References
Bakker, M. M., Govers, G., Jones, R. A., & Rounsevell, M. D. A. (2004).
The crop productivity–erosion relationship: an analysis based on
experimental work. Catena , 57, 55–76.
Bakker, M. M., Govers, G., Jones, R. A., & Rounsevell, M. D. A. (2007).
The effect of soil erosion on Europe’s crop yields. Ecosystems,10, 1209–1219.
Bao, S. D. (2000). Soil and agricultural chemistry analysis.Chinese Agriculture Press, Beijing , 263–270.
Berhe, A. A., Harden, J. W., Torn, M. S., Kleber, M., Burton, S. D., &
Harte, J. (2012).
Persistence
of soil organic matter in eroding versus depositional landform
positions. Journal of Geophysical Research , 117, G02019.
Bista, D. R., Heckathorn, S. A., Jayawardena, D. M., Mishra, S., &
Boldt, J. K. (2018).
Effects
of drought on nutrient uptake and the levels of nutrient-uptake proteins
in roots of drought-sensitive and -tolerant grasses.Plants ,
7, 1–16.
Chaer, G. M., Myrold, D. D., Bottomley, & P. J. (2009). A soil quality
index based on the equilibrium between soil organic matter and
biochemical properties of undisturbed coniferous forest soils of the
Pacific Northwest. Soil Biology and Biochemistry, 41, 822–830.
Chen, J. J., & Gabelman, W. H. (1995).
Isolation
of tomato strains varying in potassium acquisition using a sand-zeolite
culture system.Plant
and Soil , 176, 65–70.
Christensen, L. A., & McElyea, D. E. (1988). Toward a general method of
estimating productivity-soil depth response relationships. Journal
of Soil and Water Conservation , 43, 199–202.
Costa, C., Dwyer, L. M., Zhou, X. M., Dutilleul, P., Hamel, C., Reid, L.
M., & Smith D. L. (2002).
Root
morphology of contrasting maize genotypes. Agronomy Journal , 94,
96–101.
Duan, X. W., Liu, X. B., Gu, Z., Rong, L., & Feng, D. (2016).
Quantifying soil erosion effects on soil productivity in the dry-hot
valley, Southwestern China. Environmental Earth Sciences , 75,
1164.
Fenton, T., Kazemi, M., & Lauterbach-Barrett, M. (2005). Erosional
impact on organic matter content and productivity of selected Iowa
soils. Soil & Tillage Research , 81, 163–171.
Gao, X. F., Xie, Y., Liu, G., Liu, B. Y., & Duan, X. W. (2015). Effects
of soil erosion on soybean yield as estimated by simulating gradually
eroded soil profiles.Soil
&Tillage Research , 145, 126–134.
Ge, F. L., Zhang, J. H., Su, Z. A., & Nie, X. J. (2007). Response of
changes in soil nutrients to soil erosion on a purple soil of cultivated
sloping land. Acta Ecologica Sinica, 27, 459–464.
Graveel, J. G., Tyler, D. D., Jones, J. R., & McFee, W. W. (2002). Crop
yield and rooting as affected by fragipan depth in loess soils in the
southeast USA. Soil &Tillage Research , 68, 153–161.
Herbrich, M., Gerke, H. H., & Sommer, M. (2018). Root development of
winter wheat in erosion-affected soils depending on the position in a
hummocky ground moraine soil landscape. Journal of Soil Science
and Plant Nutrition , 181, 147–157.
Herrmann,
A., Sieling, K., Wienforth, B., & Taube, F. (2013). Short-term effects
of biogas residue application on yield performance and N balance
parameters of maize in different cropping systems.Journal
of Agricultural Science , 151, 449–462.
Jagadamma, S., Lal, R., & Rimal, B. K. (2009). Effects of topsoil depth
and soil amendments on corn yield and properties of two alfisols in
Central Ohio. Journal of Soil and Water Conservation , 64, 70–80.
