REFERENCES
- D. C. Rubinsztein, The roles of intracellular protein-degradation
pathways in neurodegeneration. Nature. 443 , 780-6 (2006).
- A. Dürr, G. Stevanin, G. Cancel, C. Duyckaerts, N. Abbas, O.
Didierjean, H. Chneiweiss, A. Benomar, O. Lyon-Caen, J. Julien, M.
Serdaru, C. Penet, Y. Agid, A. Brice, Spinocerebellar Ataxia 3 and
Machado-Joseph Disease: Clinical, Molecular, and NeuropathoIogicaI
Features. Ann Neurol. 39 , 490-9 (1996).
- C. Duyckaerts, B. Delatour, M. C. Potier, Classification and basic
pathology of Alzheimer disease. Acta Neuropathol. 118 , 5-36
(2009).
- A. Iwai, E. Masliah, M. Yoshimoto, The Precursor Protein of Non-Ap
Component of Alzheimer’s Disease Amyloid Is a Presynaptic Protein of
the Central Nervous System. Neuron. 14 , 467-75 (1995).
- L. A. Raymond, V. M. André, C. Cepeda, C. M. Gladding, A. J.
Milnerwood, M. S. Levine, Pathophysiology of Huntington’s Disease:
Time-Dependent Alterations in Synaptic and Receptor Function.
Neuroscience. 198 , 252-73 (2011).
- C. Soto, Unfolding the role of protein misfolding in neurodegenerative
diseases. Nat Rev Neurosci. 4 , 49-60 (2003).
- S. Yu , Y. Liang, J. Palacino, M. Difiglia, B. Lu, Drugging
unconventional targets: insights from Huntington’s disease. Trends
Pharmacol Sci. 35 , 53-62 (2014).
- A. S. Tsvetkov, M. Arrasate, S. Barmada, D. M. Ando, P. Sharma, B. A.
Shaby, S. Finkbeiner, Proteostasis of polyglutamine varies among
neurons and predicts neurodegeneration. Nat Chem Biol. 9 ,
586-92 (2013).
- A. Kakizuka, VCP, a major ATPase in the cells, as a novel target for
currently incurable disorders. Innovative Medicine: Basic Research and
Development.Tokyo: Springer (2015).
- H. Meyer, C. C. Weihl, The VCP/p97 system at a glance: connecting
cellular function to disease pathogenesis. J Cell Sci. 127 ,
3877-83 (2014).
- M. Bug, H. Meyer, Expanding into new markets-VCP/p97 in endocytosis
and autophagy.
J
Struct Biol. 179 , 78-82 (2012).
- E. Tresse, F. A. Salomons, J. Vesa, L. C. Bott, V. Kimonis, T. P. Yao,
N. P. Dantuma, J. P. Taylor, VCP/p97 is essential for maturation of
ubiquitin-containing autophagosomes and this function is impaired by
mutations that cause IBMPFD. Autophagy. 6 , 217-27 (2010).
- B. J. Van den, H. Meyer, VCP/p97-Mediated Unfolding as a Principle in
Protein Homeostasis and Signaling. Mol Cell. 69 , 182-194
(2018).
- M. Hirabayashi, K. Inoue, K. Tanaka, K. Nakadate, Y. Ohsawa, Y. Kamei,
A. H. Popiel, A. Sinohara, A. Iwamatsu, Y. Kimura, Y. Uchiyama, S.
Hori, A. Kakizuka, VCP/p97 in abnormal protein aggregates, cytoplasmic
vacuoles, and cell death, phenotypes relevant to neurodegeneration.
Cell Death Differ. 8 ,977-84 (2001).
- K. Fujita, Y. Nakamura Y, T. Oka, H. Ito, T. Tamura, K. Tagawa, T.
Sasabe, A. Katsuta, K. Motoki, H. Shiwaku, M. Sone, C. Yoshida, M.
Katsuno, Y. Eishi, M. Murata, J. P. Taylor, E. E. Wanker, K. Kono, S.
Tashiro, G. Sobue, A. R. La Spada, H. Okazawa, A functional deficiency
of TERA/VCP/p97 contributes to impaired DNA damage repair in multiple
polyglutamine diseases. Nat Commun. 4 , 1816 (2013).
- H. Yang, J. J. Li, S. Liu, J. Zhao, Y. J. Jiang, A. X. Song, H. Y. Hu,
Aggregation of polyglutamine-expanded ataxin-3 sequesters its specific
interacting partners into inclusions: Implication in a
loss-of-function pathology. Sci Rep. 4 , 6410 (2014).
- B. Levine, G. Kroemer, Biological Functions of Autophagy Genes: A
Disease Perspective. Cell. 176 , 11-42 (2019).
