REFERENCES
Abeledo L.G., Savin R. & Slafer G. A. (1999). Effect of temperature and carpel size during pre-anthesis on potential grain weight in wheat.Journal of Agricultural Science, 132(6), 453-459
Alam M.A., Seetharam K., Zaidi P.H., Dinesh A., Vinayan M.T. & Nath U.K. (2017). Dissecting heat stress tolerance in tropical maize (Zea mays L.). Field Crops Research, 204, 110-119
Amjikarai R.N.K., Chenniappan V. & Dhashnamurthi V. (2018). Combined effects of drought and moderately high temperature?on the photosynthesis, ps ii photochemistry and yield traits in rice (oryza sativa l.). Indian Journal of Plant Physiology.https:// doi:10.1007/s40502-018-0386-4
Bassetti P. & Westgate M.E. (1993). Water deficit affects receptivity of maize silks. Crop Science, 33(2)
Burle G. Gengenbach, & Robert J. Jones. (1994). In vitro Culture of Maize Kernels. The Maize Handbook. Springer New York.
Bonfante A., Monaco E., Alfieri S.M., De L.F., Manna P., Basile A. & Bouma J. (2015). Climate change effects on the suitability of an agricultural area to maize cultivation: application of a new hybrid land evaluation system. In Advances in Agronomy, 133, 33-69
Calderini D.F., Savin R., Abeledo L.G., Reynolds M.P. & Slafer G.A. (2001). The importance of the period immediately preceding anthesis for grain weight determination in wheat. Euphytica, 119(1-2), 199-204
Cristina U., Daniel F., Calderini & Gustavo A.S. (2007). Grain weight and grain number responsiveness to pre-anthesis temperature in wheat, barley and triticale. Field Crops Research, 100(2–3), 240-248
Cicchino M., Edreira J.I. & Otegui M.E. (2010). Heat stress during late vegetative growth of maize: effects on phenology and assessment of optimum temperature. Crop science, 50(4), 1431-1437
Chen T., Xu Y., Wang J., Wang Z., Yang J. & Zhang J. (2013). Polyamines and ethylene interact in rice grains in response to soil drying during grain filling. Journal of experimental botany, 64(8), 2523-2538
Dai A., Trenberth K.E., & Qian T. (2004). A global dataset of Palmer Drought Severity Index for 1870–2002: Relationship with soil moisture and effects of surface warming. Journal of Hydrometeorology,5(6), 1117-1130
Dresselhaus T. & Franklin-Tong N. (2013). Male–female crosstalk during pollen germination, tube growth and guidance, and double fertilization.Molecular plant, 6(4), 1018-1036.
Egli D.B. (2004). Seed-fill duration and yield of grain crops.Advance in Agronomy, 83, 243–279.
Edreira J.I.R., Carpici E.B., Sammarro D. & Otegui M.E. (2011). Heat stress effects around flowering on kernel set of temperate and tropical maize hybrids. Field Crops Research, 123(2), 62-73
Gao Z., Liang X.G., Zhang L., Lin S., Zhao X., Zhou L.L., Shen S. & Zhou S.L. (2017). Spraying exogenous 6-benzyladenine and brassinolide at tasseling increases maize yield by enhancing source and sink capacity. Field Crops Research.
Harrison M.T., Tardieu F., Dong Z., Messina C.D. & Hammer G.L. (2014). Characterizing drought stress and trait influence on maize yield under current and future conditions. Global change biology, 20(3), 867-878
Huang H., Xie S., Xiao Q., Wei B., Zheng L., Wang Y. & Hu Y. (2016). Sucrose and ABA regulate starch biosynthesis in maize through a novel transcription factor, zmEREB156. Scientific reports, 6, 27590
Hlaváová M., Klem K., Rapantová B., Novotná K., Urban O. & Hlavinka P. (2018). Interactive effects of high temperature and drought stress during stem elongation, anthesis and early grain filling on the yield formation and photosynthesis of winter wheat. Field Crops Research, 221, 182-195
Jones, R. J., Roessler, J., & Ouattar, S. (1985). Thermal Environment During Endosperm Cell Division in Maize: Effects on Number of Endosperm Cells and Starch Granules 1. Crop Science, 25(5) , 830-834
Keeling, P. L., Bacon, P. J., & Holt, D. C. (1993). Elevated temperature reduces starch deposition in wheat endosperm by reducing the activity of soluble starch synthase. Planta, 191(3), 342-348
Kato T. (1995). Change of sucrose synthase activity in developing endosperm of rice cultivars. Crop Science, 35(3) , 827-831.
