REFERENCES
  1. D. C. Rubinsztein, The roles of intracellular protein-degradation pathways in neurodegeneration. Nature. 443 , 780-6 (2006).
  2. A. Dürr, G. Stevanin, G. Cancel, C. Duyckaerts, N. Abbas, O. Didierjean, H. Chneiweiss, A. Benomar, O. Lyon-Caen, J. Julien, M. Serdaru, C. Penet, Y. Agid, A. Brice, Spinocerebellar Ataxia 3 and Machado-Joseph Disease: Clinical, Molecular, and NeuropathoIogicaI Features. Ann Neurol. 39 , 490-9 (1996).
  3. C. Duyckaerts, B. Delatour, M. C. Potier, Classification and basic pathology of Alzheimer disease. Acta Neuropathol. 118 , 5-36 (2009).
  4. A. Iwai, E. Masliah, M. Yoshimoto, The Precursor Protein of Non-Ap Component of Alzheimer’s Disease Amyloid Is a Presynaptic Protein of the Central Nervous System. Neuron. 14 , 467-75 (1995).
  5. L. A. Raymond, V. M. André, C. Cepeda, C. M. Gladding, A. J. Milnerwood, M. S. Levine, Pathophysiology of Huntington’s Disease: Time-Dependent Alterations in Synaptic and Receptor Function. Neuroscience. 198 , 252-73 (2011).
  6. C. Soto, Unfolding the role of protein misfolding in neurodegenerative diseases. Nat Rev Neurosci. 4 , 49-60 (2003).
  7. S. Yu , Y. Liang, J. Palacino, M. Difiglia, B. Lu, Drugging unconventional targets: insights from Huntington’s disease. Trends Pharmacol Sci. 35 , 53-62 (2014).
  8. A. S. Tsvetkov, M. Arrasate, S. Barmada, D. M. Ando, P. Sharma, B. A. Shaby, S. Finkbeiner, Proteostasis of polyglutamine varies among neurons and predicts neurodegeneration. Nat Chem Biol. 9 , 586-92 (2013).
  9. A. Kakizuka, VCP, a major ATPase in the cells, as a novel target for currently incurable disorders. Innovative Medicine: Basic Research and Development.Tokyo: Springer (2015).
  10. H. Meyer, C. C. Weihl, The VCP/p97 system at a glance: connecting cellular function to disease pathogenesis. J Cell Sci. 127 , 3877-83 (2014).
  11. M. Bug, H. Meyer, Expanding into new markets-VCP/p97 in endocytosis and autophagy. J Struct Biol. 179 , 78-82 (2012).
  12. E. Tresse, F. A. Salomons, J. Vesa, L. C. Bott, V. Kimonis, T. P. Yao, N. P. Dantuma, J. P. Taylor, VCP/p97 is essential for maturation of ubiquitin-containing autophagosomes and this function is impaired by mutations that cause IBMPFD. Autophagy. 6 , 217-27 (2010).
  13. B. J. Van den, H. Meyer, VCP/p97-Mediated Unfolding as a Principle in Protein Homeostasis and Signaling. Mol Cell. 69 , 182-194 (2018).
  14. M. Hirabayashi, K. Inoue, K. Tanaka, K. Nakadate, Y. Ohsawa, Y. Kamei, A. H. Popiel, A. Sinohara, A. Iwamatsu, Y. Kimura, Y. Uchiyama, S. Hori, A. Kakizuka, VCP/p97 in abnormal protein aggregates, cytoplasmic vacuoles, and cell death, phenotypes relevant to neurodegeneration. Cell Death Differ. 8 ,977-84 (2001).
  15. K. Fujita, Y. Nakamura Y, T. Oka, H. Ito, T. Tamura, K. Tagawa, T. Sasabe, A. Katsuta, K. Motoki, H. Shiwaku, M. Sone, C. Yoshida, M. Katsuno, Y. Eishi, M. Murata, J. P. Taylor, E. E. Wanker, K. Kono, S. Tashiro, G. Sobue, A. R. La Spada, H. Okazawa, A functional deficiency of TERA/VCP/p97 contributes to impaired DNA damage repair in multiple polyglutamine diseases. Nat Commun. 4 , 1816 (2013).
  16. H. Yang, J. J. Li, S. Liu, J. Zhao, Y. J. Jiang, A. X. Song, H. Y. Hu, Aggregation of polyglutamine-expanded ataxin-3 sequesters its specific interacting partners into inclusions: Implication in a loss-of-function pathology. Sci Rep. 4 , 6410 (2014).
