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Abstract  

The FastDesign protocol in the molecular modeling program Rosetta iterates between sequence 

optimization and structure refinement to stabilize de novo designed protein structures and 

complexes. FastDesign has been used previously to design novel protein folds and assemblies with 

important applications in research and medicine. To promote sampling of alternative 

conformations and sequences, FastDesign includes stages where the energy landscape is 

smoothened by reducing repulsive forces. Here, we discover that this process disfavors larger 

amino acids in the protein core because the protein compresses in the early stages of refinement. 

By testing alternative ramping strategies for the repulsive weight, we arrive at a scheme that 

produces lower energy designs with more native-like sequence composition in the protein core. 

We further validate the protocol by designing and experimentally characterizing over 4000 

proteins and show that the new protocol produces higher stability proteins. 
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Introduction 

Protein design software can be used to stabilize proteins, create novel protein structures and 

complexes, and introduce new functional sites into proteins.[1] Most protein design programs use 

rotamer-based side chain optimization to identify amino acid sequences that will stabilize the 

desired protein structure or complex.[2] In these simulations, the side chains are modeled using a 

set of commonly observed discrete conformations, referred to as rotamers, and the protein 

backbone is often held fixed while the sequence is optimized.[3] As a consequence of these 

approximations, amino acid combinations that could be favorable with small adjustments to side 

chain and backbone positioning can be missed. The protein design field has been aware of these 

limitations for many years and a variety of strategies have been developed to increase sampling of 

alternative sequences and structures.[4–12] Common solutions include reducing repulsive forces 

to implicitly account for small structural changes that may relieve clashes, allowing small localized 

changes to the protein backbone during sequence optimization, and iterating between sequence 

design and larger-scale structure refinement. 

In the molecular modeling program Rosetta, the FastDesign protocol uses a combination of 

reduced repulsive weights and sequence design iterated with structure refinement to facilitate the 

sampling of lower energy sequences and structures. FastDesign has been used to create novel 

protein tertiary structures, large macromolecular assemblies, and functional proteins with 

important applications in medicine and research.[13–16]  FastDesign is derived from FastRelax, 

Rosetta’s default protocol for perturbing protein models to sample lower-energy 

conformations.[17] The FastRelax protocol iterates between fixed backbone side chain 

optimization (with rotamers) and gradient-based energy minimization of side chain and backbone 

torsion angles. Side chain optimization is performed using Monte Carlo sampling, in which each 



 

Monte Carlo move involves replacing a side chain rotamer at a random sequence position with a 

different rotamer.[18] The change is accepted or rejected based on the calculated change in the 

energy of the protein and the Metropolis Criterion. The only difference between FastRelax and 

FastDesign is that rotamer substitutions during FastDesign are allowed to change the identity of 

an amino acid. Each round of rotamer optimization involves hundreds of thousands of rotamer 

substitutions. Following side chain optimization, the gradient of the energy function is used to 

simultaneously adjust backbone and side chain angles throughout the protein in order to further 

lower the energy of the protein. In general, the same energy function is used for the side chain 

sampling and the structure refinement. 

FastRelax alternates between side chain optimization and gradient-based minimization four 

times (Fig 1). Empirical testing has established that ramping the repulsive forces from low to full 

strength over the four rounds (starting with a weight that is 2% of the final weight) encourages 

sampling of alternate conformations and after the final round with a full repulsive weight produces 

models with appropriately spaced atoms. The FastRelax protocol was parameterized for use in 

structure prediction. During structure prediction, the amino acid sequence is held fixed and the 

goal is to rapidly identify conformations that lower the energy of the protein. 

     Until recently, the default FastDesign protocol in Rosetta used the same repulsive weight 

ramping scheme as FastRelax. The hypothesis was that the reduced repulsive weight in the early 

stages of design would allow larger amino acids to be placed with suboptimal packing, and then 

optimized in later rounds of structure refinement and sequence design. However, we demonstrate 

here that the protocol does not perform as expected. Instead, the protein collapses during the initial 

round of gradient-based minimization, which precludes the design of larger amino acids when the 

repulsive weight is increased. The result is that proteins are designed with an abundance of small 



 

amino acids, notably alanines, in their cores. To achieve native-like packing of protein cores we 

show that it is useful to lower the repulsive weight in the early rounds of design, but that the 

repulsive weight should be increased before performing structure refinement to prevent the protein 

from collapsing. We demonstrate that the reparameterized FastDesign protocol produces models 

with lower Rosetta energies and that these proteins are more stable when experimentally 

characterized.  

Results and Discussion 

Characterization of the legacy FastDesign protocol. We first noticed that the FastDesign 

protocol in Rosetta was biased towards placing smaller amino acids in the protein core when 

purposely attempting to overpack a previously designed four-helix bundle protein (“DRNN”).[19] 

With the goal of favoring larger amino acids in the protein core, we lowered the weight on the 

repulsive term in the Rosetta energy function during the last round of sequence optimization of 

FastDesign. The repulsive weights were left at their default values (i.e. reduced) for the earlier 

rounds of sequence optimization and minimization in FastDesign (Table 1). Lowering the weight 

on the repulsive term in the Rosetta energy function lowers the penalty for bringing atoms closer 

than their van der Waals radii, but does not change the most preferred interaction distance between 

two atoms (see methods).  Surprisingly, we found that even with the repulsive weight lowered to 

50% of its standard value for the last round of design, we were not observing a significant increase 

in the size of amino acids placed in the protein core. This result led us to examine what was 

happening during the early rounds of FastDesign. 

The first stage of legacy FastDesign involves sequence design with a repulsive weight set to 2% 

of its final value followed by minimization with the same repulsive weight. As was expected, after 

the first stage of sequence design the core of DRNN was populated with larger amino acids (Table 



 

2). Since the protein core was overpacked at this stage we thought that the subsequent minimization 

step would adjust the backbone to make room for the larger amino acids. Instead, the protein 

collapsed by a small but significant amount.  Residues on neighboring helices came closer to each 

other and the radius of gyration for the protein went from 14.4 Å to 14.0 Å. The repulsive weight 

was so low during minimization that any penalties accrued from bringing atoms closer than their 

van der Waals distances was compensated for by a large gain in attractive forces between atoms 

that are not immediately adjacent to each other.  

