂ) (Ul)n(UZ)n (Uq)n n!

0
Substituting u = tx, we arrive at
1
Al — ta+ﬂ—l /xa+kn—l(1 _ x)ﬁ—l Z F(an + ﬁ’ x) (ul)n(MZ)n (up)n (Atk)nd
o I'an+p) (v)),(vy), .. (uq)n n!

0
= l‘mﬂ;_1 i Hant p.x) (ul)”(MZ)n (up)n (/hk)n B((X + kn, p),
n=0

Tlan+ ) (v)),(vy), ... (v,), n!
_ e i D(an + f,x) @), - (Wy), (A*)" T(a + kmT(p)
h “ T(an+p) (0),(0y),... (), n' T@+p+kn)
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Now using the property of Pochhammer symbol defined in (7), this leads to the right hand side of (28).

O

Theorem 9. For the generalized incomplete exponential ,E, (x, a, f; v) function, the following integral representation holds

true:

ul,uz,...,up du =
l’UZ""’Uq

% /(X — )= t)ﬂ—lqu l(x, a, By Au —1)F)

ity sty A (ks ) ]

X (x - t)§+ﬂ_1p+qu+k l(X, a, f; Ax — 1)) vy, U, v, Ak f+6)
9 9 q’ 9

where A (k, ) represents the sequence of k parameters i.e.
p p+1 p+2 p+k—1

k’ k 9 a LA k b
and R(a) > 0, R(p) > 0 and R(y;) > O,ER(Uj) >0,vVi=1,2,...,p, Vj=1,2,...,q.

Proof. Let A, be the Lh.s. of (29), and using (16}, we get

A =
2T B Clan+ ) (v),(v2), ... (V,), n!

. . —t .
Substituting m = %, we arrive at

p b e —_— k n
1’5) /(x_u)g_l(u_t)ﬂ_lng(anw,x) WD)y - W)y A=)y

1
(x — 1)5+h-1 / inspt 51 xa Dlan + p,x) @),(a), - (u,), (A(x — k)"
A, =D 1 - d
2= TB5.5) J " (1=m) Zg Tan+p) @), (0),  nl

(=t & Tan + B, x) @), (), - (), (A(x — 1)F)”

B(k ,6),

B(S,6) ~ I'lan+ ) (v)),(vy), ... (Uq)n n! (kn+/.5)
_ (x =)t i C(an + f,x) @)yU2), - (W), (A(x — )" T(kn + PI(S)
B8 & Tan+p) (v),0), .. (v,), n! Ckn+p+6)

Now using the property of Pochhammer symbol defined in (7), this leads to the right hand side of (29).

’

29)

O

Theorem 10 (Recurrence relation). We have the following recurrence relation for the generalized incomplete exponential

qu(x, a, f; v) function:

ul, u2

(ul - U+ D 2 E, l(xaa,ﬁQU)

] =a,E, l(X,a,ﬁ;U) “ 't)l»“z]

1
Uy, Uy
v —1|

1

- (Ul - 1) 2E1 [(X, a?ﬂ; U)

Proof. Let R, be the Lh.s. of (30). Then, using (T6), we get

o0 (o]

R = Z T(an + B, x) uy(u; +1),(u,), v Z ['(an + B, x) (uy),(u,), (v, — l)U_"
= C(an + B) (vy), n! & T(an+p) (v, -1, n"

n=0

Using the relations (see'%)

up(uy + 1), = (u + n)(uy),,
(v, = D), =@, =D, +n-1),

this yields the left hand side of (30).

(30)

(€19}
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3 | SOME GENERATING RELATIONS

In this section, we establish some linear generating relations for the generalized incomplete exponential ,R (a, f; z) functions
i.e. (I3) and (16) as asserted by Theorem [T}

We need the following result® for proving Theorem

-1
G-k+1),=@6+1), <k‘,‘i‘1>~<k‘5;"‘1> . Une Ny, (32)
where
5\ rG+1) .
(k) TTk+ DI —k+1) (k& Nozo € ©). &9

Theorem 11. For the generalized incomplete exponential € q(x, a, f; v) and »E q(x, a, f; v) functions, the following generating

function holds true:
< (k—6-1
Z ( X ) pCa+1 l(x, a,f;v)

5—k+1,vl,z)2,...,bq

ul,uz,...,up uk:(l—u)§
k=0

X p€u41 [(x,a, p;u(1 —u))

gy, ..., U, 34
1—6,01,02,...,041’ (34)

Z (k—i— 1> S l(x,a,ﬁ;v)

k=0

ul,u2,...,up k 5
uw=0-u
6—k+1,ul,1)2,...,uq] ( )

X ,E,\ l(x, a, fru(l —w)

Uy ly, ..., U, 35
1—5,01,02,...,%]’ (3)

where x > 0;6 € Cand |t| < 1.
Proof. Let C, be the left hand side of (34) and applying (I5), we arrive at

