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Abstract

The nano/microelectromechanical systems (N/MEMS) have been caught much attention in the past few decades for their attractive properties such as small size, high reliability, batch fabrication, and low power consumption. The dynamic oscillatory behavior of these systems is very complex due to strong nonlinearities in these systems. The basic aim of this manuscript is to investigate the nonlinear vibration property of N/MEMS oscillators by the homotopy perturbation method coupled with Laplace transform (also called as He-Laplace method in literature). A generalized N/MEMS oscillator is systematically studied, and a fairly accurate analytic solution is obtained. Three special cases for electrically actuated MEMS, multi-walled Carbon nanotubes-based MEMS, and MEMS subjected to van der Waals attraction are considered for comparison, and a good agreement with exact solutions is observed. 
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1.  Introduction

Nonlinear vibration occurs everywhere from a molecule’s vibration to the earthquake, and the vibration property plays an important role in nanotechnology[1-10], for example, the attachment oscillation for controllable fabrication of nanofiber membranes[11,12],  Fangzhu’s oscillation for water collection from air[13],  capillary oscillation for moisture transfer[14,15], and release oscillation for ions delivery[16,17]. Recently much attention has been paid on the vibration problem of nanotubes within nano structures/systems due to rapid development of nanotechnology[18-31].  The existence criterion for a periodic solution and its solution property play a critical role in performance and design of nano/microelectromechanical systems (N/MEMS). Much effort has been paid to analytical approach to their approximate solutions because their exact solutions are very difficult to be obtained and the numerical methods can not reveal explicitly the nonlinear frequency-amplitude relationship. So far there are many analytical methods available in open literature to solve N/MEMS oscillators, for example, the variational iteration method [32-35], the energy balance method [36], the iteration perturbation method [37-39] , the  residual harmonic balance method [40], the Hamiltonian approach [41], the parameter expansion method [42,43], the Adomian decomposition method [44], the residual power series method [45], the frequency formulation[46,47] and so on[48-50].
The homotopy perturbation method [51] has been engaged to solve a large variety of nonlinear problems and it is extremely efficient for highly nonlinear problems [52-58]. This method is to express the solution in a series, which converges quickly to the exact solution. The most significant feature of this method that a single iteration always leads to the high accuracy of the solution, making the method much attractive in practical applications. Due to this advantage, we hybridize this method with Laplace transform to find the solution of the oscillatory problem with only two perturbation terms.
Laplace transform is common to all students, but it is appropriate only for linear equations. Gondal and Khan [59] first coupled the homotopy perturbation method with the Laplace transform, and this hybrid technology is now broadly used in nonlinear differential equations and fractional and/or fractal calculus, and the technique is commonly termed as He-Laplace method [60-65].
In this manuscript, under certain conditions, a generalized N/MEMS oscillatory system represented with a second-order nonlinear differential equation reduces to different problems such as electrically actuated N/MEMS, van der Waals force-based N/MEMS, multi-walled carbon nanotubes-based MEMS, etc. The homotopy perturbation Laplace transform method (HPLTM), or He-Laplace method, is applied to obtain the amplitude-frequency relationship of this generalized oscillatory system and hence to get generalized analytic solutions to these problems for the different cases. We compare the results of the He-Laplace method to those obtained from MATLAB using the Runge-Kutta method of order four (RK4) and other well-known methods to ensure its effectiveness.

2.  Basic concept of He-Laplace method for nonlinear oscillators

Consider the following general nonlinear oscillator

										(1)

									(2)
We can re-express Eq. (1) in the form 

									(3)

where .
As g(u) consists of a linear term, we write Eq. (3) in the form

								(4)





where is the linear part and is the nonlinear part of ,  is the angular frequency of the oscillatory system and  is an inhomogeneous term. Now apply Laplace transform to both sides of the Eq. (4):



					(5)
Inverse Laplace transform of Eq. (5) yields

			(6)

According to the standard homotopy perturbation method [51], the solution  can be expanded 

							
and Eq. (6) has the form

		(7)


where  is an embedding parameter. Also the nonlinear term can be written as

										(8)

where  are the He’s polynomials [66] and can be generated by the recursive formula

			(9)
By substituting Eq. (8) in Eq. (7), the solution can be expressed as

	(10)

Comparing the coefficients of like powers of, we have

									(11)

		(12)

		(13)



As , we can express the approximate solution is

						(14)

Although we can use  to find the approximate solution of oscillatory system but for simplicity we use only Eq. (11) and Eq. (12) to show the solution process. In this scenario, Eq. (12) will express in its simple form as

						(15)



From above Eq. (15), we can obtain a relationship between  and  by the request for no secular terms in  .