The second stage of legacy FastDesign involves another round of sequence design followed by 

gradient-based minimization but with a higher repulsive weight than the first round (25%). Since 

DRNN had collapsed during the first stage, the sequence design in the second stage populated the 

core residues with an abundance of small amino acids, especially alanine, to avoid clashes.  The 

minimization step further optimized contacts but maintained a collapsed structure to keep the 

smaller amino acids adjacent to each other.      The third and fourth stages of FastDesign further 

refined the sequence and backbone but did not significantly change the character of the amino 

acids in the protein core. The final sequences were enriched in alanines in the core.   

Surprised by our results with DRNN we sought to test FastDesign on a larger set of proteins.  As 

a benchmark set, we chose 52 smaller proteins (80-120 residues) with crystal structures with 

resolutions lower than 1.5 Å. We ran FastDesign to redesign each protein’s core 10 times and 

examined the sequences and structures of the design models.  

To gauge the compactness of the models we measured the radius of gyration ratio (“RG ratio”), 

which divides the radius of gyration of the designed protein by that of the input structure. A value 

less than 1 means that the designed protein is more compact that the native structure. We measured 

an average value of 0.97 +/- 0.004 for the redesigns. 



 

We additionally measured the percentage of core residues that were designed to be alanine. 

Rosetta defines a residue as “core” if its C-alpha atom is within 10Å of 18 or more C-alpha atoms 

from other residues. In the native input structures 15.3% of the core residues were alanine while 

in the models output by FastDesign 23.4% of the core residues were alanine. Figure 1 compares 

the amino acid distributions of the native protein cores and the protein cores after being designed 

by FastDesign. While the smaller cysteine was also overrepresented (disulfides were not allowed), 

isoleucine, leucine, tyrosine and tryptophan were underrepresented in the design sequences. These 

results confirmed that the behavior that we observed with DRNN was a general problem with the 

FastDesign protocol. As illustrated in Figure 2A, the very low repulsion weight during the first 

stage of gradient based minimization induces the protein to collapse by a small amount, which 

leads to the placement of an abundance of alanines in the subsequent design steps. 

We also tested if legacy FastDesign is predisposed to design smaller amino acids when 

redesigning naturally occurring protein-protein interfaces.  The FastDesign protocol was run on 

27 naturally occurring protein complexes allowing mutations to be introduced on both sides of the 

interface. During the minimization step of FastDesign the relative position of the two protein 

chains was allowed to change in addition to the backbone and side chain torsion angles within the 

two proteins.  The results were even more skewed than what we observed for designing protein 

monomers (Figure 1).  The fraction of residues that were designed to be alanine increased from 

5% to 15% and valines and leucines were also overrepresented.  Similar to what we observed with 

designing monomers, the RG of the complexes decreased during the first step of FastDesign (a RG 

ratio of 0.95) and never returned to their starting values.  

 



 

     Reparameterizing FastDesign.  Based on our benchmarking studies with native proteins and 

protein interfaces we speculated that the FastDesign protocol could be improved by 

reparameterizing the repulsive weights used in the earlier stages of the protocol.  As extensive 

work has been done recently to optimize the standard energy function in Rosetta,[20, 21] we did 

not explore changing the energy function used for the final round of design and minimization. This 

allowed us to use the Rosetta energies of the final design models to compare the quality of different 

ramping schemes.  More effective sampling of sequence and conformational space should lead to 

lower energy designs. 

Six of FastDesign’s eight steps have non-standard repulsive weights. Instead of sampling six-

dimensional space, we reduced the search space down to two dimensions: floor and λ (as shown 

in Figure 2B and 2C). The floor dimension spans from 0 to 1 and pads each FastDesign step with 

an increase to the repulsive weight. The λ dimension also spans 0 to 1 and only applies to the 

minimization steps of FastDesign. λ interpolates the repulsive weights between the neighboring 

packing steps, such that a larger value of λ results in a weight more similar to the subsequent 

packing step. 

Equations 1 and 2 describe the how the repulsive weights of various rounds are changed by these 

new parameters. For these equations, i denotes a round of FastDesign and is limited to the first 

three; the fourth and final round of FastDesign always uses a repulsive weight of 1.0. 𝑓!"#$(𝑖) 

denotes the original (legacy) repulsive weight for the rotamer substitution portion of round i, 

𝑔!"#$(𝑖) denotes the new repulsive weight for the rotamer substitution portion of round i, and 

𝑔%&'(𝑖) denotes the new repulsive weight for the minimization portion of round i.  

𝑔!"#$(𝑖) = floor + (1 − floor)𝑓!"#$(𝑖)       (Eq. 1) 

𝑔%&'(𝑖) = (1 − 𝜆)𝑔!"#$(𝑖) + 𝜆𝑔!"#$(𝑖 + 1)      (Eq. 2) 



 

We performed a coarse-grained grid search of these two dimensions on 10 different design 

scenarios, each explained in more detail in the “Protein Sets” subsection of methods. We aimed to 

maximize diversity in the design cases in order to represent the wide variety of applications that 

FastRelax and FastDesign can be applied to. For modeling protein monomers we performed three 

types of tests: structure refinement with a fixed amino acid sequence, design simulations where all 

of the residues were allowed to mutate, and design runs where only the core residues could mutate.  

These tests were performed on both native crystal structures and computer-generated models. For 

modeling protein complexes, we also performed three types of tests: two-sided interface design 

(mutations were permitted on both chains), one-sided interface design (mutations were restricted 

to one chain), and structure refinement of the complex with a fixed sequence. 

FastDesign ran on each case ten times for each structure (only five times each for interfaces). 

Each case produced a heatmap of Rosetta energies, examples of which are shown in Figure 3. We 

identified the set of parameters that generated the lowest energy models for each case and used 

that information to construct four relax scripts that cover all cases: InterfaceDesign2019 

(floor=0.06, λ=0.10), InterfaceRelax2019 (floor=0.05, λ=0.05), MonomerDesign2019 

(floor=0.04, λ=0.15), and MonomerRelax2019 (floor=0.02, λ=0.15), as shown in Table SI1. All 

cases benefited by introducing a non-zero floor or λ independently, but a mixture of a non-zero 

floor and a non-zero λ consistently gave the best results. We learned from this that the repulsive 

weight ramping scheme needed a higher starting point for step 1a and that intermediate 

minimization rounds of FastDesign should have slightly larger repulsive weights than their 

preceding rotamer substitution round. 