Jia, G., Cao, J., Wang, C., & Wang, G. (2005). Microbial biomass and
nutrients in soil at the different stages of secondary forest succession
in Ziwulin, northwest China. Forest Ecology and Management , 217,
117–125.
Jin, J., Tang, C. X., Armstrong, R., & Sale, P. (2012). Phosphorus
supply enhances the response of legumes to elevated CO2(FACE) in a phosphorus-deficient Vertisol. Plant and Soil , 358,
91–104.
Kaspar, T. C., Pulido, D. J., Fenton, T. E., Colvin, T. S., Karlen, D.
L., Jaynes, D. B., & Meek, D. W. (2004). Relationship of corn and
soybean yield to soil and terrain properties. Agronomy Journal ,
96, 700–709.
Kosmas, C., Gerontidis, S., Marathianou, M., Detsis, B., Zafiriou, T.,
Nan, M. W., Govers, G., Quine, T., & Vanoost, K. (2001). The effects of
tillage displaced soil on soil properties and wheat biomass. Soil
& Tillage Research , 58, 31–44.
Lal, R. (2001). Soil degradation by erosion. Land Degradation &
Development , 12, 519–539.
Lal, R., Ahmadi, M., & Bajracharya, R. M. (2000). Erosional impacts on
soil properties and corn yield on Alfisols in Central Ohio. Land
Degradation & Development , 11, 575–585.
Larney, F. J., Janzen, H. H., Olson, B. M., & Lindwall, C. W. (2000).
Soil quality and productivity responses to simulated erosion and
restorative amendments. Canadian Journal of Soil Science , 80,
515–522.
Li, T., Zhang, H. C., Wang, X. Y., Cheng, S. L., Fang, H. J., Liu, G.,
& Yuan, W. P. (2019a).
Soil
erosion affects variations of soil organic carbon and soil respiration
along a slope in Northeast China.Ecological
Processes, 8, 1–10.
Li, Y. S., Yu, Z. H., Liu, X. B., Mathesius, U., Wang, G. H., Tang, C.
X., Wu, J. J., Liu, J. D., Zhang, S. Q., & Jin, J. (2017). Elevated
CO2 increases nitrogen fixation at the reproductive phase
contributing to various yield responses of soybean cultivars.Frontiers
in Plant Science, 8, 1546.
Li, Y. S., Yu, Z. H., Yang, S. C., Wang, G. H., Liu, X. B., Wang, C. Y.,
Xie, Z. H., & Jin, J. (2019b). Impact of elevated CO2on C: N: P ratio among soybean cultivars. Science of the Total
Environment , 694, 133784.
Lin, H. H., Xie, Y., Liu, G., Zhai, J. R., & Li, S. (2019). Soybean and
maize simulation under different degrees of soil erosion.Field
Crops Research , 230, 1–10.
Liu, C. K., Wang, X., Tu, B. J., Li, Y. S., Liu, X. B., Zhang, Q. Y., &
Herbert, S. J. (2020).
Dry
matter partitioning and K distribution of vegetable soybean genotypes
with higher potassium efficiency.Archives
of Agronomy and Soil Science, 66, 1–14.
Liu, X. B., Han, X. Z., Song, C. Y., Herbert, S. J., & Xing, B. S.
(2003). Soil organic carbon dynamics in black soils of china under
different agricultural management systems.Communications
in Soil Science and Plant Analysis , 34, 7-8, 973–984.
Liu, X. B., Zhang, X. Y., Sui, Y. Y., Wang, Y. X., & Herbert, S. J.
(2010). Soil degradation: a problem threatening the sustainable
development of agriculture in Northeast China. Plant Soil and
Environment , 56, 87–97.
Liu, Z. P., Shao, M. A., & Wang, Y. Q. (2013). Spatial patterns of soil
total nitrogen and soil total phosphorus across the entire Loess Plateau
region of China. Geoderma , 197, 67–78.