Lesk C, Rowhani P. & Ramankutty N. (2016). Influence of extreme weather disasters on global crop production. Nature, 529(7584), 84-87.
Lindsey A.J., Barker D.J., Metzger J.D., Mullen R.W. & Thomison P.R. (2018). Physiological and morphological response of a drought-tolerant maize hybrid to agronomic management. Agronomy Journal , 110(4), 1354-.
Lizaso J.I., Ruiz-Ramos M., L. Rodríguez, Gabaldon-Leal C., Oliveir J.A. & Lorite I.J. (2018). Impact of high temperatures in maize: phenology and yield components. Field Crops Research,  216, 129-140
Marceau A., Saint-Jean S., Loubet B., Foueillassar X. & Huber L. (2012). Biophysical characteristics of maize pollen: variability during emission and consequences on cross-pollination risks. Field Crops Research,  127(1), 51-63
Mayer L.I., Rattalino Edreira, J.I. & Maddonni G.A. (2014). Oil yield components of maize crops exposed to heat stress during early and late grain-filling stages. Crop Science, 54(5), 2236-2250
Nakamura Y., Yuki K., Park S.Y. & Ohya T. (1989). Carbohydrate metabolism in the developing endosperm of rice grains. Plant and cell physiology, 30(6), 833-839.
Nakamura Y. & Yuki K. (1992) Changes in enzyme activities associated with carbohydrate metabolism during development of rice endosperm.Plant Science, 82, 15-20
Neiff Nicolás, Trachsel S., Valentinuz O.R., Balbi C.N. & Andrade F.H. (2016). High temperatures around flowering in maize: effects on photosynthesis and grain yield in three genotypes. Crop Science,56(5), 2702
Oury V., Tardieu F. & Turc O. (2016). Ovary apical abortion under water deficit is caused by changes in sequential development of ovaries and in silk growth rate in maize. Plant Physiology, 171(2), 986-996
Oury V., Caldeira C.F., Prodhomme D., Pichon J.P., Gibon Y., Tardieu F. & Turc O. (2016). Is change in ovary carbon status a cause or a consequence of maize ovary abortion in water deficit during flowering?.Plant physiology, 171(2), 997-1008
Preiss J. (1988). Biosynthesis of starch and its regulation. The biochemistry of plants, 14, 181-254
Plaut Z., Butow B.J., Blumenthal C.S. & Wrigley C.W. (2004). Transport of dry matter into developing wheat kernels and its contribution to grain yield under post-anthesis water deficit and elevated temperature.Field Crops Research, 86(2-3), 185-198.
Royo C., Abaza M., Blanco R. & García del Moral, Luis F. (2000). Triticale grain growth and morphometry as affected by drought stress, late sowing and simulated drought stress. Functional Plant Biology, 27(11), 1051
Ruan Y.L., Jin Y., Yang Y.J., Li G.J. & Boyer J.S. (2010). Sugar input, metabolism, and signaling mediated by invertase: roles in development, yield potential, and response to drought and heat. Molecular Plant, 3(6), 942-955
Rossini M.A., Maddonni G.A. & Otegui M.E. (2016). Multiple abiotic stresses on maize grain yield determination: additive vs multiplicative effects. Field Crops Research,  198, 280-289
Schussler J.R., Brenner M.L. & Brun W.A. (1991). Relationship of endogenous abscisic acid to sucrose level and seed growth rate of soybeans. Plant Physiology, 96(4), 1308-1313
Smith A.M. & Denyer K.A.Y. (1992). Starch synthesis in developing pea embryos. New phytologist, 122(1), 21-33
Singletary G.W., Banisadr R. & Keeling P.L. (1994). Heat stress during grain filling in maize: effects on carbohydrate storage and metabolism.Functional Plant Biology, 21.
Savin R., Stone P. & Nicolas M. (1996). Responses of grain growth and malting quality of barley to short periods of high temperature in field studies using portable chambers. Australian Journal of Agricultural Research, 47(3), 465
Singletary G.W., Banisadr R. & Keeling P. L. (1997). Influence of gene dosage on carbohydrate synthesis and enzymatic activities in endosperm of starch-deficient mutants of maize. Plant physiology , 113(1), 293-304
Sheffield J., Wood E.F. & Roderick M.L. (2012). Little change in global drought over the past 60 years. Nature, 491(7424), 435-438
Sánchez B., Rasmussen A. & Porter J.R. (2014). Temperatures and the growth and development of maize and rice: a review. Global change biology, 20(2), 408-417.