The observed results for all cases are summarized in Table 3. The Rosetta energies improved 

for all cases when using the new FastDesign protocols compared to the old legacy FastDesign. 



 

Relax cases resulted in a 2% improvement in Rosetta energy per residue, design cases resulted in 

a 6% improvement, and partial design cases (one-sided interface design and monomer core 

redesign) resulted in an 8% improvement. RG ratios became closer to 1.0 in 6 of the 10 cases and 

unchanged in 3 of the remaining cases. “Decoy Monomer Design” was the only case in which the 

RG ratio of the MonomerDesign2019 result was further from 1.0 than that of the legacy FastDesign 

result. Though not ideal, this is a permissible outlier because the computer-generated backbones 

used for that test set are not necessarily optimal. In fact, all of the test cases that use native crystal 

structures (and thus have near-optimal backbone configurations) had improved RG ratios with the 

new protocol compared to the old legacy. We additionally observe that all of the design 

benchmarks have closer-to-native alanine distributions using the new protocol. 

 

Ramping Reference Weights.  Although finding models with lower Rosetta energies, the new 

FastDesign schemes still did not closely match naturally occurring frequencies for some of the 

amino acids (Figure SI1). Alanine levels came closer to native-like levels, but large hydrophobic 

amino acids became over-sampled and polar/charged amino acids were under-sampled.  

The amino acid frequencies generated by Rosetta’s design protocols depend on a set of reference 

values that are assigned to the 20 amino acids as part of the standard full atom energy function.  

Each amino acid has its own unique value.  If the reference value is raised for a particular amino 

acid, then that amino acid will be placed less frequently in design simulations.  The reference 

values for the current default energy function in Rosetta, ref2015, were parameterized by 

performing fixed backbone design simulations on a set of naturally occurring protein crystal 

structures and setting the weights so that native-like amino acid frequencies were observed.  

During legacy FastDesign as well as the FastDesign schemes described above 



 

(MonomerDesign2019 etc…), the reference values remain at their default values throughout all 

the design stages. We hypothesized that to achieve more native-like amino acid distributions from 

a FastDesign simulation it may be important to have reference values customized for each stage 

of FastDesign.  As the repulsive weight is varied, it will change which types of amino acids are 

naturally favored.  To test the hypothesis, we fit custom reference values for each stage of 

FastDesign (see methods). As predicted, this approach generates amino acid distributions that 

more closely match native-like proteins and contain a higher fraction of polar amino acids than is 

observed when the custom reference values are not used (Figure SI1).  We refer to this variant of 

FastDesign as PolarDesign2019 because it introduces a higher percentage of polar amino acids 

than MonomerDesign2019.  

Figure 4 compares the Rosetta energies of designs created by PolarDesign2019 and 

MonomerDesign2019 with designs created with legacy FastDesign. PolarDesign2019 averages -

0.41 REU/residue better than the legacy FastDesign in the case of two-sided interface design, while 

InterfaceDesign2019 averages -0.42 REU/residue of improvement. Both methods achieve 

comparable Rosetta energies. 

 

The new FastDesign protocol improves Rosetta’s ability to design stable de novo mini-

proteins. Above, we describe how the new FastDesign protocols increase Rosetta's ability to 

recover native sequences during design and produces models calculated to have more favorable 

energies. Next, we sought to test these protocols by designing and experimentally characterizing 

de novo designed proteins. A recently developed high-throughput method makes it possible to 

quantify the stability of thousands of mini-protein designs (40-65 amino acids) in a single 

experiment.[22] In this assay, a library of designs is displayed on the surface of yeast, and their 



 

stability is measured as a function of their ability to withstand cleavage by proteases, which is 

quantified using bulk selection followed by deep sequencing of the library before and after 

selection. Using this approach, we compared the legacy FastDesign protocol and two of the new 

protocols (MonomerDesign2019 and PolarDesign2019) in their ability to design stable de novo 

mini-proteins, experimentally testing hundreds of designs per protocol. 

Our design approach involved two main steps. First, we generated three-dimensional protein 

backbones lacking amino-acid sequences. Specifically, we generated a total of 800 backbones that 

were evenly distributed among eight structural groups, each with a defined topology and length 

(Figure 5). These groups were highly diverse, spanning five topologies and, for some topologies, 

multiple lengths. Second, we used FastDesign to design amino-acid sequences onto each of the 

800 backbones. We conducted this second step independently for each FastDesign protocol, using 

the exact same 800 backbones as input each time so as to enable a head-to-head comparison 

between protocols. 

Based on our findings from re-designing native proteins, we expected the new protocols to give 

rise to de novo designs with lower, more favorable Rosetta energies. Figure 5B shows that designs 

made with MonomerDesign2019 do in fact have much lower energies than ones made with the 

legacy protocol (see the left-most box plot). Interestingly, designs made with PolarDesign2019 

tend to have worse energies than ones made with MonomerDesign2019, indicating that the 

reference-energy-ramping technique hinders Rosetta from discovering low-energy designs in this 

particular design task. 

The differences in Rosetta energies suggest large biophysical differences between designs. 

Above, when re-designing native proteins, we observed that the new protocols introduced fewer 

alanines during design, resulting in better packing. Following this trend, MonomerDesign2019 



 

also introduced fewer alanines in the de novo design task (Figure S3). Figure 5B shows that the 

percentage of hydrophobic amino acids in designed sequences is similar between 

MonomerDesign2019 and the legacy protocol (see the second box plot from the left), suggesting 

that the decrease in the number of alanines is coupled with an increase in the number of bulkier 

hydrophobic amino acids. As might be expected from this trend, designs made with 

MonomerDesign2019 tend to have higher levels of buried non-polar surface area (NPSA) 

compared with designs made using the legacy protocol (see the third box plot from the left). As 

we restricted hydrophobic amino acids from being designed on the surface of proteins, this result 

suggests that MonomerDesign2019 produces designs with larger hydrophobic cores. There are 

also large biophysical differences between designs made with MonomerDesign2019 compared to 

PolarDesign2019. For instance, Figure 5B shows that designs made using PolarDesign2019 have 

a much lower percentage of hydrophobic amino acids, coupled with lower levels of buried NPSA. 

