Nisha, R., Kaushik, A., & Kaushik, C.P. (
2007). Effect of indigenous cyanobacterial application on structural
stability and productivity of an organically poor semiarid soil.Geoderma , 138 (1), 49–56.
doi:10.1016/j.geoderma.2006.10.007
Norman, J. S., & Friesen, M. L. (2016). Complex N acquisition by soil
diazotrophs: how the ability to release exoenzymes affects N fixation by
terrestrial free-living diazotrophs. The ISME Journal , 11(2),
315–326. doi:10.1038/ismej.2016.127
Ollivier, J., Töwe, S., Bannert, A., Hai, B., Kastl, E.M., Meyer, A., Su, M.X., Kleineidam, K., &
Schloter, M. (2011). Nitrogen turnover in soil and global change.FEMS Microbiology Ecology , 78(1), 3–16.
doi:10.1111/j.1574-6941.2011.01165.x
Pan, G., Zhou, P., Li, Z., Smith, P., Li, L., Qiu, D., Zhang, X., Xu,
X., Shen, S., & Chen, X.(2009). Combined inorganic/organic
fertilization enhances N efficiency and increases rice productivity
through organic carbon accumulation in a rice paddy from the Tai Lake
region, China. Agriculture, Ecosystems & Environment , 131(3-4),
274–280. doi:10.1016/j.agee.2009.01.020
Pereira e Silva, M. C., Semenov, A. V., van Elsas, J. D., & Salles, J.
F. (2011). Seasonal variations in the diversity and abundance of
diazotrophic communities across soils. FEMS Microbiology Ecology ,
77(1), 57–68. doi:10.1111/j.1574-6941.2011.01081.x
Pfister, C. A., Meyer, F., & Antonopoulos, D. A. (2010). Metagenomic
Profiling of a Microbial Assemblage Associated with the California
Mussel: A Node in Networks of Carbon and Nitrogen Cycling. PLoS
ONE , 5(5), e10518. doi:10.1371/journal.pone.0010518
Poly, F., Monrozier, L. J., & Bally, R. (2001). Improvement in the RFLP
procedure for studying the diversity of nifH genes in communities of
nitrogen fixers in soil. Research in Microbiology , 152(1),
95–103. doi:10.1016/S0923-2508(00)01172-4
Powers, J. S., & Schlesinger, W. H. (2002). Geographic and vertical
patterns of stable carbon isotopes in tropical rain forest soils of
Costa Rica. Geoderma , 109(1-2),
141–160. doi:10.1016/S0016-7061(02)00148-9
Qin, H., Chen, J., Wu, Q., Niu, L., Li, Y., Liang, C., Shen,Y., & Xu,
Q. (2017). Intensive management decreases soil aggregation and changes
the abundance and community compositions of arbuscular mycorrhizal fungi
in Moso bamboo (Phyllostachys pubescens) forests. Forest Ecology
and Management , 400, 246–255. doi:10.1016/j.foreco.2017.06.003
Reardon, C. L., Gollany, H. T., & Wuest, S. B. (2014). Diazotroph
community structure and abundance in wheat–fallow and wheat–pea crop
rotations. Soil Biology and Biochemistry , 69, 406–412.
doi:10.1016/j.soilbio.2013.10.038
Schroder, J. L., Zhang, H., Girma, K. , Raun, W. R. , Penn, C. J. , &
Payton, M. E. . (2011). Soil acidification from long-term use of
nitrogen fertilizers on winter wheat. Soil Science Society of
America Journal, 75 (3), 957. doi:10.2136/sssaj2010.0187
Sengupta, A., & Dick, W. A. (2015). Bacterial Community Diversity in
Soil Under two Tillage Practices as Determined by Pyrosequencing.Microbial Ecology , 70(3), 853–859. https://doi.org/
10.1007/s00248-015-0609-4
Shinohara, Y., & Otsuki, K. (2015). Comparisons of soil-water content
between a Moso bamboo (Phyllostachys pubescens) forest and an evergreen
broadleaved forest in western Japan. Plant Species Biology ,
30(2), 96–103. doi:10.1111/1442-1984.12076
Simonet, P. , Grosjean, M. C. , Misra, A. K. , Nazaret, S. , & Normand,
P. (1991). Frankia genus-specific characterization by polymerase chain
reaction. Applied & Environmental Microbiology, 57 (11),
3278-3286. doi:10.1002/yea.320070912
Stanley, E. H., Johnson, M. D., & Ward, A. K. (2003). Evaluating the
influence of macrophytes on algal and bacterial production in multiple
habitats of a freshwater wetland. Limnology and Oceanography ,
48(3), 1101–1111. doi:10.4319/lo.2003.48.3.1101
Sun, R., Zhang, X.X., Guo, X., Wang, D., & Chu, H.
