REFERENCES
Abeledo L.G., Savin R. & Slafer G. A. (1999). Effect of temperature and
carpel size during pre-anthesis on potential grain weight in wheat.Journal of Agricultural Science, 132(6), 453-459
Alam M.A., Seetharam K., Zaidi P.H., Dinesh A., Vinayan M.T. & Nath
U.K. (2017). Dissecting heat stress tolerance in tropical maize
(Zea mays L.). Field Crops Research, 204, 110-119
Amjikarai R.N.K., Chenniappan V. & Dhashnamurthi V. (2018). Combined
effects of drought and moderately high temperature?on the
photosynthesis, ps ii photochemistry and yield traits in rice
(oryza sativa l.). Indian Journal of Plant Physiology.https:// doi:10.1007/s40502-018-0386-4
Bassetti P. & Westgate M.E. (1993).
Water
deficit affects receptivity of maize silks. Crop Science, 33(2)
Burle G. Gengenbach, & Robert J. Jones. (1994). In vitro Culture of
Maize Kernels. The Maize Handbook. Springer New York.
Bonfante A., Monaco E., Alfieri S.M., De L.F., Manna P., Basile A. &
Bouma J. (2015). Climate change effects on the suitability of an
agricultural area to maize cultivation: application of a new hybrid land
evaluation system. In Advances in Agronomy, 133, 33-69
Calderini D.F., Savin R., Abeledo L.G., Reynolds M.P. & Slafer G.A.
(2001). The importance of the period immediately preceding anthesis for
grain weight determination in wheat. Euphytica, 119(1-2), 199-204
Cristina U., Daniel F., Calderini & Gustavo A.S. (2007). Grain weight
and grain number responsiveness to pre-anthesis temperature in wheat,
barley and triticale. Field Crops Research, 100(2–3), 240-248
Cicchino M., Edreira J.I. & Otegui M.E. (2010). Heat stress during late
vegetative growth of maize: effects on phenology and assessment of
optimum temperature. Crop science, 50(4), 1431-1437
Chen T., Xu Y., Wang J., Wang Z., Yang J. & Zhang J. (2013). Polyamines
and ethylene interact in rice grains in response to soil drying during
grain filling. Journal of experimental botany, 64(8), 2523-2538
Dai A., Trenberth K.E., & Qian T. (2004). A global dataset of Palmer
Drought Severity Index for 1870–2002: Relationship with soil moisture
and effects of surface warming. Journal of Hydrometeorology,5(6), 1117-1130
Dresselhaus T. & Franklin-Tong N. (2013). Male–female crosstalk during
pollen germination, tube growth and guidance, and double fertilization.Molecular plant, 6(4), 1018-1036.
Egli D.B. (2004). Seed-fill duration and yield of grain crops.Advance in Agronomy, 83, 243–279.
Edreira J.I.R., Carpici E.B., Sammarro D. & Otegui M.E. (2011). Heat
stress effects around flowering on kernel set of temperate and tropical
maize hybrids. Field Crops Research, 123(2), 62-73
Gao Z., Liang X.G., Zhang L., Lin S., Zhao X., Zhou L.L., Shen S. &
Zhou S.L. (2017). Spraying exogenous 6-benzyladenine and brassinolide at
tasseling increases maize yield by enhancing source and sink capacity.
Field Crops Research.
Harrison M.T., Tardieu F., Dong Z., Messina C.D. & Hammer G.L. (2014).
Characterizing drought stress and trait influence on maize yield under
current and future conditions. Global change biology, 20(3),
867-878
Huang H., Xie S., Xiao Q., Wei B., Zheng L., Wang Y. & Hu Y. (2016).
Sucrose and ABA regulate starch biosynthesis in maize through a novel
transcription factor, zmEREB156. Scientific reports, 6, 27590
Hlaváová M., Klem K., Rapantová B., Novotná K., Urban O. & Hlavinka P.
(2018). Interactive effects of high temperature and drought stress
during stem elongation, anthesis and early grain filling on the yield
formation and photosynthesis of winter wheat. Field Crops
Research, 221, 182-195
Jones, R. J., Roessler, J., & Ouattar, S. (1985). Thermal Environment
During Endosperm Cell Division in Maize: Effects on Number of Endosperm
Cells and Starch Granules 1. Crop Science, 25(5) , 830-834
Keeling, P. L., Bacon, P. J., & Holt, D. C. (1993). Elevated
temperature reduces starch deposition in wheat endosperm by reducing the
activity of soluble starch synthase. Planta, 191(3), 342-348
Kato T. (1995). Change of sucrose synthase activity in developing
endosperm of rice cultivars. Crop Science, 35(3) , 827-831.