Overall, each FastDesign protocol produced biophysically unique pools of designs. 

Next, we wondered whether these biophysical differences corresponded with differences in 

folding stability. To address this question, we experimentally measured the stability of the designs 

using the high-throughput stability assay from Rocklin et al.[22] Across structural groups, the 

proteins designed with MonomerDesign2019 were more stable than ones designed with the other 

two protocols (Figure 5B). For each design, we also measured the stability of a "scrambled" 

control, generated by shuffling the designed protein sequence while preserving the hydrophobic 

and hydrophilic patterning across all sites, as well as the positioning of glycines and prolines. 

Figure 5B shows that controls tend to be much less stable than designs (see the right-most box 

plot), helping to confirm that design stability does not arise merely from sequence composition 

and patterning, but from the designed structure.  



 

For some structural groups, a subset of controls did have stability scores greater than zero. In 

these cases, control stability varied between design protocols in a way that correlated with design 

stability. This raises the question of whether the differences between design protocols are merely 

due to sequence composition and patterning. However, the between-protocol stability differences 

for controls is often less than the differences for designs, indicating that the former cannot 

completely account for the latter. In addition, we designed and tested a second set of designs where 

this problem is less of a concern. We made the designs in Figure 5B with the current Rosetta energy 

function. However, we also made another set of designs using a variant of this energy function 

with reference energies that were fit using a different protocol (see methods). Designs made using 

this second energy function had differences in amino-acid composition relative to designs in Figure 

5B. Figure SI2C shows the results of testing these designs in the high-throughput stability assay. 

Once again, designs made using MonomerDesign2019 tend to be more stable than designs made 

using the other two protocols. This time, however, fewer controls reached high stability values, 

further suggesting that differences between protocols cannot be explained by sequence 

composition and patterning alone. 

Why do proteins made with MonomerDesign2019 tend to be more stable than proteins made 

with the other design protocols? The same study that established the high-throughput assay from 

above used it to measure the stability of thousands of de novo mini-protein designs.[22] They then 

searched for correlates of design stability among dozens of biophysical features. One of the 

strongest correlates of stability was buried NPSA: proteins with more of this feature tended to be 

more stable. In our study, this same feature strongly correlates with stability differences between 

design protocols: a comparison of the box plots quantifying design stability and buried NPSA in 

Figure 5B shows a striking pattern, where between-protocol differences in buried NPSA are often 



 

closely mirrored in design stability. This pattern suggests that the success of MonomerDesign2019 

in this design task is largely rooted in its ability to produce proteins with larger hydrophobic cores. 

It also suggests that the lower success rate of PolarDesign2019 is rooted in its tendency to 

incorporate more polar amino acids into designs. 

Thus, it appears that PolarDesign2019’s increased preference for polar amino acids, which 

boosts its performance in re-designing native proteins, actually decreases its performance in 

designing stable de novo mini-proteins. This conflicting pattern points to an interesting difference 

between our two design benchmarks. Native proteins are typically much larger than mini-proteins, 

are not usually optimized for stability, and evolve under a complex mixture of selective pressures. 

It makes sense, therefore, that a protocol optimized for designing native-like sequences might not 

be optimal for designing stable mini-protein sequences. Thus, not only have we improved 

FastDesign’s performance across two different design benchmarks, but we have also identified 

strengths and weaknesses in two of our new protocols, which should help guide the field in 

deciding which one to use to meet their own particular design objectives. 

Finally, it is notable that Rosetta energy is also predictive of between-protocol differences in 

mini-protein stability. In this task, MonomerDesign2019 consistently produced designs with more 

favorable energies across all structural groups, allowing proteins to reach lower points in their 

computationally modeled energy landscapes. Before experimentally measuring the actual stability 

of designs, it was unclear whether these computational predictions would be correct, as current 

macromolecular forcefields still have many inaccuracies. However, these predictions were largely 

in agreement with our experimental measurements, helping to validate the accuracy of Rosetta’s 

energy function and that MonomerDesign2019 is able to design proteins with more favorable 

energies. A caveat of these results is that the high-throughput assay involves measuring a protein’s 



 

stability as a function of its susceptibility to proteases when displayed on the surface of yeast, 

where factors other than folding stability (e.g., oligomerization propensity) might also affect 

protease susceptibility.  

 

Conclusion 

Efficient sampling of protein conformational and sequence space is challenging because small 

perturbations to either the structure or sequence can lead to large spikes in energy.  In our study 

we confirm that sampling can be enhanced by dampening repulsive energies in the early stages of 

refinement, but also demonstrate that the specific pattern of repulsive weight ramping can have 

large effects on the types of amino acids that are favored in the protein core and the energies of 

the final design models.  In particular, we found that using very low repulsive weights during the 

first stage of structure refinement can induce the protein model to collapse by a small amount, 

which favors the placement of smaller amino acids during subsequent rounds of rotamer-based 

sequence design.  By testing a large set of alternate repulsive weight ramping protocols, we 

identified schemes that produce design models with lower calculated energies and a more native-

like distribution of alanines in protein cores and at protein interfaces.  

We also demonstrated that using amino acid reference values customized for the early stages of 

the FastDesign protocol (i.e. when the repulsive weight is reduced) changes amino acid usage in 

the final design models.  This is despite the fact that the same energy function and amino acid 

reference values are used for the final sequence optimization stage in all the FastDesign design 

protocols that we computationally benchmarked. This result highlights that favoring a particular 

amino acid sequence in the early stages of FastDesign can lock that sequence in, as the subsequent 

structure refinement steps adjust the backbone to be favorable for that sequence. We 



 

experimentally tested proteins designed with custom reference values for each stage of FastDesign 

(PolarDesign2019) and proteins designed with just the standard Rosetta reference values used at 

each stage of FastDesign (MonomerDesign2019).  The sequences designed with 

MonomerDesign2019 were, in general, more hydrophobic and, consistent with previous findings, 

these proteins were more stable as judged by resistance to proteases. However, many of the 

PolarDesign2019 sequences also folded and these proteins had a more native-like distribution of 

amino acids. It is not straightforward to label one of the protocols as being better as different 

projects in protein design can have different goals. In some cases, it may be important to maximize 

solubility while in other cases protein thermostability may be paramount.  