  17. B. Levine, G. Kroemer, Biological Functions of Autophagy Genes: A Disease Perspective. Cell. 176 , 11-42 (2019).
  18. F. M. Menzies, A. Fleming, A. Caricasole,C. F. Bento, S. P. Andrews, A. Ashkenazi, J. Füllgrabe, A. Jackson, M. Jimenez Sanchez, C. Karabiyik, F. Licitra, A. Lopez Ramirez, M. Pavel, C. Puri, M. Renna, T. Ricketts, L. Schlotawa, M. Vicinanza, H. Won, Y. Zhu, J. Skidmor, D. C. Rubinsztein, Autophagy and Neurodegeneration: Pathogenic Mechanisms and Therapeutic Opportunities. Neuron. 93 , 1015-1034 (2017).
  19. S. Sarkar, D. C. Rubinsztein, Huntington’s disease: degradation of mutant huntingtin by autophagy. FEBS J. 275 , 4263-70 (2008).
  20. D. C. Rubinsztein, P. Codogno, B. Levine, Autophagy modulation as a potential therapeutic target for diverse diseases. Nat Rev Drug Discov. 11 , 709-30 (2012).
  21. M. Jimenez-Sanchez, F. Thomson, E. Zavodszky, D. C. Rubinsztein, Autophagy and polyglutamine diseases. Prog Neurobiol. 97 , 67-82 (2012).
  22. H. He, Y. Dang, F. Dai, Z. Guo, J. Wu, X. She, Y. Pei, Y. Chen,W. Ling, C. Wu, S. Zhao, J. O. Liu, L. Yu, Post-translational modifications of three members of the human MAP1LC3 family and detection of a novel type of modification for MAP1LC3B. J Biol Chem.278 , 29278-87 (2003).
  23. S. Pankiv, T. H. Clausen, T. Lamark, A. Brech, J. A. Bruun, H. Outzen, A. Øvervatn, G. Bjørkøy, T. Johansen, p62/SQSTM1 Binds Directly to Atg8/LC3 to Facilitate Degradation of Ubiquitinated Protein Aggregates by Autophagy. J Biol Chem. 282 , 24131-45 (2007).
  24. E. Wong, A. M. Cuervo, Autophagy gone awry in neurodegenerative diseases. Nat Neurosci. 13 , 805-11 (2010).
  25. G. Bjørkøy, T. Lamark, A. Brech, H. Outzen, M. Perander, A. Overvatn, H. Stenmark, T. Johansen, p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J Cell Biol. 171 , 603–614 (2005).
  26. X. Guo, X. Sun, D. Hu, Y. J. Wang, H. Fujioka, R. Vyas, S. Chakrapani, A. U. Joshi, Y. Luo, D. Mochly-Rosen, X. Qi, VCP recruitment to mitochondria causes mitophagy impairment and neurodegeneration in models of Huntington’s disease. Nat Commun. 7 , 12646 (2016).
  27. H. Xie, J. Yin, M. H. Shah, M. E. Menefee, K. C. Bible, D. Reidy-Lagunes, M. A. Kane, D. I. Quinn, D. R. Gandara,C. Erlichman , A. A. Adjei, A phase II study of the orally administered negative enantiomer of gossypol (AT-101), a BH3 mimetic, in patients with advanced adrenal cortical carcinoma. Invest New Drugs. 37 , 755-762 (2019).
  28. P. Magnaghi, R. D’Alessio, B. Valsasina, N. Avanzi, S. Rizzi, D. Asa, F. Gasparri, L. Cozzi, U. Cucchi, C. Orrenius, P. Polucci, D. Ballinari, C. Perrera, A. Leone, G. Cervi, E. Casale, Y. Xiao, C. Wong, D. J. Anderson, A. Galvani, D. Donati, T. O’Brien, P. K. Jackson, A. Isacchi, Covalent and allosteric inhibitors of the ATPase VCP/p97 induce cancer cell death. Nat Chem Biol. 9 , 548-56 (2013).
  29. Y. Yao, X. Cui, I. Al-Ramahi, X. Sun, B. Li, J. Hou, M. Difiglia, J. Palacino, Z. Y. Wu, L. Ma, J. Botas, B. Lu, A striatal-enriched intronic GPCR modulates huntingtin levels and toxicity. Elife.4 (2015).
  30. Baldo B, Paganetti P, Grueninger S, TR-FRET-Based Duplex Immunoassay Reveals an Inverse Correlation of Soluble and Aggregated Mutant huntingtin in Huntington’s Disease. Chem Biol. 19 , 264-75 (2012).
  31. G. F. Kwakye, D. Li, A. B. Bowman, Novel high-throughput assay to assess cellular manganese levels in a striatal cell line model of Huntington’s disease confirms a deficit in manganese accumulation. Neurotoxicology. 3 , 630-9 (2011).