(2015). Bacterial diversity in soils
subjected to long-term chemical fertilization can be more stably
maintained with the addition of livestock manure than wheat straw.Soil Biology and Biochemistry , 88, 9–18.
doi:10.1016/j.soilbio.2015.05.007
Tamura, K. , Peterson, D. , Peterson, N. , Stecher, G. , Nei, M. , &
Kumar, S. (2011). Mega5: molecular evolutionary genetics analysis using
maximum likelihood, evolutionary distance, and maximum parsimony
methods. Molecular Biology and Evolution,28 (10), 2731-2739.
doi:10.1093/molbev/msr121
Tan, H., Barret, M., Mooij, M. J., Rice, O., Morrissey, J. P., Dobson,
A., Griffiths B., & O’Gara, F. (2012). Long-term phosphorus
fertilisation increased the diversity of the total bacterial community
and the phoD phosphorus mineraliser group in pasture soils.Biology and Fertility of Soils , 49(6), 661–672.
doi:10.1007/s00374-012-0755-5
Tang, Y., Zhang, M., Chen, A., Zhang, W., Wei, W., & Sheng, R.
(2017). Impact of fertilization regimes on diazotroph community
compositions and N2 -fixation activity in paddy soil.Agriculture, Ecosystems & Environment , 247, 1–8. doi:
10.1016/j.agee.2017.06.009
Tolli, J., & King, G. M. (2005). Diversity and structure of bacterial
chemolithotrophic communities in pine forest anagroecosystem soils.Applied Microbiology and Biotechnology , 71:8411-8418.
doi:10.1128/AEM.71.12.8411-8418.2005
Treseder, K. K. (2008). Nitrogen additions and microbial biomass: a
meta-analysis of ecosystem studies. Ecology Letters , 11(10),
1111–1120. doi:10.1111/j.1461-0248.2008.01230.x
Videmšek, U., Hagn, A., Suhadolc, M., Radl, V., Knicker, H., Schloter,
M., & Vodnik, D. (2008). Abundance and Diversity of CO2-fixing Bacteria
in Grassland Soils Close to Natural Carbon Dioxide Springs. Microbial
Ecology, 58(1), 1–9. doi:10.1007/s00248-008-9442-3
Wang, C., Zheng, M., Song, W., Wen, S., Wang, B., Zhu, C., & Shen, R.
(2017). Impact of 25 years of inorganic fertilization on diazotrophic
abundance and community structure in an acidic soil in southern China.Soil Biology and Biochemistry , 113,
240–249. doi:10.1016/j.soilbio.2017.06.019
Wang, J., Song, Y., Ma, T., Raza, W., Li, J., Howland, J. G., & Shen,
Q. (2017). Impacts of inorganic and organic fertilization treatments on
bacterial and fungal communities in a paddy soil. Applied Soil
Ecology , 112, 42–50. doi:10.1016/j.apsoil.2017.01.005
Wang, W., Lai, D. Y. F., Wang, C., Pan, T., & Zeng, C. (2015). Effects
of rice straw incorporation on active soil organic carbon pools in a
subtropical paddy field. Soil and Tillage Research , 152, 8–16.
doi:10.1016/j.still.2015.03.011
Wright, E. S., Yilmaz, L. S., & Noguera, D. R. (2011). DECIPHER, a
Search-Based Approach to Chimera Identification for 16S rRNA Sequences.Applied and Environmental Microbiology , 78(3), 717–725.
doi:10.1128/AEM.06516-11
Wu, X., Ge, T., Yuan, H., Li, B., Zhu, H., Zhou, P., Sui F., Anthony G.