 

 

  



 

Materials and Methods 

Rosetta Energy Function 

The Rosetta energy function is a weighted sum of independent terms and has been described in 

detail previously.[21] Critical components include an implicit solvation model, orientation 

dependent hydrogen bonding terms, short-range electrostatics, torsional energies and a modified 

12-6 Lennard-Jones potential (LJ) that is used to model steric repulsion and attractive dispersion 

forces.  The LJ potential is split into a repulsive component (“fa_rep”) and an attractive component 

(“fa_atr”). Each component receive its own independent weight in the Rosetta energy function.  

The division between “attractive” and “repulsive” is constructed so that changing the weights on 

the terms (fa_atr or fa_rep) does not change the minimum-energy distance between two atoms.  In 

this study, and in the FastDesign protocol, changes are made to the weight on the fa_rep term.  The 

fa_rep term uses different functional forms depending on the distance between the two atoms that 

are being evaluated. Near the minimum-energy distance (𝜎&,)) fa_rep is based on the 12-6 LJ 

potential while at shorter distances the 12-6 potential is replaced with a linear term to avoid 

exceptionally high energies that can disrupt sampling protocols:   
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The fa_rep energy for a molecule is the sum of the repulsive energies between pairs of atoms (𝑖, 𝑗) 

and depends on the distances between atoms (𝑑&,)), the minimum-energy distance between two 

atoms (𝜎&,)), and the well depth (𝜀&,)). The parameters for the linear potential used at short distances, 

𝑚&,) and 𝑏&,) are constructed to avoid derivative discontinuities at the transition point, 0.6𝜎&,). The 



 

atomic radii and well depths used in Rosetta were parameterized using a variety of benchmarks 

including reproducing small molecule liquid-phase data.[20] 

The fa_atr term is also based on the 12-6 LJ potential but is modified to work in conjunction 

with fa_rep and is truncated at longer distances with a cubic polynomial function, 𝑓!345(𝑑&,)), for 

computational efficiency.  
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In the Rosetta energy functions, ref2015 and beta_nov16, the weight on 𝐸*+_+6- is 1.0 and the weight 

on 𝐸*+_-./		is 0.55. Figure S6 shows plots of 𝐸*+_+6- and 𝐸*+_-./		using the standard ref2015 weights 

as well as what the function looks like when 𝐸*+_-./		is down weighted as it is in the early stages of 

FastDesign.  

 

Protein Structure Sets 

We assembled a variety of sets of protein models, each either “RC” for relaxed crystal (see 

below) or “Decoy” for computer-generated models. RC Monomer is a set of relaxed (see below) 

crystal structures of protein monomers between 80-120 residues in length and with resolutions 

better than 1.5 Å. RC Interface is a set of relaxed crystal structures of interfaces dimeric crystal 

structures downloaded from the PDBbind database with these filters: resolution must be better than 

2.3 Å, the structures could not have more than 2 proteins chains and no ligand at the interface apart 

from HOH, SO4, CL, NA, MSE, and/or GOL.[23] Decoy Interface structures were generated by 

using SEWING’s AppendAssemblyMover[13, 24] to design de novo 4-helical bundles that are 



 

designed to bind to the active form of the G protein, Gq alpha (see sewing_append_assembly.xml 

and accompanying flags in the Supplemental Information). Decoy Monomer #1 was generated by 

running Rosetta’s Abinitio demo without the final relax step. Decoy Monomer #2 structures come 

from a previous experiment[17] in which Abinitio backbones were filtered based on downstream 

success with full-atom design. The goal of this set is to show that designs that previously performed 

well under legacy FastDesign do not get worse with our new variants. The Decoy Monomer #3 set 

was created by stripping the non-generated binding partners from the Decoy Interface set, leaving 

only the protein chain designed by SEWING. Each set contains between 40 and 60 structures. 

FastDesign Benchmarks 

We had three different cases for the monomer sets: relax (fixed sequence), design (Rosetta was 

allowed to change the sequence of the protein), and core design (Rosetta was only allowed to 

change amino acid identities at core positions). The interface sets also had three cases: relax (fixed 

sequence), one-sided design (fixed sequence for one binding partner, the other binding partner 

could change sequence) and two-sided design (both chains can change sequences). We only ran 

protein sets that were logical for each case. For example, we did not run relax protocols on 

SEWING designs because there is no native amino acid identity for a SEWING-made structure. 

Relaxing Crystal Structures 

Each crystal structure was relaxed by running FastRelax 10 times and choosing the output 

structure with the lowest Rosetta energy. For this purpose, FastRelax is run with coordinate 

constraints (artificial energy bias that penalizes the protein’s backbone for deviating from the 

starting position). 

Reference Energy Fitting 



 

For each repulsive weight, we ran optE_parallel (a Rosetta application) on 48 structures 

previously used for score function fitting.[25] This application performs fixed-backbone rotamer 

substitution, allowing all residue positions to change amino acids.  This process is repeated many 

times, each time modifying the amino acids’ reference energies in an attempt to optimize a 

weighted combination of sequence recovery (identity) and the cross entropy (Kullback-Leibler 

divergence) between the wild-type sequence profile seen over all 48 proteins against the sequence 

profile over all 48 models that Rosetta produces. optE_parallel was run three times for each 

repulsive weight and the outcome with the best score was used for PolarDesign2019. 

De novo design of mini-proteins 

Our design protocol involved two basic steps: 1) generating three-dimensional mini-protein 

backbones and 2) designing amino-acid sequences onto those backbones. We designed eight pools 

of mini-proteins, where each pool had a unique topology (defined by the number and ordering of 

helices and strands) and length (Figure 5). 

For seven of the eight pools, we performed step (1) using a “blueprint”-based approach.[26, 27] 

A blueprint encodes several aspects of the desired protein structure, including: the length, 

secondary structure at each position, and pairings or register shifts between secondary structures. 