- F. M. Menzies, A. Fleming, A. Caricasole,C. F. Bento, S. P. Andrews,
A. Ashkenazi, J. Füllgrabe, A. Jackson, M. Jimenez Sanchez, C.
Karabiyik, F. Licitra, A. Lopez Ramirez, M. Pavel, C. Puri, M. Renna,
T. Ricketts, L. Schlotawa, M. Vicinanza, H. Won, Y. Zhu, J. Skidmor,
D. C. Rubinsztein,
Autophagy and
Neurodegeneration: Pathogenic Mechanisms and Therapeutic
Opportunities. Neuron. 93 , 1015-1034 (2017).
- S. Sarkar, D. C. Rubinsztein, Huntington’s disease: degradation of
mutant huntingtin by autophagy. FEBS J. 275 , 4263-70 (2008).
- D. C. Rubinsztein, P. Codogno, B. Levine, Autophagy modulation as a
potential therapeutic target for diverse diseases. Nat Rev Drug
Discov. 11 , 709-30 (2012).
- M. Jimenez-Sanchez, F. Thomson, E. Zavodszky, D. C. Rubinsztein,
Autophagy and polyglutamine diseases. Prog Neurobiol. 97 ,
67-82 (2012).
- H. He, Y. Dang, F. Dai, Z. Guo, J. Wu, X. She, Y. Pei, Y. Chen,W.
Ling, C. Wu, S. Zhao, J. O. Liu, L. Yu, Post-translational
modifications of three members of the human MAP1LC3 family and
detection of a novel type of modification for MAP1LC3B. J Biol Chem.278 , 29278-87 (2003).
- S. Pankiv, T. H. Clausen, T. Lamark, A. Brech, J. A. Bruun, H. Outzen,
A. Øvervatn, G. Bjørkøy, T. Johansen, p62/SQSTM1 Binds Directly to
Atg8/LC3 to Facilitate Degradation of Ubiquitinated Protein Aggregates
by Autophagy. J Biol Chem. 282 , 24131-45 (2007).
- E. Wong, A. M. Cuervo, Autophagy gone awry in neurodegenerative
diseases. Nat Neurosci. 13 , 805-11 (2010).
- G. Bjørkøy, T. Lamark, A. Brech, H. Outzen, M. Perander, A. Overvatn,
H. Stenmark, T. Johansen, p62/SQSTM1 forms protein aggregates degraded
by autophagy and has a protective effect on huntingtin-induced cell
death. J Cell Biol. 171 , 603–614 (2005).
- X. Guo, X. Sun, D. Hu, Y. J. Wang, H. Fujioka, R. Vyas, S. Chakrapani,
A. U. Joshi, Y. Luo, D. Mochly-Rosen, X. Qi, VCP recruitment to
mitochondria causes mitophagy impairment and neurodegeneration in
models of Huntington’s disease. Nat Commun. 7 , 12646 (2016).
- H. Xie, J. Yin, M. H. Shah, M. E. Menefee, K. C. Bible, D.
Reidy-Lagunes, M. A. Kane, D. I. Quinn, D. R. Gandara,C. Erlichman ,
A. A. Adjei, A phase II study of the orally administered negative
enantiomer of gossypol (AT-101), a BH3 mimetic, in patients with
advanced adrenal cortical carcinoma. Invest New Drugs. 37 ,
755-762 (2019).
- P. Magnaghi, R. D’Alessio, B. Valsasina, N. Avanzi, S. Rizzi, D. Asa,
F. Gasparri, L. Cozzi, U. Cucchi, C. Orrenius, P. Polucci, D.
Ballinari, C. Perrera, A. Leone, G. Cervi, E. Casale, Y. Xiao, C.
Wong, D. J. Anderson, A. Galvani, D. Donati, T. O’Brien, P. K.
Jackson, A. Isacchi, Covalent and allosteric inhibitors of the ATPase
VCP/p97 induce cancer cell death. Nat Chem Biol. 9 , 548-56
(2013).
- Y. Yao, X. Cui, I. Al-Ramahi, X. Sun, B. Li, J. Hou, M. Difiglia, J.
Palacino, Z. Y. Wu, L. Ma, J. Botas, B. Lu, A striatal-enriched
intronic GPCR modulates huntingtin levels and toxicity. Elife.4 (2015).
- Baldo B, Paganetti P, Grueninger S, TR-FRET-Based Duplex Immunoassay
Reveals an Inverse Correlation of Soluble and Aggregated Mutant
huntingtin in Huntington’s Disease.
Chem
Biol. 19 , 264-75 (2012).
- G. F. Kwakye, D. Li, A. B. Bowman, Novel high-throughput assay to
assess cellular manganese levels in a striatal cell line model of
Huntington’s disease confirms a deficit in manganese accumulation.
Neurotoxicology. 3 , 630-9 (2011).