  32. B. Almeida, I. A. Abreu, C. A. Matos, J. S. Fraga, S. Fernandes, M. G. Macedo, R. Gutiérrez-Gallego, P. J. Pereira, A. L. Carvalho, S. Macedo-Ribeiro, SUMOylation of the brain-predominant Ataxin-3 isoform modulates its interaction with p97. Biochimica et Biophysica Acta.1852 , 1950-9 (2015).
  33. I. Al-Ramahi, Y. C. Lam, H. K. Chen, B. de Gouyon, M. Zhang, A. M. Pérez, J. Branco, M. de Haro, C. Patterson, H. Y. Zoghbi, J. Botas, CHIP Protects from the Neurotoxicity of Expanded and Wild-type Ataxin-1 and Promotes Their Ubiquitination and Degradation. J Biol Chem. 281 , 26714-24 (2006).
  34. J.Liu, J. D. Jr. Farmer, W. S. Lane, J. Friedman, I. Weissman, S. L. Schreiber, Calcineurin is a common target of cyclophilin-cyclosporin A and FKBP-FK506 complexes. Cell. 66 , 807-15 (1991).
  35. Q. Huai, H. Y. Kim, Y. Liu, Y. Zhao, A. Mondragon, J. O. Liu, H. Ke, Crystal structure of calcineurin-cyclophilin-cyclosporin shows common but distinct recognition of immunophilin-drug complexes. Proc Natl Acad Sci U S A. 99 , 12037-42 (2002).
  36. E. Chapman, N. Maksim, F. de la Cruz, J. J. La Clai, Inhibitors of the AAA+ Chaperon p97. Molecules. 20, 3027-49 (2015).
  37. H. Meyer, M. Bug, S. Bremer, Emerging functions of the VCP/p97 AAA-ATPase in the ubiquitin system. Nat Cell Biol. 1 , 117-23 (2012).
  38. B. Lu, J. Palacino, A novel human embryonic stem cell-derived Huntington’s disease neuronal model exhibits mutant huntingtin (mHTT) aggregates and soluble mHTT-dependent neurodegeneration. FASEB J.27 , 1820-9 (2013).
  39. S. J. Tabrizi, B. R. Leavitt, G. B. Landwehrmeyer, E. J. Wild, C. Saft, R. A. Barker, N. F. Blair, D. Craufurd, J. Priller, H. Rickards, A. Rosser, H. B. Kordasiewicz, C. Czech, E. E. Swayze, D. A. Norris, T. Baumann, I. Gerlach, S. A. Schobel, E. Paz, A. V. Smith, C. F. Bennett, R. M. Lane, Targeting Huntingtin Expression in Patients with Huntington’s Disease. N Engl J Med. 380 , 2307-2316 (2019).
  40. J. Park, J. K. Shim, J. H. Kang, J. Choi, J. H. Chang, S. Y. Kim, S. G. Kang, Regulation of bioenergetics through dual inhibition of aldehyde dehydrogenase and mitochondrial complex I suppresses glioblastoma tumorspheres. Neuro Oncol. 20 , 954-965 (2018).
  41. Z. Li, C. Wang, Z. Wang , C. Zhu, J. Li, T. Sha, L. Ma, C. Gao, Y. Yang, Y. Sun, J. Wang, X. Sun, C. Lu, M. Difiglia, Y. Mei, C. Ding, S. Luo, Y. Dang, Y. Ding, Y. Fei, B. Lu, Allele-selective lowering of mutant HTT protein by HTT-LC3 linker compounds. Nature. (2019).
  42. L. Chang, E. B. Bertelsen, S. Wisén, E. M. Larsen, E. R. Zuiderweg, J. E. Gestwicki, High-throughput screen for small molecules that modulate the ATPase activity of the molecular chaperone DnaK. Anal Biochem.372 , 167-76 (2008).
  43. A. Weiss, D. Abramowski, M. Bibel, R. Bodner, V. Chopra, M. DiFiglia, J. Fox, K. Kegel, C. Klein, S. Grueninger, S. Hersch, D. Housman, E. Régulier, H. D. Rosas, M. Stefani, S. Zeitlin ,G. Bilbe,P. Paganetti, Single-step detection of mutant huntingtin in animal and human tissues:A bioassay for Huntington’s disease. Anal Biochem.395 , 8-15 (2009).
  44. M. A. Hickey, C. Zhu, V. Medvedeva, R. P. Lerner, S. Patassini, N. R. Franich, P. Maiti, S. A. Frautschy, S. Zeitlin, M. S. Levine, M. F. Chesselet, Improvement of neuropathology and transcriptional deficits in CAG 140 knock-in mice supports a beneficial effect of dietary curcumin in Huntington’s disease. Mol Neurodegener. 7 , 12 (2012).