References
1. C C, M P, F M, G M, M G, GGAM P, E C, S R. Interactions Between
Antiepileptic and Antibiotic Drugs: A Systematic Review and
Meta-Analysis with Dosing Implications. Clinical pharmacokinetics 2019;
58: 875-86.
2. TN F, RJ B. The relationship between the pharmacology of
antiepileptic drugs and human gene variation: an overview. Epilepsy &
behavior : E&B 2005; 7: 18-36.
3. S G, M G-D, R B, S S, K B, M G, K N, B V, M G, K K, P T, H K, S G, A
S, SK B, Consortium IGV, R K. Genetic profile of patients with epilepsy
on first-line antiepileptic drugs and potential directions for
personalized treatment. Pharmacogenomics 2010; 11: 927-41.
4. D T-S, A L, U F, J K. The clinical role of genetic polymorphisms in
drug-metabolizing enzymes. The pharmacogenomics journal 2008; 8: 4-15.
5. BM K, KE T, CJ W, SM K, DL K, FJ G, RH L. Human liver carbamazepine
metabolism. Role of CYP3A4 and CYP2C8 in 10,11-epoxide formation.
Biochemical pharmacology 1994; 47: 1969-79.
6. CF T, SG L, J K, JS L, DJ M, TE K, RB A. PharmGKB summary:
carbamazepine pathway. Pharmacogenetics and genomics 2011; 21: 906-10.
7. Chbili C, Fathallah N, Laouani A, Nouira M, Hassine A, Ben Amor S,
Ben Ammou S, Ben Salem C, Saguem S. Effects of EPHX1 and CYP3A4*22
genetic polymorphisms on carbamazepine metabolism and drug response
among Tunisian epileptic patients. Journal of neurogenetics 2016; 30:
16-21.
8. Daci A, Beretta G, Vllasaliu D, Shala A, Govori V, Norata GD,
Krasniqi S. Polymorphic Variants of SCN1A and EPHX1 Influence Plasma
Carbamazepine Concentration, Metabolism and Pharmacoresistance in a
Population of Kosovar Albanian Epileptic Patients. PloS one 2015; 10:
e0142408.
9. H P, M F, W L. P-Glycoprotein-mediated efflux of phenobarbital,
lamotrigine, and felbamate at the blood-brain barrier: evidence from
microdialysis experiments in rats. Neuroscience letters 2002; 327:
173-6.
10. H P, M F, W L. P-glycoprotein and multidrug resistance-associated
protein are involved in the regulation of extracellular levels of the
major antiepileptic drug carbamazepine in the brain. Neuroreport 2001;
12: 3557-60.
11. AJ B-T. MDR1 (ABCB1) polymorphisms: functional effects and clinical
implications. Revista de investigacion clinica; organo del Hospital de
Enfermedades de la Nutricion 2013; 65: 445-54.
12. L B, BS H, HK N, VC W, PW N, CH L, NC S, C Z, B T, GW W, HJ T, AA R,
Z M, P K. Case-control association study of polymorphisms in the
voltage-gated sodium channel genes SCN1A, SCN2A, SCN3A, SCN1B, and SCN2B
and epilepsy. Human genetics 2014; 133: 651-9.
13. Nazish HR, Ali N, Ullah S. The possible effect of SCN1A and SCN2A
genetic variants on carbamazepine response among Khyber Pakhtunkhwa
epileptic patients, Pakistan. Therapeutics and clinical risk management
2018; 14: 2305-13.
14. Abe T, Seo T, Ishitsu T, Nakagawa T, Hori M, Nakagawa K. Association
between SCN1A polymorphism and carbamazepine-resistant epilepsy. British
journal of clinical pharmacology 2008; 66: 304-7.
15. GX Z, ML S, Z Z, P W, CX X, GH H. Association between EPHX1
polymorphisms and carbamazepine metabolism in epilepsy: a meta-analysis.
International journal of clinical pharmacy 2019; 41: 1414-28.