3.  Applications
	
In this section, we present a general oscillatory problem for N/MEMS to illustrate the idea explained in Section 2 followed by the special cases of this general system. 
Consider the following nonlinear homogenous differential equation which describes many oscillators of N/MEMS [35-36,39-43] used in nanoscience and nanotechnology.

	(16)


where  are coefficients obtained from transformation of partial differential equation to ordinary differential equation by means of  Galerkin method. Dividing Eq. (16) by  yields

	   (17)


where  for . We can rewrite Eq. (17) as

										(18)
where 	

					
Applying Laplace transform to each side of Eq. (18), we have


or

	
Taking inverse Laplace transform on each sides of above equation yields

	(19)
According to the homotopy perturbation method the solution can be expressed 

							
and Eq. (19) has the form

			(20)

where  are the He’s polynomials [66] that represents the nonlinear terms. 

Comparing the coefficients of like powers of, we have

									(21)





		(22)

where the coefficients  can be found in Appendix.
Upon solving Eq. (22) with Laplace and inverse Laplace operators, we have

			(23)

No secular-term requires that coefficient of equals to zero, thus

 											(24)
or

		
which yields to the result as follows

						(25)
and thus

				(26)
where 

	(27)
Using Eq. (21), Eq. (25) and Eq. (26), the first order approximate analytic solution of generalized equation Eq. (16) can be expressed as

				(28)
Hence, the approximate analytic frequency and corresponding analytic solution of general oscillatory Eq. (16) can be obtained from Eq. (25) and Eq. (28) respectively. 
Now we study different relevant cases of general vibratory system of N/MEMS expressed in Eq. (16).


3.1 CASE I: Electrically actuated MEMS

Consider the MEMS model of microbeam with electric excitation [36,41]. 

						(29)




where the coefficients  can be found in Appendix. Eq. (29) is solved with the help of energy balance method (EBM) [36] and higher order Hamiltonian approach [41]. This oscillatory equation can be achieved from Eq. (16) by setting the parameters,  and .
To apply proposed strategy discussed in above section, Eq. (29) can express in the form 

					(30)

where the coefficients . The amplitude-frequency relationship of this oscillator by using He-Laplace method can be obtained using Eq. (25) by substituting above mentioned parameters as

							(31)
which differs from the frequency calculated by EBM [36] as

							(32)
Thus the first order approximate analytic solution of equation Eq. (29) by using Eq. (28) as

	   		(33)
where 






Fig. 1 includes the results obtained from the He-Laplace method, numerical results using MATLAB, and those obtained by EBM [36]. Two sets of parameters are considered for the study. The left column shows the solution obtained from numerical results using MATLAB (blue line), EBM [36] (black line), and He-Laplace method from Eq. (33) (red line) and this comparison authenticates that the approximate analytical results from the He-Laplace method match exceptionally well with the computational results of RK4. We also map error against time for the same parameter values in the right column of Fig. 1. Black stars and red circles with solid lines indicate the error of EBM (difference of RK4 solution and EBM solution [36]) and error of the He-Laplace method (difference of RK4 solution and He-Laplace solution from Eq. (33)) respectively. Although both errors are small but all right side panels ensure the superiority of the He-Laplace method over EBM. It is also noted that as we increase the amplitude value, the error of EBM also increases but the error of the He-Laplace method is negligible.

 Fig 1: Comparison of solution and error between He-Laplace method and EBM with RK4

Fig. 2 displays the effect of change in solution due to variation in parameters of the problem. One of the listed parameters will change while three others remain constant.  The results achieved by the He-Laplace method can be seen to be in good agreement with those obtained by the RK4. This figure not only shows the consistency of the obtained analytic solution but also helpful in designing the electrically actuated N/MEMS.

Fig. 2: Effect of change in solution due to variation in parameters involved in Eq. (29)


3.2 CASE II: MEMS subjected to van der Waals attraction

Consider the MEMS model of microbeam induced by the van der Waals force [40]. 