Lesk C, Rowhani P. & Ramankutty N. (2016). Influence of extreme weather
disasters on global crop production. Nature, 529(7584), 84-87.
Lindsey A.J., Barker D.J., Metzger J.D., Mullen R.W. & Thomison P.R.
(2018). Physiological and morphological response of a drought-tolerant
maize hybrid to agronomic management. Agronomy Journal , 110(4),
1354-.
Lizaso J.I., Ruiz-Ramos M., L. Rodríguez, Gabaldon-Leal C., Oliveir J.A.
& Lorite I.J. (2018). Impact of high temperatures in maize: phenology
and yield components. Field Crops Research, 216, 129-140
Marceau A., Saint-Jean S., Loubet B., Foueillassar X. & Huber L.
(2012). Biophysical characteristics of maize pollen: variability during
emission and consequences on cross-pollination risks. Field Crops
Research, 127(1), 51-63
Mayer L.I., Rattalino Edreira, J.I. & Maddonni G.A. (2014). Oil yield
components of maize crops exposed to heat stress during early and late
grain-filling stages. Crop Science, 54(5), 2236-2250
Nakamura Y., Yuki K., Park S.Y. & Ohya T. (1989). Carbohydrate
metabolism in the developing endosperm of rice grains. Plant and
cell physiology, 30(6), 833-839.
Nakamura Y. & Yuki K. (1992) Changes in enzyme activities associated
with carbohydrate metabolism during development of rice endosperm.Plant Science, 82, 15-20
Neiff Nicolás, Trachsel S., Valentinuz O.R., Balbi C.N. & Andrade F.H.
(2016). High temperatures around flowering in maize: effects on
photosynthesis and grain yield in three genotypes. Crop Science,56(5), 2702
Oury V., Tardieu F. & Turc O. (2016). Ovary apical abortion under water
deficit is caused by changes in sequential development of ovaries and in
silk growth rate in maize. Plant Physiology, 171(2), 986-996
Oury V., Caldeira C.F., Prodhomme D., Pichon J.P., Gibon Y., Tardieu F.
& Turc O. (2016). Is change in ovary carbon status a cause or a
consequence of maize ovary abortion in water deficit during flowering?.Plant physiology, 171(2), 997-1008
Preiss J. (1988). Biosynthesis of starch and its regulation. The
biochemistry of plants, 14, 181-254
Plaut Z., Butow B.J., Blumenthal C.S. & Wrigley C.W. (2004). Transport
of dry matter into developing wheat kernels and its contribution to
grain yield under post-anthesis water deficit and elevated temperature.Field Crops Research, 86(2-3), 185-198.
Royo C., Abaza M., Blanco R. & García del Moral, Luis F. (2000).
Triticale grain growth and morphometry as affected by drought stress,
late sowing and simulated drought stress. Functional Plant
Biology, 27(11), 1051
Ruan Y.L., Jin Y., Yang Y.J., Li G.J. & Boyer J.S. (2010). Sugar input,
metabolism, and signaling mediated by invertase: roles in development,
yield potential, and response to drought and heat. Molecular
Plant, 3(6), 942-955
Rossini M.A., Maddonni G.A. & Otegui M.E. (2016). Multiple abiotic
stresses on maize grain yield determination: additive vs multiplicative
effects. Field Crops Research, 198, 280-289
Schussler J.R., Brenner M.L. & Brun W.A. (1991). Relationship of
endogenous abscisic acid to sucrose level and seed growth rate of
soybeans. Plant Physiology, 96(4), 1308-1313
Smith A.M. & Denyer K.A.Y. (1992). Starch synthesis in developing pea
embryos. New phytologist, 122(1), 21-33
Singletary G.W., Banisadr R. & Keeling P.L. (1994). Heat stress during
grain filling in maize: effects on carbohydrate storage and metabolism.Functional Plant Biology, 21.
Savin R., Stone P. & Nicolas M. (1996). Responses of grain growth and
malting quality of barley to short periods of high temperature in field
studies using portable chambers. Australian Journal of
Agricultural Research, 47(3), 465
Singletary G.W., Banisadr R. & Keeling P. L. (1997). Influence of gene
dosage on carbohydrate synthesis and enzymatic activities in endosperm
of starch-deficient mutants of maize. Plant physiology , 113(1),
293-304
Sheffield J., Wood E.F. & Roderick M.L. (2012). Little change in global
drought over the past 60 years. Nature, 491(7424), 435-438
Sánchez B., Rasmussen A. & Porter J.R. (2014). Temperatures and the
growth and development of maize and rice: a review. Global change
biology, 20(2), 408-417.