16. Hung CC, Chang WL, Ho JL, Tai JJ, Hsieh TJ, Huang HC, Hsieh YW, Liou
HH. Association of polymorphisms in EPHX1, UGT2B7, ABCB1, ABCC2, SCN1A
and SCN2A genes with carbamazepine therapy optimization.
Pharmacogenomics 2012; 13: 159-69.
17. Ma CL, Jiao Z, Wu XY, Hong Z, Wu ZY, Zhong MK. Association between
PK/PD-involved gene polymorphisms and carbamazepine-individualized
therapy. Pharmacogenomics 2015; 16: 1499-512.
18. Moher D, Liberati A, Tetzlaff J, Altman DG, The PG. Preferred
Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA
Statement. PLOS Medicine 2009; 6: e1000097.
19. Kwan P, Arzimanoglou A, Berg AT, Brodie MJ, Allen Hauser W, Mathern
G, Moshé SL, Perucca E, Wiebe S, French J. Definition of drug resistant
epilepsy: consensus proposal by the ad hoc Task Force of the ILAE
Commission on Therapeutic Strategies. Epilepsia 2010; 51: 1069-77.
20. CK L, D M, M L. Newcastle-Ottawa Scale: comparing reviewers’ to
authors’ assessments. BMC medical research methodology 2014; 14: 45.
21. Subenthiran S, Abdullah NR, Muniandy PK, Joseph JP, Cheong KC,
Ismail Z, Mohamed Z. G2677T polymorphism can predict treatment outcome
of Malaysians with complex partial seizures being treated with
Carbamazepine. Genetics and molecular research : GMR 2013; 12: 5937-44.
22. Subenthiran S, Abdullah NR, Joseph JP, Muniandy PK, Mok BT, Kee CC,
Ismail Z, Mohamed Z. Linkage disequilibrium between polymorphisms of
ABCB1 and ABCC2 to predict the treatment outcome of Malaysians with
complex partial seizures on treatment with carbamazepine mono-therapy at
the Kuala Lumpur Hospital. PloS one 2013; 8: e64827.
23. Huang, JM, Qian Z, Chen, HY, Huang, Q, Huang, L, Liu, GJ, Tang, XL.
Association of single nucleotide polymorphisms of SCN1A gene with
therapeutic effect of carbamazepine among ethnic Zhuang Chinese patients
with epilepsy. Chinese Journal of Medical Genetics 2019; 36(3): 271-274.
24. Wang, P, Zhou, QH, Sheng, YH, Tang, BS, Liu, SZ, and Zhou, BT.
Association between two functional SNPs of SCN1A gene and
efficacy of carbamazepine monotherapy for focal seizures in Chinese Han
epileptic patients. Journal of Central South University (medical) 2014
(05): 433-441.
25. Yun W, Zhang F, Hu C, Luo X, Xue P, Wang J, Ge Y, Meng H, Guo Y.
Effects of EPHX1, SCN1A and CYP3A4 genetic polymorphisms on plasma
carbamazepine concentrations and pharmacoresistance in Chinese patients
with epilepsy. Epilepsy research 2013; 107: 231-7.
26. Zhou BT, Zhou QH, Yin JY, Li GL, Xu XJ, Qu J, Liu D, Zhou HH, Liu
ZQ. Comprehensive analysis of the association of SCN1A gene
polymorphisms with the retention rate of carbamazepine following
monotherapy for new-onset focal seizures in the Chinese Han population.
Clinical and experimental pharmacology & physiology 2012; 39: 379-84.
27. Sterjev Z, Trencevska GK, Cvetkovska E, Petrov I, Kuzmanovski I,
Ribarska JT, Nestorovska AK, Matevska N, Naumovska Z, Jolevska-Trajkovic
S, Dimovski A, Suturkova L. The association of C3435T single-nucleotide
polymorphism, Pgp-glycoprotein gene expression levels and carbamazepine
maintenance dose in patients with epilepsy. Neuropsychiatric disease and
treatment 2012; 8: 191-6.