			(34)




where the coefficients  can be found in Appendix. Eq. (34) is solved with the help of spreading residue harmonic balance method (SRHBM) [40]. This equation of motion can be achieved from Eq. (16) by setting the parameters   and . Eq. (34) can express in the form 

			(35)

where the coefficients . The nonlinear frequency of this oscillator by using the He-Laplace method can be achieved using Eq. (25) by employing above mentioned parameters as

									(36)
which is same as that of the first order frequency calculated by SRHBM [40]. The first order approximate analytic solution of equation Eq. (34) can be calculated as

	   (37)
where 

			(38)

Moreover, the coefficients  can be expressed as







,		




,	and	
Fig. 3 plots the variation in displacement and variations of errors for N/MEMS induced by van der Waals force. Displacement obtained from numerical results using MATLAB (blue line), the He-Laplace method (red line) Eq. (37) and SRHBM [40] (black line) with time for two sets of parameters in the left panel, confirms the accuracy of the proposed method. Errors of the He-Laplace method are represented with red circles with solid line and errors of SRHBM are represented with black stars with solid line against time for the values of the same parameter in the column on right determines that He-Laplace method is better than SRHBM. Moreover, in the left side panel, a visible difference can be seen on the trough part of the wave which appears in SRHBM but the proposed method matches exceptionally well in that part. These facts confirm the supremacy of the He-Laplace method over SRHBM.

Fig 3: Comparison of solution and error between He-Laplace method and SRHBM with RK4

Fig. 4 examines the effects of parameters of the problem on the obtained He-Laplace solution. One of the parameters listed will change while the remaining three are constant. The results achieved by the He-Laplace method can be seen to be in good agreement with those obtained by the RK4. This figure not only illustrates the consistency of the obtained analytic solution but also depicts the variation in the nonlinear frequency with the change in parameter values.

Fig. 4: Effect of change in solution due to variation in parameters involved in Eq. (34)
[bookmark: _GoBack]
3.3 CASE III: Multi-walled Carbon nanotubes based MEMS

Consider the nonlinear vibratory equation of motion [39,42]. 

								(39) 

where the coefficients  for the model of multi-walled Carbon nanotubes actuated electrically near graphite sheets can be found in [39].



This vibratory equation may be obtained from the generalized Eq. (16) by choosing ,  and . The frequency of this nonlinear oscillator by employing He-Laplace method may obtained from Eq. (25) substituting the parameters as mentioned above and can be written as

										(40)
The approximate analytic solution of Eq. (39) is obtained by HPLTM from Eq. (28) as

	   		(41)


where 


,		


,			

and 	
Both nonlinear frequency and analytic solution are same as that given by [39] obtained using the iteration perturbation method for multi-walled Carbon nanotubes model. Eqs. (40) and (41) are also identical with the results those achieved by parameter expansion method for the model of micro-beam actuated by electric field [42].

4.  Conclusion

A generalized oscillatory system for N/MEMS is reduced to highly nonlinear equations such as electrically excited MEMS, the motion of microbeam induced by the van der Waals force, multi-walled Carbon nanotubes bases MEMS, etc. Coupling of the homotopy perturbation method and Laplace transform is successfully applied to find the amplitude-frequency relationship as well as the approximate analytic solution of the generalized oscillatory problem of N/MEMS and its relevant systems. The proposed method of He-Laplace is simple and can give the analytic solution of nonlinear oscillators with fewer efforts in terms of computations but with high accuracy. The solution obtained from the proposed method converges very fast even the first-order approximation is enough for getting results with high accuracy. Results ensure the efficiency of the method and reveal that for the systems considered, He-Laplace gives better accuracy in comparison to other methods such as energy balance method and spreading residual harmonic balance method. The effect of parameters is also investigated to ensure the validity of the solution process. Consequently, this method can be applied to other nonlinear problems as well. Additionally, it can be also extended to nonlinear oscillators with fractal and/or fractional derivatives.

CONFLICT OF INTEREST: This work does not have any conflicts of interest. 