- B. Almeida, I. A. Abreu, C. A. Matos, J. S. Fraga, S. Fernandes, M. G.
Macedo, R. Gutiérrez-Gallego, P. J. Pereira, A. L. Carvalho, S.
Macedo-Ribeiro, SUMOylation of the brain-predominant Ataxin-3 isoform
modulates its interaction with p97. Biochimica et Biophysica Acta.1852 , 1950-9 (2015).
- I. Al-Ramahi, Y. C. Lam, H. K. Chen, B. de Gouyon, M. Zhang, A. M.
Pérez, J. Branco, M. de Haro, C. Patterson, H. Y. Zoghbi, J. Botas,
CHIP Protects from the Neurotoxicity of Expanded and Wild-type
Ataxin-1 and Promotes Their Ubiquitination and Degradation. J Biol
Chem. 281 , 26714-24 (2006).
- J.Liu, J. D. Jr. Farmer, W. S. Lane, J. Friedman, I. Weissman, S. L.
Schreiber, Calcineurin is a common target of cyclophilin-cyclosporin A
and FKBP-FK506 complexes. Cell. 66 , 807-15 (1991).
- Q. Huai, H. Y. Kim, Y. Liu, Y. Zhao, A. Mondragon, J. O. Liu, H. Ke,
Crystal structure of calcineurin-cyclophilin-cyclosporin shows common
but distinct recognition of immunophilin-drug complexes. Proc Natl
Acad Sci U S A. 99 , 12037-42 (2002).
- E. Chapman, N. Maksim, F. de la Cruz, J. J. La Clai, Inhibitors of the
AAA+ Chaperon p97. Molecules. 20, 3027-49 (2015).
- H. Meyer, M. Bug, S. Bremer, Emerging functions of the VCP/p97
AAA-ATPase in the ubiquitin system. Nat Cell Biol. 1 , 117-23
(2012).
- B. Lu, J. Palacino, A novel human embryonic stem cell-derived
Huntington’s disease neuronal model exhibits mutant huntingtin (mHTT)
aggregates and soluble mHTT-dependent neurodegeneration. FASEB J.27 , 1820-9 (2013).
- S. J. Tabrizi, B. R. Leavitt, G. B. Landwehrmeyer, E. J. Wild, C.
Saft, R. A. Barker, N. F. Blair, D. Craufurd, J. Priller, H. Rickards,
A. Rosser, H. B. Kordasiewicz, C. Czech, E. E. Swayze, D. A. Norris,
T. Baumann, I. Gerlach, S. A. Schobel, E. Paz, A. V. Smith, C. F.
Bennett, R. M. Lane, Targeting Huntingtin Expression in Patients with
Huntington’s Disease. N Engl J Med. 380 , 2307-2316 (2019).
- J. Park, J. K. Shim, J. H. Kang, J. Choi, J. H. Chang, S. Y. Kim, S.
G. Kang, Regulation of bioenergetics through dual inhibition of
aldehyde dehydrogenase and mitochondrial complex I suppresses
glioblastoma tumorspheres. Neuro Oncol. 20 , 954-965 (2018).
- Z. Li, C. Wang, Z. Wang , C. Zhu, J. Li, T. Sha, L. Ma, C. Gao, Y.
Yang, Y. Sun, J. Wang, X. Sun, C. Lu, M. Difiglia, Y. Mei, C. Ding, S.
Luo, Y. Dang, Y. Ding, Y. Fei, B. Lu, Allele-selective lowering of
mutant HTT protein by HTT-LC3 linker compounds. Nature. (2019).
- L. Chang, E. B. Bertelsen, S. Wisén, E. M. Larsen, E. R. Zuiderweg, J.
E. Gestwicki, High-throughput screen for small molecules that modulate
the ATPase activity of the molecular chaperone DnaK. Anal Biochem.372 , 167-76 (2008).
- A. Weiss, D. Abramowski, M. Bibel, R. Bodner, V. Chopra, M. DiFiglia,
J. Fox, K. Kegel, C. Klein, S. Grueninger, S. Hersch, D. Housman, E.
Régulier, H. D. Rosas, M. Stefani, S. Zeitlin ,G. Bilbe,P. Paganetti,
Single-step detection of mutant huntingtin in animal and human
tissues:A bioassay for Huntington’s disease. Anal Biochem.395 , 8-15 (2009).
- M. A. Hickey, C. Zhu, V. Medvedeva, R. P. Lerner, S. Patassini, N. R.
Franich, P. Maiti, S. A. Frautschy, S. Zeitlin, M. S. Levine, M. F.
Chesselet, Improvement of neuropathology and transcriptional deficits
in CAG 140 knock-in mice supports a beneficial effect of dietary
curcumin in Huntington’s disease. Mol Neurodegener. 7 , 12
(2012).