C = i k—6—-1 - y(an+ B, x) (), (), ... (“p)n o U
! k & Tan+p) 6 —k+1),0),0), ..., n' |

k=0

By reversing the order of summation and using the result defined in (32)), we obtain

- y(an + f,x) (), (), ... (up), U~ (k—é—n— 1> P
C, = —. . 36
! },; F(an + ﬂ) (5 + l)n(vl)n(UZ)n (Uq)n n! /;) k ! ( )

Now we find the inner sum in (36)) by using binomial expansion
Z(k_5_1>uk=(1—u)5, lu| < 1. (37)
k=0 k

Replacing the inner sum of (36)) and using (37), this yields the r.h.s. of (34). Similarly, one can prove (33)) as asserted by Theorem
i1l O

3.1 | Generalization of the generating functions for the generalived incomplete exponential
,R,(a, f; z) functions

In this subsection, we derive the generalization of the generating functions for the generalized incomplete exponential

»R, (@, B; z) functions and asseerted by Theorem
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For further extension of the generalized incomplete exponential qu(a, B; z) functions li and || we consider two
sequences {PV" (v)}®, and (@ (V)}2, as,

Ui Uy, .o, U
\P(y,n)(v)zly(m) (x,a, B; V) 1> %2 i
r r U1, U, .50,
Up,ly, ...y U,
= e x,a, ;v s 38
o | € b )A(n,l—b’—r),ul,vz,...,vq] (38)
(I)(V’”) (U) _ (I)(V’”) (x, (x,ﬂ;u) Up, Uy, ..., Uy ’
r r Uy, Vg5 .05 U,
Uy,Uy,...,U
= F x,a, B, v 1720 Bp , 39
P ‘“’7[( b )A(n,l—é—r),vl,vz,...,vq] (39)

where A(#, 6) abbreviates the array of # parameters as follows:

S4n—1
oo+l o+2 otnTl e peN). (40)
n n n n

Theorem 12. The following generating functions holds true for the following two sequences { ¥V (v) }, and (@7 W}2,:

Z <5 +m+r— 1> ‘I‘f,ff,) )" = (1 — u)y=>" TZ"’) (1 —u)", 41)
r
r=0
2 (5 e 1) O yu" = (1 —u)™ ™" DL (u(1 — u)"), (42)
r
r=0

where x > 0;m € Nyj;6 € C, n €N; |u| < 1.

Proof. Proof of Theorem [I2]is similar to Theorem [IT] In aforesaid theorem, one can use the following identity,
-1
(1_5_m_r)m =1 _5_m)nn <6+m+r— l><6+m—nn+r—1> ’ 43)
r r

where r,n € Ny;n € N. O

On setting # = 1 and replacing 6 by § — m in (41)), this can easily reduce to the result (34).

4 | SOME APPLICATIONS

4.1 | Applications to ground water pumping modeling

Ground water pumping modeling is the technique and science of exploring, developing, and controlling ground water. Gen-
erally this modeling relates with specialized fields of oil science, geophysics, geology, mathematics, hydraulics, hydrology,
mechanical and chemical engineering. It also concerns with ground-water behavior for the solution of engineering problems

Hantush?! determined the connection between two integral functions M and M* and dynamics of groundwater mounding
beneath recharge zones. Accurate algebraic expressions have been established in terms of a formal power series expansion for
these two integral functions. During 1950s and 1960s, Hantush developed a mathematical structure for determining the features
of draw-down and mounding processes in aquifers. These papers have very much importance due to integral quantities which
have been pertained successfully to numerous hydrological research.



Ankit Pal ET AL | n

In 1964, Hantush'!' gave two functions M(8, ) and M*(8, 1)) that arises with respect to ground water pumping modeling. The
following integral are defined as,

u

[s5) —u f
M(5,n)=/Mdu, (44)

é

and

M*(6 n) — oe " 9_62’1” du
' 7 S fu+ 8w |

respectively, for some constants & and #, where error function erf(.)!'is given by

(45)

u

erf(u) = %/e"zdt.
g
0

This integral defined by and are often evaluated via numerical quadrature and useful in the studies of unsteady flow
near partially penetrating wells.

MG = 2Ly @' T(n + 3,51 + %)) "
’n = — 1 s
VI @+ DI+ 523

where I'(-, -) is the complementary incomplete gamma function defined in (3).

The expression on the r.h.s. of (46) can be written in terms of the incomplete exponential ,E, (x, @, f; v) function as,

o °°F(n+%,5(1+112))(%) QLN
M(3,1) = 7 - —,< 2) , (47)
Vit Ta+3) (;) nt \1+n
2 1 1>
- 2By 5(1+f12),1,1;< 1 2) (23 ,Vé,n>0, (48)

where , E,(-) is the generalized incomplete exponential ,E (x, a, f; v) function defined by .