For each of the seven pools, we used a single blueprint to generated thousands of protein 

backbones. Each of these blueprints, and the code for backbone generation, are given in 

Supplemental File 1. Three of the blueprints were from Rocklin et al.[22] (HHH 43aa, EHEE 

40aa, EEHEE 43aa) and four are newly generated by us (EEHEE 57aa, HHH 64aa, EHEE 65aa, 

HEEHE 65aa). After generating pools of backbones, we then removed ones with low designability. 

We assessed designability using two main metrics, both of which are computed by Rosetta filters 

in the code used for backbone generation. The first metric, computed by the “percent_core_SCN” 



 

filter, quantifies the percent of residues in the protein’s core layer, as determined using the side-

chain neighbors criteria from Rocklin et al.[22] To select for backbones with large cores, we 

discarded all backbones with filter values greater than the following topology-specific cutoffs: 

HHH 43 aa: -0.25; HHH 64 aa: -0.2; EHEE 40 aa: -0.2; EEHEE 43 aa: -0.2; EHEE 65 aa: -0.175; 

EEHEE 57 aa: -0.2; HEEHE 65 aa : -0.2. The second metric, computed by the “ss1” filter, 

quantifies the fraction of residues in the design that match the secondary structure specified in the 

blueprint. To select for backbones that closely matched the blueprint, we discarded all backbones 

with filter values less than the following topology-specific cutoffs: HHH 43 aa: 0.9; HHH 64 aa: 

0.95; EHEE 40 aa: 0.91; EEHEE 43 aa: 0.94; EHEE 65 aa: 0.91; EEHEE 57 aa: 0.975; HEEHE 

65 aa: 0.9. Finally, we applied a few topology-specific filters: For the EEHEE 57 aa topology, to 

help ensure proper sheet formation, we removed backbones that lacked a backbone-backbone 

hydrogen bond between sites 7 and 53. For the HEEHE 65 aa topology, to help promote structural 

compactness, we removed backbones where the distance between the C-alpha atoms of residues 3 

and 30 was greater than 10 Å. After these filtering steps, for each of the seven pools, we randomly 

selected 100 backbones for downstream protein design. 

For one of the eight pools of designs (the four-helix bundles, denoted HHHH in Figure 5), we 

performed step (1) by stitching together fragments of helices and loops using a method that is 

similar to the SEWING protocol.[13] As input for this approach, we extracted libraries of helical 

fragments and loop-containing fragments from a set of ~12,000 de novo mini-protein designs 

determined to be stable using the high-throughput stability assay described below (designs 

included ones from Rocklin et al.,[22] as well as unpublished designs). Specifically, we curated a 

library of helical fragments that were all 18 amino acids in length, and a separate library of loop-

containing fragments that were all 8-11 amino acids in length and included exactly three helical 



 

residues at each terminus. To further curate these libraries, we removed fragments that lacked close 

structural matches in the PDB. Specifically, for each 9 amino-acid window in each fragment, we 

determined if those amino acids aligned with a C𝛼 RMSD of 0.4 Å or lower to at least one member 

of a library of 9 amino-acid fragments curated from the PDB. We then pruned our library of 

fragments to only include ones with PDB matches across all 9 amino-acid windows in the 

fragment. Next, we clustered the remaining fragments by structural similarity, where members of 

a cluster were alignable with a C𝛼 RMSD of ~0.5 Å or lower, and chose one representative from 

each cluster with at least one member, resulting in final fragment libraries with 9 helices and 274 

loops. PDB files of each fragment in these libraries are in Supplemental File 1. 

Next, we assembled fragments into single-chain three-dimensional backbones that formed four-

helix bundles and were 65 amino acids in length. We did so using a piecewise assembly process. 

Starting from an N-terminal helical fragment, we searched for compatible loop-containing 

fragments that could be stitched onto the C-terminus of the helix. We continued to grow the chain 

by assembling helical and loop-containing fragments in alternating order until we generated 

structures with four helices connected by three loops. At each assembly step, we considered two 

fragments to be compatible if the terminal two residues of the loop-containing fragment could be 

aligned to a consecutive pair of residues anywhere along the helical fragment with an RMSD of 

0.3 Å or less, as computed over the N, C𝛼, and C backbone atoms of residues immediately adjacent 

to the overlapping residues being stitched together. We repeated this process many times using a 

random, combinatorial algorithm to generate hundreds of thousands of structurally diverse 

backbones. 

Next, we curated the resulting four-helix-bundle backbones using two steps. First, we selected 

for compact backbones by removing ones that had a radius of gyration greater than 10.5 Å. Second, 



 

we selected for designable backbones based on a metric that quantifies the potential of pairs of 

sites to favorably interact with each other. To do so, we used a database of residue-pair interactions 

observed in structures from the PDB, as created in Fallas, et al.[28] We considered all interactions 

involving either alanine, phenylalanine, isoleucine, leucine, or valine at one site in the pair, and 

either phenylalanine, isoleucine, leucine, or valine at the other site in the pair. As in Fallas, et 

al.,[28] we then binned these interactions based on rigid-body transforms between amino-acid 

pairs, computed using the backbone N, C𝛼, and C atoms, with bin sizes of 0.5Å for translational 

movements and 1° angular movements. We then used this database to evaluate the designability 

of each of our backbone from above. Specifically, for each pair of residues in a given backbone, 

we determined if the rigid-body transform between them fell into a bin that also had at least one 

“matching” residue-pair from the PDB-derived database. We discarded all backbones that had less 

than 110 residue pairs with “matches” summed over all residue-pairs in the backbone. After the 

above filtering steps, we randomly selected 100 backbones for downstream design of four-helix 

bundles. 

After generating the eight pools of backbones from above (800 backbones total; 100 per pool), 

we then used Rosetta to design amino-acid sequences onto each backbone. We conducted this step 

independently for each combination of energy function and FastDesign protocol that we tested, 

using the exact same 800 backbones as input each time, so as to enable head-to-head comparisons. 

Supplemental File 1 contains the code that we used for this step. The first three box plots of 

Figure 5C report various biophysical metrics that we computed for each protein design. To 

compute the Rosetta energy of a design, we first minimized the energy of the designed structure 

using FastRelax as implemented in the code in Supplemental File 1, and then computed the energy 

of the minimized structure. To compute the percent of hydrophobic amino-acids in each sequence, 



 

we computed the joint frequency of the amino acids: A, F, I, L, M, V, W, and Y. To compute the 

amount of buried NPSA in each structure, we used the BuriedSurfaceArea filter in Rosetta, as 

described in more detail in Supplemental File 1. 