ORCID:  https://orcid.org/0000-0002-1636-0559

References 
1. Li XX, Qiang J, Wan YQ, Wang H, Gao W. The effect of sonic vibration on electrospun fiber mats. J Low Freq Noise V A. 2019;38(3-4):1246-1251. 
2. Zhao JH, Li XX, Liu Z. Needle's vibration in needle-disk electrospinning process: Theoretical model and experimental verification. . J Low Freq Noise V A. 2019;38(3-4):1338-1344. 
3. He JH. On the height of Taylor cone in electrospinning. Results Phys. 2020;17:103096 
4. He JH. Advances in Bubble Electrospinning. Recent Pat Nanotech. 2019;13(3):162- 163 DOI: 10.2174/187221051303191224144806
5. He JH, Liu YP. Bubble Electrospinning: Patents, Promises and Challenges. Recent Pat Nanotech.  2020;14(1):3-4.
6. Yu DN, Tian D, Zhou CJ, He JH. Wetting and super contraction properties of sider-based nanofiber. Therm Sci. 2019;23(4):2189-2193.   
7. Tian D, Zhou CJ, He JH. Sea-silk based nanofibers and their diameter prediction. Therm Sci. 2019;23(4):2253-2256.   
8. Tian D, Yu DN, Xu YM, et al. Electrospun Mussel-derived Silk Fibers. Recent Pat Nanotech. 2020;14(1):14-20.  
9. He CH, Shen Y, Ji FY, He JH. Taylor series solution for fractal Bratu-type equation arising in electrospinning process. Fractals. 2020;28(1):2050011  
10. Li XX, He JH. Bubble Electrospinning with an Auxiliary Electrode and an Auxiliary Air Flow. Recent Pat Nanotech. 2020;14(1):42-45. 
11. Li XX, He JH. Nanoscale adhesion and attachment oscillation under the geometric potential. Part 1: The formation mechanism of nanofiber membrane in the electrospinning. Results Phys. 2019;12:1405-1410.  
12. Li XX, Li YY, Li Y, He JH. Gecko-like adhesion in the electrospinning process. Results Phys. 2020;16102899
13. He CH, He JH, Sedighi HM. Fangzhu(方诸) : An ancient Chinese nanotechnology for water collection from air: history, mathematical insight, promises and challenges. Math Method Appl Sci. 2020: Article DOI: 10.1002/mma.6384
14. He JH, Jin X. A short review on analytical methods for the capillary oscillator in a nanoscale deformable tube. Math Method Appl Sci. 2020: Article DOI: 10.1002/mma.6321
15. [bookmark: _Hlk36471369]Jin X, Liu M, Pan F, Li Y, Fan J. Low frequency of a deforming capillary vibration, part 1: Mathematical model. J Low Freq Noise V A. 2019;38(3-4):1676-1680.  
16. Lin L, Yao SW. Release oscillation in a hollow fiber-Part 1: Mathematical model and fast estimation of its frequency. J Low Freq Noise V A. 2019;38(3-4):1703-1707.   
17. Liu HY, Li ZM, Yao YJ. A fractional nonlinear system for release oscillation of silver ions from hollow fibers. J Low Freq Noise V A. 2019;38(1):88-92.  
18. He JH, Nurakhmetov D , Skrzypacz P , Wei DM. Dynamic pull-in for micro-electromechanical device with a current-carrying conductor. J Low Freq Noise V A. 2020: DOI: 10.1177/1461348419847298
19. Ouakad HM, Sedighi HM. Static response and free vibration of MEMS arches assuming out-of-plane actuation pattern. Int J Nonlin Mech. 2019;110:44-57.
20. Shishesaz M, Shirbani MM, Sedighi HM, Hajnayeb A. Design and analytical modeling of magneto-electromechanical characteristics of a novel magneto-electro-elastic vibration-based energy harvesting system. J Sound Vib. 2018;425:149-169.
21. Moory-Shirbani M, Sedighi HM, Ouakad HM, et al. Experimental and mathematical analysis of a piezoelectrically actuated multilayered imperfect microbeam subjected to applied electric potential. Compos Struct. 2018;184:950-960.
22.  Ouakad HM, Sedighi HM, Younis MI. One-to-One and Three-to-One Internal Resonances in MEMS Shallow Arches. J Comput Nonlin Dyn. 2017;12(5):051025.   
23. Shirbani MM, Shishesaz M, Hajnayeb A, et al. Coupled magneto-electro-mechanical lumped parameter model for a novel vibration-based magneto-electro-elastic energy harvesting systems. Physica E. 2017;90:158-169.
24. Ouakad HM, Sedighi HM. Rippling effect on the structural response of electrostatically actuated single-walled carbon nanotube based NEMS actuators. Int J Nonlin Mech. 2106;87:97-108.