28. Zhao, X, He, ZK, Zhang, J, Yang, Z. Whether the SCN1A IVS5N+5
G>A polymorphism of the SCN1A gene affects the
responsiveness to the Ant-epileptic drug carbamazepine. Journal of
pediatric pharmacy 2011; (01): 26-28.
29. Meng H, Guo G, Ren J, Zhou H, Ge Y, Guo Y. Effects of ABCB1
polymorphisms on plasma carbamazepine concentrations and
pharmacoresistance in Chinese patients with epilepsy. Epilepsy &
behavior 2011; 21: 27-30.
30. Ozgon GO, Bebek N, Gul G, Cine N. Association of MDR1 (C3435T)
polymorphism and resistance to carbamazepine in epileptic patients from
Turkey. European neurology 2008; 59: 67-70.
31. Zhu X, Yun W, Sun X, Qiu F, Zhao L, Guo Y. Effects of major
transporter and metabolizing enzyme gene polymorphisms on carbamazepine
metabolism in Chinese patients with epilepsy. Pharmacogenomics 2014; 15:
1867-79.
32. Puranik YG, Birnbaum AK, Marino SE, Ahmed G, Cloyd JC, Remmel RP,
Leppik IE, Lamba JK. Association of carbamazepine major metabolism and
transport pathway gene polymorphisms and pharmacokinetics in patients
with epilepsy. Pharmacogenomics 2013; 14: 35-45.
33. Ru, JL, He, XJ, Qiu, F, Sun, YX, Zhao, LM, Zhu, X. Effects of ABCBl
polymorphisms on plasma carbamazepine concentration. Chinese Journal of
Hospital Pharmacy 2012; (11): 820-824.
34. L Q, Y F, W W, K M, Z Y. Development, validation and clinical
application of an online-SPE-LC-HRMS/MS for simultaneous quantification
of phenobarbital, phenytoin, carbamazepine, and its active metabolite
carbamazepine 10,11-epoxide. Talanta 2016; 158: 77-88.
35. L B, T T. Clinical pharmacokinetics and pharmacological effects of
carbamazepine and carbamazepine-10,11-epoxide. An update. Clinical
pharmacokinetics 1986; 11: 177-98.
36. M R, P B, H C. Prediction of drug-drug interactions with
carbamazepine-10,11-epoxide using a new in vitro assay for epoxide
hydrolase inhibition. Xenobiotica; the fate of foreign compounds in
biological systems 2016; 46: 1076-84.
37. M M-B, GJ S, N H, E B, EA W, MJ B. Genetic variants in microsomal
epoxide hydrolase influence carbamazepine dosing. Clinical
neuropharmacology 2009; 32: 205-12.
38. Nakajima Y, Saito Y, Shiseki K, Fukushima-Uesaka H, Hasegawa R,
Ozawa S, Sugai K, Katoh M, Saitoh O, Ohnuma T, Kawai M, Ohtsuki T,
Suzuki C, Minami N, Kimura H, Goto Y, Kamatani N, Kaniwa N, Sawada J.
Haplotype structures of EPHX1 and their effects on the metabolism of
carbamazepine-10,11-epoxide in Japanese epileptic patients. European
journal of clinical pharmacology 2005; 61: 25-34.
39. NM B, T O, J P, P SdS, H B. Polyamine Modulation of Anticonvulsant
Drug Response: A Potential Mechanism Contributing to Pharmacoresistance
in Chronic Epilepsy. The Journal of neuroscience : the official journal
of the Society for Neuroscience 2018; 38: 5596-605.
40. CH T, KM K, AL G. SCN1A splice variants exhibit divergent
sensitivity to commonly used antiepileptic drugs. Epilepsia 2011; 52:
1000-9.
41. M T, J D, P S, A B-B. Hydrolytic stability of selected
pharmaceuticals and their transformation products. Chemosphere 2019;
236: 124236.