Miah, M.Y., Kanazawa, S., & Chino, M. (1998). Nutrient distribution
across wheat rhizosphere with oxamide and ammonium sulfate as N source.Soil Science and Plant Nutrition , 44, 579–587.
Miao, S. J., Qiao, Y. F., Yin, Y. F., Jin, J., Martin, B., Liu, X. B.,
& Tang, C. X. (2019). Ten-year application of cattle manure contributes
to the build-up of soil organic matter in eroded Mollisols.J ournal
of Soils and Sediments , 19, 3035–3043.
National Bureau of Statistics of China, (2012). China Statistical
Yearbook. China Statistics Press, Beijing , China 479
(In
Chinese).
Nazih, N., Finlay-Moore, O., Hartel, G. P., & Fuhrmann, J. (2001).
Whole soil fatty acid methyl ester (FAME) profiles of early soybean
rhizosphere as affected by temperature and matric water potential.Soil Biology and Biochemistry , 33, 693–696.
Nie, X. J., Zhang, J. H., & Gao, H. (2015). Soil enzyme activities on
eroded slopes in the sichuan basin, China. Pedosphere , 25,
489–500.
Nie, X. J., Zhao, J. H., & Qiao, X. N. (2013). Impacts of soil erosion
on organic carbon and nutrient dynamics in an alpine grassland soil.Journal
of Soil Science and Plant Nutrition 59, 660–668.
Nosrati. K. (2013). Assessing soil quality indicator under different
land use and soil erosion using multivariate statistical techniques.Environmental
Monitoring Assessment , 185, 2895–2907.
Pierce, F. J., Larson, W. E., Dowdy, R. H., Graham, & W. A. P. (1983).
Productivity of soil: assessing of long-term changes due to erosion.Journal of Soil and Water Conservation . 38, 39–44.
Quinton, J. N., Govers, G., Van Oost, K., & Bardgett, R. D. (2010). The
impact of agricultural soil erosion on biogeochemical cycling,Nature Geoscienc e, 3, 311–314.
Rejman, J., & Iglik, I. (2010). Topsoil reduction and cereal yields on
loess soils of Southeast Poland. Land Degradation & Development ,
21, 401–405.
Russo, V. M., Collins, J. K., Perkins-Veazie, P., & Smith, T.
(2004).
Carbohydrate distribution in stalks and ears of sweet maize with
different endosperm genotypes. Cereal Research
Communications , 32, 91–98.
Sanaullah, M., Rumpel, C., Charrier, X., & Chabbi, A. (2012). How does
drought stress influence the decomposition of plant litter with
contrasting quality in a grassland ecosystem? Plant and Soil ,
352, 277–288.
Sarapatka, B., Cap, L., & Bila, P. (2018). The varying effect of water
erosion on chemical and biochemical soil properties in different parts of
Chernozem slopes. Geoderma , 314, 20–26.
Shinohara, Y., Otani, S., Kubota, T., Otsuki, K., & Nanko, K. (2016).
Effects of plant roots on the soil erosion rate under simulated rainfall
with high kinetic energy. Hydrological Science Journal , 61,
2435–2442.
Srinivasan, V., Maheswarappa, H. P., & Lal, R. (2012). Long term
effects of topsoil depth and amendments on particulate and non
particulate carbon fractions in a Miamian soil of Central Ohio.Soil &Tillage Research , 12, 110–117.
Stott, D. E., Andrews, S. S., Liebig, M. A., Wienhold, B. J., & Karlen,
D. I. (2010). Evaluation ofβ-glukosidase activity as a soil quality
indicator for the soil management assessment Framework. Soil
Science Society of America Journal , 74, 107–119.
Sui, Y. Y., Jiao, X. G., Liu, X. B., Zhang, X. Y., & Ding, G.W. (2013).
Response of soil microbial biomass and enzyme activity to soil
fertilization in an eroded farmland of Chinese Mollisols.Communications in Soil Science and Plant Analysis , 44,
2809–2819.