High-throughput experimental quantification of protein stability 

We experimentally measured protein stability using the same method as Rocklin et al.[22] with 

the following modifications. We conducted the experiments at the University of Washington 

BIOFAB (http://www.uwbiofab.org/). Oligonucleotides encoding the library of proteins to be 

tested were ordered from Agilent (oligonucleotides sequences are in Supplemental File 1). This 

library included the protein designs generated above, “scrambled” controls for each design, and 

338 proteins from Rocklin et al.,[22] enabling us to assess experimental reproducibility with this 

previous study (the sequences of these 338 proteins are in Supplemental File 1). The proteins in 

this library varied in length from 40-65 amino acids. Before ordering oligonucleotides, we 

equalized the length of each protein by adding repeats of glycine-glycine-serine to the C-terminal 

end of the protein until its total length reached 65 amino acids. This, in turn, equalized the length 

of the oligonucleotides encoding each protein, helping to avoid length-dependent biases during 

downstream PCR and sequencing steps. The oligonucleotides were amplified by qPCR as 

previously described, but cloned into a modified version of the pETcon-3 yeast display vector 

(Rocklin et al.,[22] based on Addgene plasmid # 41522; http://n2t.net/addgene:41522 ; 

RRID:Addgene_41522) which has been selected for increased resistance to trypsin and 

chymotrypsin. The sequence of the evolved plasmid is in Supplemental File 1 and the plasmid is 

available upon request. 

After transforming the plasmid library into yeast, we performed yeast-display proteolysis as 

previously described independently for both trypsin and chymotrypsin. For growth and induction 



 

of yeast cells, we used Standard Dropout (SDO -His -Trp -Ura) media. We purchased trypsin from 

Sigma-Aldrich (catalog # T4799) and stored it at a stock concentration of 13 mg/mL (546 μM) in 

PBS at -80°C. We purchased chymotrypsin from Sigma-Aldrich (catalog # C4129) and stored it 

at a stock concentration of 1 mg/mL (40 μM) in TBS +100 mM CaCl2 at -80°C.  

For the six selection steps with trypsin, we used final concentrations of: 0.49, 1.4, 4.2, 13, 37, 

and 112 μM. For the six selection steps with chymotrypsin, we used final concentrations of: 0.06, 

0.18, 0.55, 1.66, 4.97, and 14.92 μM.  For each of these steps, we treated cells at an OD of 5.0. 

After protease treatment, we washed cells and labeled them with anti-myc-FITC as in Rocklin et 

al..[22] In parallel, for each protease-treatment step, we ran internal controls to benchmark protease 

activity. As a FITC-positive control, we used a clonal EBY100 strain expressing a stabilized 

designed protein (AMA1-best, a gift of Gabriel Rocklin) and treated with either no protease 

(undigested), 8.3 μM trypsin, or 0.55 μM chymotrypsin. As a FITC-negative (fully digested) 

control, we used EBY100 transformed with an empty vector that expresses Aga2 without a myc 

tag and treated with Anti-myc-FITC. We then washed and labeled each control, as above. 

After labeling cells, we used a SH800S Cell Sorter to separate FITC-labelled cells from dark 

cells for all of the above samples and controls, using FITC-labelled cells as input for deep-

sequencing as described below. We placed the sorting gate so that 0.1–0.5% of the cells from the 

FITC-negative control passed the gate. Analysis of the controls with the AMA1-best controls 

allowed us to benchmark protease activity. To do so, we estimated the fractional digestion of each 

control using the maximum value of a kernel density estimate of the log-transformed FITC 

fluorescence distributions. We calculated the amount of digestion as: (partially_digested - 

fully_digested) / (undigested - fully_digested).  For 8.3 μM trypsin, the fraction digested was 



 

between 0.21 and 0.24. For 0.55 μM chymotrypsin, the fraction digested was between 0.06 and 

0.08. 

Following these selection steps, the protocol uses deep sequencing to quantify the abundance of 

each protein design at each step. We prepared the libraries for sequencing as previously 

described.[22] We did so using an Illumina NextSeq550 using a 300-cycle mid-output kit 

configured for paired-end 150 base-pair reads. The raw sequencing data is available on the 

Sequence Read Archive under BioProject ID PRJNA607543. Supplemental File 1 gives the SRA 

accession numbers for each sample. Next, the raw experimental data is used to infer stability values 

for each protein design. We did so using a computational pipeline adapted from Rocklin et al.[22] 

and available at the GitHub repository: https://github.com/Haddox/prot_stab_analysis_pipeline. A 

Jupyter notebook that runs this pipeline is available in Supplemental File 1. As in Rocklin et 

al.,[22] we independently inferred stability scores trypsin and chymotrypsin. Figure SI5A shows 

that stability scores were correlated between the two proteases, showing that our measurements 

were largely reproducible. The stability scores in Figure 5 report the minimum score between the 

two proteases. Figure SI5C shows that stability scores from our experiment were also correlated 

with stability scores from Rocklin et al.[22] for the 338 sequences common to both experiments, 

demonstrating reproducibility between our studies. 

Alternate Score Function Fitting 

  We aimed to test the durability of the new FastDesign methods by using them with a novel score 

function. We took the individual score terms from beta_nov16 (the score function used to design 

the proteins measured in Figure 5), and refit the term weights using the exact method laid out in 

Park, et al..[20] The results of this new score function can be seen in Figures SI2 and SI4.
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Round: 1a 1b 2a 2b 3a 3b 4a 4b 
Legacy  0.02 0.02 0.25 0.25 0.55 0.55 1.00 1.00 
MonomerDesign2019  0.06 0.09 0.28 0.32 0.57 0.63 1.00 1.00 

 

Table 1. The repulsive ramping scheme used by legacy FastDesign and our new parameterized set of 

weights, MonomerDesign2019. Side chain optimization steps (i.e. “Packing”) are labeled with an “a”, 

minimization steps (gradient-based minimization of backbone and side chain torsion angles) are labeled 

with a “b”. Each step is annotated with the relative repulsive weight for that round, where a value of 1.0 

is equal to the weight used for the default Rosetta score function (ref2015).[21] 

  



 

 

FastDesign	Step	 Relative	Radius	of	

Gyration	
DRNN	Core-Residue	

Sequence	

Native	 100%	
L V I V W I V 

M V L I M V L 

After	round	1	 97.2%						 L I W L F L W 

L L L W W W W 

After	round	2	 96.7%	
A A L V M V M 

I V A A A A L 

After	round	3	 96.5%						 A A L V M V M 

I V A A A A L 

After	round	4	 97.2%	
A A L V M V M 

I V I A A A L 

Table 2. Properties of the protein DRNN while progressing through the steps of legacy FastDesign. 