O., & Wu, J. (2013). Changes in bacterial CO2 fixation
with depth in agricultural soils. Applied Microbiology and
Biotechnology , 98(5), 2309–2319. doi:10.1007/s00253-013-5179-0
Xu, Q., Jiang, P., & Xu, Z. (2008). Soil microbial functional diversity
under intensively managed bamboo plantations in southern China.Journal of Soils and Sediments , 8(3), 177–183. https://doi.org
doi:10.1007/s11368-008-0007-3
Yang, Z. C., Zhao, N., Huang, F., & Lv, Y. Z. (2015). Long-term effects
of different organic and inorganic fertilizer treatments on soil organic
carbon sequestration and crop yields on the North China Plain.Soil and Tillage Research , 146, 47–52.
doi:10.1016/j.still.2014.06.011
Yuan, H. Z. Ge, T. D., Wu, X. H., Liu , S. L., Tong, C. l. Qin, H. L.,
Wu , M. N. Wei , W. X. & Wu J.
S.(2012).Long-term
field fertilization alters the diversity of autotrophic bacteria based
on the ribulose-1,5-biphosphate carboxylase/oxygenase (RubisCO)
large-subunit genes in paddy soil. Applied Microbiology and
Biotechnology , 95(4):1061-1071. https://doi.org/
doi:10.1007/s00253-011-3760-y
Yuan, H. Z., Ge, T. D., Chen, C. Y., O’Donnell, A. G., & Wu, J. S.
(2012). Significant Role for Microbial Autotrophy in the Sequestration
of Soil Carbon. Applied and Environmental Microbiology , 78(7),
2328–2336. doi:10.1128/AEM.06881-11
Yuan, H. Z., Ge, T. D., Chen, X. J., Liu, S. L., Zhu, Z., Wu, X. H.,
Wei, W. X., Whiteley, A. S., & Wu, J. S. (2015). Abundance and
Diversity of CO2-Assimilating Bacteria and Algae Within
Red Agricultural Soils Are Modulated by Changing Management
Practice. Microbial Ecology , 70(4), 971–980.
doi:10.1007/s00248-015-0621-8
Yuan, H. Z., Ge, T. D., Zou, S. Y., Wu, X. H., Liu, S. L., Zhou, P.,
Chen, X. J., Phil, B., & Wu, J. S.(2012). Effect of land use on the
abundance and diversity of autotrophic bacteria as measured by
ribulose-1,5-biphosphate carboxylase/oxygenase (RubisCO) large subunit
gene abundance in soils. Biology and Fertility of Soils , 49(5),
609–616. doi:10.1007/s00374-012-0750-x
Zeng, J., Liu, X., Song, L., Lin, X., Zhang, H., Shen, C., & Chu, H.
(2016). Nitrogen fertilization directly affects soil bacterial diversity
and indirectly affects bacterial community composition. Soil
Biology and Biochemistry , 92, 41–49. doi:10.1016/j.soilbio.2015.09.018
Zhang, K., Dang, H., Zhang, Q., & Cheng, X. (2015). Soil carbon
dynamics following land-use change varied with temperature and
precipitation gradients: evidence from stable isotopes. Global
Change Biology , 21(7), 2762–2772. doi:10.1111/gcb.12886
Zhao, J., Ni, T., Li, J., Lu, Q., Fang, Z. Y., Huang, Q. W., Zhang, R.
F., Li, R., Shen, B., & Shen, Q. R. (2016). Effects of organic-mineral
compound fertilizer with reduced chemical fertilizer application on crop
yields, soil biological activity and bacterial community structure in a
rice-wheat cropping system. Applied Soil Ecology . 99, 1e12.
doi:10.1016/j.apsoil.2015.11.006
Zhao, Y., Qin, N., Weber, B., & Xu, M. (2014). Response of biological
soil crusts to raindrop erosivity and underlying influences in the hilly
Loess Plateau region, China. Biodiversity and Conservation ,
23(7), 1669–1686. doi:10.1007/s10531-014-0680-z
Table 1 Primers used for PCR amplification