Sui, Y. Y., Liu, X. B., Jin, J., Zhang, S. L., Zhang, X. Y., Herbert, S.
J., & Ding, G. W. (2009). Differentiating the early impacts of topsoil
removal and soil amendments on crop performance productivity of corn and
soybean in eroded farmland of Chinese Mollisols. Field Crops
Research , 111, 276–283.
Wang, B., Xue, S., Liu, G. B., Zhang, G. H., Li, G., & Ren, Z. P.
(2012). Changes in soil nutrient and enzyme activities under different
vegetations in the Loess Plateau area, Northwest China. Catena ,
92,186–195.
Wang,
J., Xie, Y., Liu, G., Zhao, Y., & Zhang, S. S. (2015). Soybean root
development under water stress in eroded soils. Acta Agriculture
Scandinavica Section B- Soil and Plant Science , 65, 374–382.
Wang, Z., Sadras, V. O., Hoogmoed, M., Yang, X. Y., Huang, F., Han, X.
Y., Zhang, S. L. (2017). Shifts in nitrogen and phosphorus uptake and
allocation in response to selection for yield in Chinese winter wheat.Crop & Pasture Science , 68, 807–816.
Wang, Z. Q., Liu, B. Y., Wang, X. Y., Gao, X. F., & Liu, G. (2009).
Erosion effect on the productivity of black soil in Northeast China.Science in China Series D-Earth Sciences , 52, 1005–1021.
Xie, Y., Lin, H. H., Ye, Y., & Ren, X. Y. (2019). Changes in soil
erosion in cropland in northeastern China over the past 300 years.Catena , 176, 410–418.
Xiong, K., Yin, C., & Ji, H. B. (2018).
Soil
erosion and chemical weathering in a region with typical karst
topography.Environmental
Earth Sciences , 77, 500.
Xu,
J. M., Liu, T. T., & Mao, C. Z. (2018). Determination of inorganic
phosphate in rice by
SKALAR
San++ continuous flowing analyzer.Analytical
Instrumentation , 3, 46–50 (In Chinese).
Zhang, K. L, Shu, A. P., Xu, X. L., Yang, Q. K., & Yu, B. (2008). Soil
erodibility and its estimation for agricultural soils in China.Journal
of Arid Environments , 6, 1002–1011.
Zhao, J. L., Van Oost, K., Chen, L. Q., & Govers, G. (2016). Moderate
topsoil erosion rates constrain the magnitude of the erosion-induced
carbon sink and agricultural productivity losses on the Chinese Loess
Plateau. Biogeosciences , 13, 4735–4750.
Zheng, F. L., He, X. B., Gao, X. T., Zhang, C., & Tang, K. L. (2005).
Effects of erosion patterns on nutrient loss following deforestation on
the Loess Plateau of China. Agriculture Ecosystems Environment ,
108, 85–97.
Zhou, K. Q., Sui, Y. Y., Liu, X. B., Zhang, X. Y., Jin, J., Wang, G. H.,
& Herbert, S. J. (2015).
Crop
rotation with nine-year continuous cattle manure addition restores
farmland productivity of artificially eroded Mollisols in Northeast
China. Field Crops Research , 171, 138–145.
Zöbisch, M. A., Richterby, C., Heiligtag, B., & Schlott, R. (1995).
Nutrient losses from cropland in the Central Highlands of Kenya due to
surface runoff and soil erosion. Soil &Tillage Research , 33,
109–116.
Table 1. Significant level (P ) of main effects and
interactions of topsoil depth and crop species on grain yield (2016,
2017, 2018), growth parameters (2017), nutrient uptake (2017), and
concentrations of available nutrients (N, P and K) and activities of
enzymes in the rhizosphere soil (2017) of maize at the jointing (V7) and
milk (R3) stages, and of soybean at the initial flowering (R1) and
seed-filling (R6) stages.