Steps are labeled in concurrence with Table 1. Radius of gyration is reported relative to the native state. 

Amino acid identities are reported for core (buried) residues of DRNN. Final amino acid identities are 

colored red if they are smaller than the position’s original identity, green if larger, black/uncolored if 

equal. 

  



 

 

	 	 Energy	Per	Residue	
(REU)	

Radius-Of-Gyration	
Ratio	

Percent	Alanine	at	Designable	
Positions	

Set	 Case	 Old	 New	 Old	 New	 Native	 Old	 New	

RC	Monomer	 Design	
(Core	

Positions)	

-2.81	
+/-	0.05	

-2.96	+/-	
0.06	

0.97	+/-	
0.06	

1.00	+/-	
0.06	

14.7%	 28.4%	 13.9%	

RC	Monomer	 Design	 -3.61	
+/-	0.05	

-3.77	+/-	
0.05	

0.96	+/-	
0.06	

0.99	+/-	
0.06	

6.6%	 16.2%	 5.6%	

RC	Monomer	 Relax	 -2.78	
+/-	0.06	

-2.85	+/-	
0.07	

0.99	+/-	
0.06	

0.99	+/-	
0.07	

	 	 	

Decoy	
Monomer	#1	

Relax	 -2.70	
+/-	0.03	

-2.73	+/-	
0.03	

0.98	+/-	
0.002	

0.98	+/-	
0.002	

	 	 	

Decoy	
Monomer	#2	

Relax	 -2.39	
+/-	0.03	

-2.43	+/-	
0.04	

0.99	+/-	
0.001	

1.00	+/-	
0.001	

	 	 	

Decoy	
Monomer	#3	

Design	 -3.55	
+/-	0.01	

-3.63	+/-	
0.02	

1.00	+/-	
0.007	

1.04	+/-	
0.007	

	 13.1%	 6.1%	

RC	Interface	 Two-
Sided	
Design	

-3.57	
+/-	0.05	

-3.97	+/-	
0.05	

0.98	+/-	
0.001	

0.99	+/-	
0.001	

5.5%	 17.6%	 7.3%	

RC	Interface	 One-
Sided	
Design	

-3.25	
+/-	0.06	

-3.57	+/-	
0.06	

0.99	+/-	
0.001	

1.00	+/-	
0.001	

5.8%	 20.4%	 7.3%	

RC	Interface	 Relax	
(interface	
positions)	

-3.06	
+/-	0.06	

-3.15	+/-	
0.05	

0.99	+/-	
0.001	

1.00	+/-	
0.001	

	 	 	

Decoy	
Interface	

One-
Sided	
Design	

-3.35	
+/-	
0.005	

-3.68	+/-	
0.005	

0.99	+/-	
0.0003	

0.99	+/-	
0.0002	

	 18.8%	 6.6%	

Table 3. Results of running new protocols on our diverse collection of design cases. In the “relax” 

simulations the sequence is not varied. “RC” and “Decoy” refer to relaxed crystal structures and 

computer-generated backbones respectively. For each case, we show the scores with the legacy (Old) 

protocol and the MonomerDesign2019/InterfaceDesign2019 (New) protocols. For design cases we 



 

include the percent of residues at designable positions that end up being alanine. For interface cases, we 

only analyzed residues at the interface of the two chains for all three metrics. Note, the native alanine 

percentage is omitted for computationally-generated backbones because they have no native sequence 

identity. 

  



 

 

 

 

Figure 1. Amino acid distribution of native proteins and protein interfaces designed by legacy 

FastDesign. 
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Figure 2. Description of FastDesign’s bias and the means to address it. (A) shows how FastDesign 

develops sampling error towards small sidechains. (B) and (C) illustrate the two hyperparameters that 

were refit to identify a repulsive weighting scheme that reduces the number of alanines designed at 

buried positions. 
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Figure 3. Results of hyperparameter sampling for two of our design cases. Numbers shown in cells are 

in Rosetta Energy Units, where more negative is favorable. The top table is from RC monomer design, 

and the bottom table is from RC two-sided interface design. The black box represents the parameter set 

to be used as the new default. The old default (legacy) is in the top left of each table.  
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Figure 4. Comparison of new design protocols with legacy for three design cases. Each point shows the 

average Rosetta score (normalized by residue count) that results from running FastDesign on a different 

protein. The black diagonal line represents an equal score for the new protocol and legacy protocol. 

Points below the line represent protein structures that score better with the new protocol than the legacy 

protocol.  
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Figure 5. Comparison of de novo mini-protein designs made using different FastDesign protocols. A) 

We designed eight structurally unique groups of proteins, where each group had a unique length and 

topology (see the y axis of the plots in panel B). These groups span five different topologies. This panel 

shows example diagrams of each topology, with helices in blue, strands in red, and titles indicating the 

order of helices (H) and strands (E) in primary sequence. B) The box plots compare designs as a 

function of structural group (y axis) and FastDesign protocol (hue of box). The x axis of each plot 

quantifies a different property of the designs. We only show data for designs with high-quality data from 

the high-throughput stability assay (Figure S2A).The first three box plots quantify computed 

biophysical properties including: the Rosetta energy of a design (normalized by protein length), the 

HHH HHHH EHEE EEHEE HEEHE

B)

A)



 

percent of amino acids in a design that are hydrophobic, and the amount of buried non-polar surface area 

(NPSA) in a design (normalized by protein length). The last two box plots show data from the high-

throughput assay for experimentally quantifying protein stability, with one plot showing data for designs 

and the other showing data for controls.  

      

 