Sehgal A., Sita K., Bhandari K., Kumar S., Kumar J. & Vara Prasad P.V.
(2018). Influence of drought and heat stress, applied independently or
in combination during seed development, on qualitative and quantitative
aspects of seeds of lentil (\r, lens
culinaris\r, medikus) genotypes, differing in
drought-sensitivity. Plant Cell & Environment.https://doi:10.1111/pce.13328
Shen S., Zhang L., Liang X.G., Zhao X., Lin S., Qu L.H. & Zhou S.L.
(2018). Delayed pollination and low availability of assimilates are
major factors causing maize kernel abortion. Journal of
experimental botany, 69(7), 1599-1613
Westgate M.E. (1994). Water status
and development of the maize endosperm and embryo during drought.Crop Science, 34(1), 76-83
Wilhelm E.P., Mullen R.E., Keeling P.L. & Singletary G.W. (1999). Heat
stress during grain filling in maize: effects on kernel growth and
metabolism. Crop science, 39(6), 1733-1741
Waha K., Müller C. & Rolinski S. (2013). Separate and combined effects
of temperature and precipitation change on maize yields in sub-saharan
africa for mid- to late-21st century. Global and Planetary
Change, 106, 1-12
Wang X., Marija V., Dong J., Susanne J. & Bernd W. (2014). Improved
tolerance to drought stress after anthesis due to priming before
anthesis in wheat (triticum aestivum l.) var. vinjett.Journal of Experimental Botany, 65, 22
Wang Q., Wu J., Lei T., He B., Wu Z., Liu M. & Liu D. (2014).
Temporal-spatial characteristics of severe drought events and their
impact on agriculture on a global scale. Quaternary
International, 349, 10-21
Wang Z., Xu Y., Chen T., Zhang H, Yang J. & Zhang J. (2015). Abscisic
acid and the key enzymes and genes in sucrose-to-starch conversion in
rice spikelets in response to soil drying during grain filling.Planta, 241(5), 1091-1107
Wang X., Vignjevic M., Liu F., Jacobsen S., Jiang D. & Wollenweber B.
(2015). Drought priming at vegetative growth stages improves tolerance
to drought and heat stresses occurring during grain filling in spring
wheat. Plant Growth Regulation, 75(3), 677-687
Wang L, Liao S., Huang S., Ming B., Meng Q. & Wang P. (2018).
Increasing concurrent drought and heat during the summer maize season in
Huang–Huai–Hai Plain, China. International Journal of
Climatology, 38(7), 3177-3190
Yang J., Zhang J., Wang Z., Zhu Q. & Wang W. (2001). Hormonal changes
in the grains of rice subjected to water stress during grain filling.Plant physiology, 127(1), 315-323
Yang J., Zhang J., Wang Z., Xu G. & Zhu Q. (2004). Activities of key
enzymes in sucrose-to-starch conversion in wheat grains subjected to
water deficit during grain filling. Plant physiology, 135(3),
1621-1629
Yang J. & Zhang J. (2006). Grain filling of cereals under soil drying.New phytologist, 169(2), 223-236
Zinselmeier C., Westgate M.E., Schussler J.R. & Jones R.J. (1995). Low
water potential disrupts carbohydrate metabolism in maize (Zea
mays L.) ovaries. Plant Physiology, 107(2), 385-391
Zinselmeier, & C. (1999). Starch and the control of kernel number in
maize at low water potentials. Plant Physiology, 121(1), 25-36.
Zhang H., Tan G., Yang L., Yang J., Zhang J. & Zhao B. (2009). Hormones
in the grains and roots in relation to post-anthesis development of
inferior and superior spikelets in japonica/indica hybrid rice.Plant Physiology and Biochemistry, 47(3), 195-204
Zhang P., Chen G.Y., Geng P., Gao Y., Zheng L., Zhang S.S., Wang P.
(2017). Effects of high temperature during grain filling period on
superior and inferior kernels’ development of different heat sensitive
maize varieties. Scientia Agricultura Sinica, 2017, 50 (11),
2061-2070.
Zhou H., Zhou G., He Q., Zhou L., &
Zhou M. (2019). Environmental explanation of maize specific leaf area
under varying water stress regimes. Environmental and Experimental
Botany, 171