References
1. C C, M P, F M, G M, M G, GGAM P, E C, S R. Interactions Between Antiepileptic and Antibiotic Drugs: A Systematic Review and Meta-Analysis with Dosing Implications. Clinical pharmacokinetics 2019; 58: 875-86.
2. TN F, RJ B. The relationship between the pharmacology of antiepileptic drugs and human gene variation: an overview. Epilepsy & behavior : E&B 2005; 7: 18-36.
3. S G, M G-D, R B, S S, K B, M G, K N, B V, M G, K K, P T, H K, S G, A S, SK B, Consortium IGV, R K. Genetic profile of patients with epilepsy on first-line antiepileptic drugs and potential directions for personalized treatment. Pharmacogenomics 2010; 11: 927-41.
4. D T-S, A L, U F, J K. The clinical role of genetic polymorphisms in drug-metabolizing enzymes. The pharmacogenomics journal 2008; 8: 4-15.
5. BM K, KE T, CJ W, SM K, DL K, FJ G, RH L. Human liver carbamazepine metabolism. Role of CYP3A4 and CYP2C8 in 10,11-epoxide formation. Biochemical pharmacology 1994; 47: 1969-79.
6. CF T, SG L, J K, JS L, DJ M, TE K, RB A. PharmGKB summary: carbamazepine pathway. Pharmacogenetics and genomics 2011; 21: 906-10.
7. Chbili C, Fathallah N, Laouani A, Nouira M, Hassine A, Ben Amor S, Ben Ammou S, Ben Salem C, Saguem S. Effects of EPHX1 and CYP3A4*22 genetic polymorphisms on carbamazepine metabolism and drug response among Tunisian epileptic patients. Journal of neurogenetics 2016; 30: 16-21.
8. Daci A, Beretta G, Vllasaliu D, Shala A, Govori V, Norata GD, Krasniqi S. Polymorphic Variants of SCN1A and EPHX1 Influence Plasma Carbamazepine Concentration, Metabolism and Pharmacoresistance in a Population of Kosovar Albanian Epileptic Patients. PloS one 2015; 10: e0142408.
9. H P, M F, W L. P-Glycoprotein-mediated efflux of phenobarbital, lamotrigine, and felbamate at the blood-brain barrier: evidence from microdialysis experiments in rats. Neuroscience letters 2002; 327: 173-6.
10. H P, M F, W L. P-glycoprotein and multidrug resistance-associated protein are involved in the regulation of extracellular levels of the major antiepileptic drug carbamazepine in the brain. Neuroreport 2001; 12: 3557-60.
11. AJ B-T. MDR1 (ABCB1) polymorphisms: functional effects and clinical implications. Revista de investigacion clinica; organo del Hospital de Enfermedades de la Nutricion 2013; 65: 445-54.
12. L B, BS H, HK N, VC W, PW N, CH L, NC S, C Z, B T, GW W, HJ T, AA R, Z M, P K. Case-control association study of polymorphisms in the voltage-gated sodium channel genes SCN1A, SCN2A, SCN3A, SCN1B, and SCN2B and epilepsy. Human genetics 2014; 133: 651-9.
13. Nazish HR, Ali N, Ullah S. The possible effect of SCN1A and SCN2A genetic variants on carbamazepine response among Khyber Pakhtunkhwa epileptic patients, Pakistan. Therapeutics and clinical risk management 2018; 14: 2305-13.
14. Abe T, Seo T, Ishitsu T, Nakagawa T, Hori M, Nakagawa K. Association between SCN1A polymorphism and carbamazepine-resistant epilepsy. British journal of clinical pharmacology 2008; 66: 304-7.
15. GX Z, ML S, Z Z, P W, CX X, GH H. Association between EPHX1 polymorphisms and carbamazepine metabolism in epilepsy: a meta-analysis. International journal of clinical pharmacy 2019; 41: 1414-28.
16. Hung CC, Chang WL, Ho JL, Tai JJ, Hsieh TJ, Huang HC, Hsieh YW, Liou HH. Association of polymorphisms in EPHX1, UGT2B7, ABCB1, ABCC2, SCN1A and SCN2A genes with carbamazepine therapy optimization. Pharmacogenomics 2012; 13: 159-69.
17. Ma CL, Jiao Z, Wu XY, Hong Z, Wu ZY, Zhong MK. Association between PK/PD-involved gene polymorphisms and carbamazepine-individualized therapy. Pharmacogenomics 2015; 16: 1499-512.
18. Moher D, Liberati A, Tetzlaff J, Altman DG, The PG. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLOS Medicine 2009; 6: e1000097.
19. Kwan P, Arzimanoglou A, Berg AT, Brodie MJ, Allen Hauser W, Mathern G, Moshé SL, Perucca E, Wiebe S, French J. Definition of drug resistant epilepsy: consensus proposal by the ad hoc Task Force of the ILAE Commission on Therapeutic Strategies. Epilepsia 2010; 51: 1069-77.
20. CK L, D M, M L. Newcastle-Ottawa Scale: comparing reviewers’ to authors’ assessments. BMC medical research methodology 2014; 14: 45.
21. Subenthiran S, Abdullah NR, Muniandy PK, Joseph JP, Cheong KC, Ismail Z, Mohamed Z. G2677T polymorphism can predict treatment outcome of Malaysians with complex partial seizures being treated with Carbamazepine. Genetics and molecular research : GMR 2013; 12: 5937-44.
22. Subenthiran S, Abdullah NR, Joseph JP, Muniandy PK, Mok BT, Kee CC, Ismail Z, Mohamed Z. Linkage disequilibrium between polymorphisms of ABCB1 and ABCC2 to predict the treatment outcome of Malaysians with complex partial seizures on treatment with carbamazepine mono-therapy at the Kuala Lumpur Hospital. PloS one 2013; 8: e64827.