Sehgal A., Sita K., Bhandari K., Kumar S., Kumar J. & Vara Prasad P.V. (2018). Influence of drought and heat stress, applied independently or in combination during seed development, on qualitative and quantitative aspects of seeds of lentil (\r, lens culinaris\r, medikus) genotypes, differing in drought-sensitivity. Plant Cell & Environment.https://doi:10.1111/pce.13328
Shen S., Zhang L., Liang X.G., Zhao X., Lin S., Qu L.H. & Zhou S.L. (2018). Delayed pollination and low availability of assimilates are major factors causing maize kernel abortion. Journal of experimental botany, 69(7), 1599-1613
Westgate M.E. (1994). Water status and development of the maize endosperm and embryo during drought.Crop Science, 34(1), 76-83
Wilhelm E.P., Mullen R.E., Keeling P.L. & Singletary G.W. (1999). Heat stress during grain filling in maize: effects on kernel growth and metabolism. Crop science, 39(6), 1733-1741
Waha K., Müller C. & Rolinski S. (2013). Separate and combined effects of temperature and precipitation change on maize yields in sub-saharan africa for mid- to late-21st century. Global and Planetary Change,  106, 1-12
Wang X., Marija V., Dong J., Susanne J. & Bernd W. (2014). Improved tolerance to drought stress after anthesis due to priming before anthesis in wheat (triticum aestivum l.) var. vinjett.Journal of Experimental Botany, 65, 22
Wang Q., Wu J., Lei T., He B., Wu Z., Liu M. & Liu D. (2014). Temporal-spatial characteristics of severe drought events and their impact on agriculture on a global scale. Quaternary International, 349, 10-21
Wang Z., Xu Y., Chen T., Zhang H, Yang J. & Zhang J. (2015). Abscisic acid and the key enzymes and genes in sucrose-to-starch conversion in rice spikelets in response to soil drying during grain filling.Planta, 241(5), 1091-1107
Wang X., Vignjevic M., Liu F., Jacobsen S., Jiang D. & Wollenweber B. (2015). Drought priming at vegetative growth stages improves tolerance to drought and heat stresses occurring during grain filling in spring wheat. Plant Growth Regulation, 75(3), 677-687
Wang L, Liao S., Huang S., Ming B., Meng Q. & Wang P. (2018). Increasing concurrent drought and heat during the summer maize season in Huang–Huai–Hai Plain, China. International Journal of Climatology, 38(7), 3177-3190
Yang J., Zhang J., Wang Z., Zhu Q. & Wang W. (2001). Hormonal changes in the grains of rice subjected to water stress during grain filling.Plant physiology, 127(1), 315-323
Yang J., Zhang J., Wang Z., Xu G. & Zhu Q. (2004). Activities of key enzymes in sucrose-to-starch conversion in wheat grains subjected to water deficit during grain filling. Plant physiology, 135(3), 1621-1629
Yang J. & Zhang J. (2006). Grain filling of cereals under soil drying.New phytologist, 169(2), 223-236
Zinselmeier C., Westgate M.E., Schussler J.R. & Jones R.J. (1995). Low water potential disrupts carbohydrate metabolism in maize (Zea mays L.) ovaries. Plant Physiology, 107(2), 385-391
Zinselmeier, & C. (1999). Starch and the control of kernel number in maize at low water potentials. Plant Physiology, 121(1), 25-36.
Zhang H., Tan G., Yang L., Yang J., Zhang J. & Zhao B. (2009). Hormones in the grains and roots in relation to post-anthesis development of inferior and superior spikelets in japonica/indica hybrid rice.Plant Physiology and Biochemistry, 47(3), 195-204
Zhang P., Chen G.Y., Geng P., Gao Y., Zheng L., Zhang S.S., Wang P. (2017). Effects of high temperature during grain filling period on superior and inferior kernels’ development of different heat sensitive maize varieties. Scientia Agricultura Sinica, 2017, 50 (11), 2061-2070.
Zhou H., Zhou G., He Q., Zhou L., & Zhou M. (2019). Environmental explanation of maize specific leaf area under varying water stress regimes. Environmental and Experimental Botany, 171