25. Sedighi HM, Moory-Shirbani M, Shishesaz M, Koochi A, Abadyan M. Size-Dependent Dynamic Behavior and Instability Analysis of Nano-Scale Rotational Varactor in the Presence of Casimir Attraction. Int J Appl Mech. 2016;8(2):1650018 
26. Sedighi HM, Daneshmand F, Abadyan M. Modeling the effects of material properties on the pull-in instability of nonlocal functionally graded nano-actuators. ZAMM-Z Angew Math Me. 2016;96(3):385-400. 
27. Cheng JL, Li K, Zhang Z, et al. The oscillating and electrostatic characteristics of microelectromechanical system cantilever structure analyzed based on the air gap domain. J Low Freq Noise V A. 2108;37(4):725-747.
28.  Gong QM, Liu CC, Xu Y, et al. Nonlinear vibration control with nanocapacitive sensor for electrostatically actuated nanobeam. J Low Freq Noise V A. 2108;37(2):235-252.
29. Sedighi HM, Ouakad HM, Dimitri R, Tornabene R. Stress-driven nonlocal elasticity for the instability analysis of fluid-conveying C-BN hybrid-nanotube in a magneto-thermal environment. Phys Scripta. 2020;95(6):065204
30. Sedighi HM, Malikan M. Stress-driven nonlocal elasticity for nonlinear vibration characteristics of carbon/boron-nitride hetero-nanotube subject to magneto-thermal environment. Phys Scripta. 2020;95(5):055218
31. Khatami, I, Zahedi, E, Zahedi, M. Efficient solution of nonlinear duffing oscillator. J Appl Comput Mech. 2020;6:219–234.
32. He JH, Latifizadeh H. A general numerical algorithm for nonlinear differential equations by the variational iteration method. Int J Numer Method H. 2020: DOI :10.1108/HFF-01-2020-0029
33. Tao ZL, Chen GH, Chen YH. Variational iteration method with matrix Lagrange multiplier for nonlinear oscillators. J Low Freq Noise V A. 2019;38(3-4):984-991. 
34. He JH. Variational principle and periodic solution of the Kundu–Mukherjee–Naskar equation. Results Phys. 2020, https://doi.org/10.1016/j.rinp.2020.103031
35. Mohammadiana M. Application of the variational iteration method to nonlinear vibrations of nanobeams induced by the van der Waals force under different boundary conditions. Eur Phys J Plus. 2017;132:169-181.
36. Fu Y , Zhang J, Wan L. Application of the energy balance method to a nonlinear oscillator arising in the microelectromechanical system (MEMS). Curr Appl Phys. 2011;11:482–485.
37. He JH. Iteration perturbation method for strongly nonlinear oscillations. J Vib Control. 2001;7(5):631-642.
38. Sedighi HM, Daneshmand F, Yaghootian A. Application of Iteration Perturbation Method in studying dynamic pull-in instability of micro-beams. Lat Am J Solids Stru. 2014;11(7):1078-1090. DOI:10.1590/S1679-78252014000700002
39. Sedighi HM, Daneshmand F. Static and dynamic pull-in instability of multi-walled carbon nanotube probes by He’s iteration perturbation method. J Mech Sci Technol. 2014;28(9):3459-3469. DOI:10.1007/s12206-014-0807-x
40. Qian YH, Pan JL, Qiang Y, Wang JS. The spreading residue harmonic balance method for studying the doubly clamped beam-type N/MEMS subjected to the van der Waals attraction. J Low Freq Noise V A. 2019;38(3–4):1261–1271. 
41. Sadeghzadeh S, Kabiri A. Application of Higher Order Hamiltonian Approach to the Nonlinear Vibration of Micro Electro Mechanical Systems. Lat Am J Solids Stru. 2016;13:478-497. http://dx.doi.org/10.1590/1679-78252557
42. Sedighi HM, Shirazi KH. Vibrations of micro-beams actuated by an electric field via Parameter Expansion Method. Acta Astronaut. 2013;85(C):19–24. DOI:10.1016/j.actaastro.2012.11.014
43. Sedighi HM, Reza A, Zare J. Using Parameter Expansion Method and Min-Max Approach for the Analytical Investigation of Vibrating Micro-Beams Pre-Deformed by an Electric Field. Adv Struct Eng. 2013;16(4):693-699. DOI:10.1260/1369-4332.16.4.681.
44. Kuang JH, Chen CJ, Adomian decomposition method used for solving nonlinear pull-in behavior in electrostatic micro-actuators. Math Comp Model. 2005;41:1479-1491.
45. Jena, Rajarama Mohan; Chakraverty, S. Residual Power Series Method for Solving Time-fractional Model of Vibration Equation of Large Membranes. J Appl Comput Mech. 2019;5(4):603-615.   