23. Huang, JM, Qian Z, Chen, HY, Huang, Q, Huang, L, Liu, GJ, Tang, XL. Association of single nucleotide polymorphisms of SCN1A gene with therapeutic effect of carbamazepine among ethnic Zhuang Chinese patients with epilepsy. Chinese Journal of Medical Genetics 2019; 36(3): 271-274.
24. Wang, P, Zhou, QH, Sheng, YH, Tang, BS, Liu, SZ, and Zhou, BT. Association between two functional SNPs of SCN1A gene and efficacy of carbamazepine monotherapy for focal seizures in Chinese Han epileptic patients. Journal of Central South University (medical) 2014 (05): 433-441.
25. Yun W, Zhang F, Hu C, Luo X, Xue P, Wang J, Ge Y, Meng H, Guo Y. Effects of EPHX1, SCN1A and CYP3A4 genetic polymorphisms on plasma carbamazepine concentrations and pharmacoresistance in Chinese patients with epilepsy. Epilepsy research 2013; 107: 231-7.
26. Zhou BT, Zhou QH, Yin JY, Li GL, Xu XJ, Qu J, Liu D, Zhou HH, Liu ZQ. Comprehensive analysis of the association of SCN1A gene polymorphisms with the retention rate of carbamazepine following monotherapy for new-onset focal seizures in the Chinese Han population. Clinical and experimental pharmacology & physiology 2012; 39: 379-84.
27. Sterjev Z, Trencevska GK, Cvetkovska E, Petrov I, Kuzmanovski I, Ribarska JT, Nestorovska AK, Matevska N, Naumovska Z, Jolevska-Trajkovic S, Dimovski A, Suturkova L. The association of C3435T single-nucleotide polymorphism, Pgp-glycoprotein gene expression levels and carbamazepine maintenance dose in patients with epilepsy. Neuropsychiatric disease and treatment 2012; 8: 191-6.
28. Zhao, X, He, ZK, Zhang, J, Yang, Z. Whether the SCN1A IVS5N+5 G>A polymorphism of the SCN1A gene affects the responsiveness to the Ant-epileptic drug carbamazepine. Journal of pediatric pharmacy 2011; (01): 26-28.
29. Meng H, Guo G, Ren J, Zhou H, Ge Y, Guo Y. Effects of ABCB1 polymorphisms on plasma carbamazepine concentrations and pharmacoresistance in Chinese patients with epilepsy. Epilepsy & behavior 2011; 21: 27-30.
30. Ozgon GO, Bebek N, Gul G, Cine N. Association of MDR1 (C3435T) polymorphism and resistance to carbamazepine in epileptic patients from Turkey. European neurology 2008; 59: 67-70.
31. Zhu X, Yun W, Sun X, Qiu F, Zhao L, Guo Y. Effects of major transporter and metabolizing enzyme gene polymorphisms on carbamazepine metabolism in Chinese patients with epilepsy. Pharmacogenomics 2014; 15: 1867-79.
32. Puranik YG, Birnbaum AK, Marino SE, Ahmed G, Cloyd JC, Remmel RP, Leppik IE, Lamba JK. Association of carbamazepine major metabolism and transport pathway gene polymorphisms and pharmacokinetics in patients with epilepsy. Pharmacogenomics 2013; 14: 35-45.
33. Ru, JL, He, XJ, Qiu, F, Sun, YX, Zhao, LM, Zhu, X. Effects of ABCBl polymorphisms on plasma carbamazepine concentration. Chinese Journal of Hospital Pharmacy 2012; (11): 820-824.
34. L Q, Y F, W W, K M, Z Y. Development, validation and clinical application of an online-SPE-LC-HRMS/MS for simultaneous quantification of phenobarbital, phenytoin, carbamazepine, and its active metabolite carbamazepine 10,11-epoxide. Talanta 2016; 158: 77-88.
35. L B, T T. Clinical pharmacokinetics and pharmacological effects of carbamazepine and carbamazepine-10,11-epoxide. An update. Clinical pharmacokinetics 1986; 11: 177-98.
36. M R, P B, H C. Prediction of drug-drug interactions with carbamazepine-10,11-epoxide using a new in vitro assay for epoxide hydrolase inhibition. Xenobiotica; the fate of foreign compounds in biological systems 2016; 46: 1076-84.
37. M M-B, GJ S, N H, E B, EA W, MJ B. Genetic variants in microsomal epoxide hydrolase influence carbamazepine dosing. Clinical neuropharmacology 2009; 32: 205-12.
38. Nakajima Y, Saito Y, Shiseki K, Fukushima-Uesaka H, Hasegawa R, Ozawa S, Sugai K, Katoh M, Saitoh O, Ohnuma T, Kawai M, Ohtsuki T, Suzuki C, Minami N, Kimura H, Goto Y, Kamatani N, Kaniwa N, Sawada J. Haplotype structures of EPHX1 and their effects on the metabolism of carbamazepine-10,11-epoxide in Japanese epileptic patients. European journal of clinical pharmacology 2005; 61: 25-34.
39. NM B, T O, J P, P SdS, H B. Polyamine Modulation of Anticonvulsant Drug Response: A Potential Mechanism Contributing to Pharmacoresistance in Chronic Epilepsy. The Journal of neuroscience : the official journal of the Society for Neuroscience 2018; 38: 5596-605.
40. CH T, KM K, AL G. SCN1A splice variants exhibit divergent sensitivity to commonly used antiepileptic drugs. Epilepsia 2011; 52: 1000-9.
41. M T, J D, P S, A B-B. Hydrolytic stability of selected pharmaceuticals and their transformation products. Chemosphere 2019; 236: 124236.