(i(—52)"u”> du
n=0

Now, we can also represent the expression (3] as,

1
. Se™ [ e=m
M*(3,n) = —/
u
0

=] Vi

e (i) o v,
CVmES Te+) <_)n<"> nl

_ oe " lanz 1 11

\/”—nzeo 2y

where ,e(-) is the generalized incomplete exponential ,e,(x, a, #; v) function defined by .

(1)
2 , V6 >0,n>1,
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4.2 | Application to probability theory

The Poisson process are appropiate models which are used in counting process. The generalized Poisson process and their dis-
tribution are generally useful in ecological modelling and are applied to biostatistical data. Ecological and genetical problems
are commonly used in counting processes. Under some basic assumptions, Poisson process can represent a perfect theory. For
further details, see®1%. By modification of Poisson process, Janardan® and Janardan et al.'# established a continuous time
Markov chain { X (¢) : ¢ > 0} with X(0) = O and derived a integral representation which is very useful to derive the moments
and other properties of probability mass function.

Janardan et al.'¥ studied a stochastic process { X () : t > 0} through the probability mass function given by

Py(t) =e™", (49)

n—1

pH , @ (4 — p)it
P()= T eTH - 5, 50
(1) =) e e I;) 0 (50)

wheren > 1,4 >0, u > 0.

Consider the transition probabilities in the following form:

. P{Xt+h)=jlX1®) =i} p, if j=i+1
lim =</ (5D
h—0 h 0 if j#i+1.
Using these basic assumption as defined by (51)), an integral representation corresponding to (50) can be defined as
t
n—1,—pt
P, = ¢ /u”_le_(”_")“ du, (52)
(n—1)!

0

by assuming p; = p for j =0and p; = u, Vj = 1,2, .... For details seelld,

During last few decades, many researchers connected these models to some special functions which help us to establish the
properties in stochastic processes. PrabhakarlZ, Saxena et al.'® and Haubold et al.'2 established various generalization with
applications. Here, we establish a connection of with generalized incomplete exponential ,R (a, f; z) function in the form
of Theorem 13

Theorem 13. Let { X(¢) : # > 0} be a continuous time Markov chain with X (0) = 0 and the transition probabilities as in (51)).
Then, (52)) can be derived in terms of generalized incomplete exponential function as

0; 21 :]. (53)

p
P(t)=— -, 1,
n( ) P 0€0 l(ﬂ p)

Proof. From the integral representation (52), we have

t

_ p'“n_le_pt n—1_,—(u—pu
Pn(t) = W u e du
0

(u—p)t

n—1,—pt
e 1
= £E x"le™ dx

n=1! (u—p)y

_ ey, (u—p)t)
(n—1)! (u—p)

_oNrmu=pn [ p \" o)
B ygf) I(n) < > n!

H—=0p

p put
— 0€0 m=pt, 1,0, ——
H pP—H
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where e (-) is the generalized incomplete exponential e, (x, @, f; v) function defined by . This completes the proof. O

4.3 | Applications to non central chi-square distribution

The non-central chi-square distribution plays an important role in the area of statistics and applied mathematics. It have
significant used in structural equation modeling (SEM). Many researchers used the noncentral chi-square distribution in the
construction of fit indices, such as Steiger and LindaAZs2!' Root Mean Square Error of Approximation (RMSEA) and for the
computation of statistical power for model hypothesis testing.

Consider the independent random variables (Y1 .Y,,....Y,) that are normally distributed with means 4, and unit variances.
Then, the random variables

i (Y, +4,)°
i=1

distributed according to the non central chi-square distribution which depends on 4, 4,, ..., 4, only through the sum of their
squares. It is known as the non central chi-square distribution with v degree of freedom and u which defines the mean of random
variable by y = Z,.Vzl A;. Sometimes p called the non centrality parameter. The probability density function of the chi-square
distribution'> is given by

— Lty & i Z4i—1
e 2 U 12
Frievon = e ¥ (B) ——. (54)
= i (g +1)
1 _w (¢ B
fy@v,p) = Se? P Jr_ (W un), (55)
where J (x) is the Bessel function of the first kind of order Vel
Venables?* gave the representation of above probability density function,
_x v ut e_% 27!
fravan=e oF (=55 ) S, (56)
2:1(3)

where , F(-) is the hypergeometric function.

On utilizing the Venables representation for chi-square distribution, Chaudhry and Qadir? gave the cumulative density
function as,

F(t;v, p) = —— /ui"e‘i oF (—i3: 5 ) du,

v 2’
22F(2) 0
H ! o
= _e 2V /ug_le_g Z I (%) l'du,
2:1(%) J = (2>

t
= ¢ - 3 ! (%) %/u"*’%_le—%du. (57)
2 0

Substituting g =7in li transforms the representation
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where (e () is the generalized incomplete exponential ,e,(x, a, #; v) function defined by .

S | CONCLUSION

In this article, we have established the generalization of qu(a, f; z) function in terms of incomplete exponential functions.
We also found several interesting properties and generating relations of ,R,(a, f; z) incomplete exponential functions. Some
applications related to area of ground water pumping modelling and probability theory have also been established.
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