46. He JH. The simplest approach to nonlinear oscillators. Results Phys. 15(2019): 102546, DOI: 10.1016/j.rinp.2019.102546 
47. He JH. The simpler, the better: Analytical methods for nonlinear oscillators and fractional oscillators. J Low Freq Noise V A. 2019;38:1252-1260.
48. Ji FY, He CH, Zhang JJ, He JH. A fractal Boussinesq equation for nonlinear transverse vibration of a nanofiber-reinforced concrete pillar. Appl Math Model. 2020;82:437-448.
49. He JH, Ain QT. New promises and future challenges of fractal calculus: from two-scale Thermodynamics to fractal variational principle. Therm Sci. 2020;24(2A):659-681.  
50. He JH. A short review on analytical methods for to a fully fourth-order nonlinear integral boundary value problem with fractal derivatives. Int J Numer Method H. 2020: DOI (10.1108/HFF-01-2020-0060)
51. He JH. Homotopy perturbation technique. Comput Method Appl M. 1999;178:257-262.
52.  He JH. Some asymptotic methods for strongly nonlinear equations. Int J Mod Phys B. 2006;20:1141-1199.
53. Anjum N, Ain QT. Application of He’s fractional derivative and fractional complex transform for time fractional Camassa-Holm equation. Therm Sci. 2019: https://doi.org/10.2298/TSCI190930450A
54. El-Dib Y. Stability analysis of a strongly displacement time-delayed duffing oscillator using multiple scales homotopy perturbation method. J Appl Comput Mech. 2018;4:260–274.
55. Kuang W, Wang J, Huang CX, et al. Homotopy perturbation method with an auxiliary term for the optimal design of a tangent nonlinear packaging system. J Low Freq Noise V A. 2019;38(3-4):1075-1080.
56. Li XX, He CH. Homotopy perturbation method coupled with the enhanced perturbation method. J Low Freq Noise V A. 2019;38(3-4):1399-1403.  
57. Yu DN, He JH, Garcia AG. Homotopy perturbation method with an auxiliary parameter for nonlinear oscillators. J Low Freq Noise V A. 2019;38( 3-4):1540-1554. 
58. Sedighi HM, Daneshmand F. Nonlinear transversely vibrating beams by the homotopy perturbation method with an auxiliary term. J Appl Comput Mech. 2015;1(1):1-9. 
59. Gondal MA, Khan M. Homotopy Perturbation Method for Nonlinear Exponential Boundary Layer Equation using Laplace Transformation, He's Polynomials and Pade Technology. Int J Nonlinear Mech Num Simul. 2010;12:1145-1153. 
60. Prakash J, Kothandapani M, Bharath V. Numerical approximations of nonlinear fractional differential difference equations by using modified He-Laplace method. Alex Eng J. 2016;55:645-651.
61. Mishra HK, Nagar A. He-Laplace Method for Linear and Nonlinear Partial Differential Equations. J Appl Math. 2012: 180315.
62. Nadeem M, Li FQ. He-Laplace method for nonlinear vibration systems and nonlinear wave equations. J Low Freq Noise V A. 2019;38(3-4):1060-1074.
63. Suleman M, Lu D, Yue C, Rahman J, Anjum N.  He-Laplace method for general nonlinear periodic solitary solution of vibration equations. J Low Freq Noise V A. 2019;38(3-4):1297-1304.   
64. Li FQ, Nadeem M. He-Laplace method for nonlinear vibration in shallow water waves. J Low Freq Noise V A. 2019;38(3-4):1305-1313.
65. Wei CF. Solving time-space fractional Fitzhugh-Nagumo equation by using He-Laplace decomposition method. Therm Sci. 2018;22(4):1723-1728. 
66. Ghorbani A. Beyond Adomian polynomials: He polynomials. Chaos Soliton Fract. 2009;39;1486-1492.


APPENDIX

The coefficient of Eq. (22) are as follows:










,		


,		

The defined parameters in Eq. (29) for electrostatic force are as follows



,			,		,


,	,


,		



where  is the trail function and prime  represents the partial differentiation with respect to coordinate variable .

The defined parameters in Eq. (34) for van der Waals force are as follows 



,				,		,		



,				,			





,				



where  is the trail function and prime  represents the partial differentiation with respect to coordinate variable .
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