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Rationale, aims and objectives: The diversity of safety signals (e.g., case
reports, animal studies and observational studies) makes the assessment
of the (un-)safety of a drug a formidable challenge. While frequentist un-
certain inference struggle in aggregating these signals, the more flexible
Bayesian approaches seem better suited for this quest. Artificial Intelli-
gence (AI) offers great promise to these approaches for information re-
trieval, decision support and learning probabilities from data.
Method: E-Synthesis is a Bayesian framework for drug safety assessments
build on philosophical principles and considerations. It aims to aggregate
all the available information, in order to provide a Bayesian probability
of a drug causing an adverse reaction. We delineate and assess ways in
which AI can support E-Synthesis.
Results: We find that AI can help with information retrieval, usability
(graphical decision making aids), learning Bayes factors from historical
data, assessing quality of information and determining conditional prob-
abilities for the so-called “indicators” of causation for E-Synthesis .
Conclusions: Properly applied, AI can help the transition of philosophical
principles and considerations concerning evidence aggregation for drug
safety to a tool that can be used in practise.
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1 | INTRODUCTION23

Every day, doctors, hospitals, pharmaceutical companies, and others in healthcare face the complexities of the human24

body and the healthcare environment. There are huge masses of diverse possibly relevant data which, if harnessed25

properly, can improve the quality of treatment, and if used poorly, can lead to disasters like thalidomide and Lyodura.26
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Given the challenge of interpreting such varieties of data, it is clear that AI has an important role to play in healthcare.27

In fact, it has already had amajor impact. Telehealth agencies such as the NHS 24 Self-Help guide1 use automated28

reasoning to help patients self-diagnose. An AI system powered byGoogle LLC predicted hospital inpatient death risks29

with 95% accuracy1. In January 2020, the first AI-developed drug, DSP-1181 (a treatment for obsessive compulsive30

disorder) entered clinical trials2. AI can also made a contribution to diagnostic procedures by doctors2. (See3 for a31

general overview of AI for medical diagnoses.) The idea of a “smart” hospital, with programs and devices coordinated32

by AI, is no longer just science fiction4. AI also has roles to play in identifying drug interactions interpreting possibly33

minute details in images, logging and processing health records, andmore. Still, rigorous research into the performance34

of AI in many of these areas is still in its infancy5;6. AI’s use for public health more widely is at more of a prospective35

stage, but its potential is obvious7.36

In this article, we focus on pharmacosurveillance and we explore how AI can contribute to the continuous assess-37

ment of putative Adverse Drug Reactions (ADRs). This manuscript is organized as follows: in the Methods section,38

we briefly present E-Synthesis, a framework for combining different types of evidence in pharmacovigilance, based39

on Bayesian epistemology. Then, we describe AI methods actually employed in the realm of evidence synthesis. In40

the Results section, we assess their potential impacts on the usability and applicability of E-Synthesis . Finally, in the41

Discussion section, we offer some concluding remarks and provide an outlook on a possible research agenda in drug42

safety assessment.43

2 | METHODS44

The synthesis of evidence from multiple sources of providing different kinds of information (randomized studies, ob-45

servational studies, case reports, in vitro evidence), with the aim of evaluating hypotheses and making decisions, plays46

a fundamental role in in many areas of medicine. In pharmacosurveillance, for instance, relevant evidence only be-47

comes available in an unsystematic and motley way, so that evaluating hypotheses is far from the textbook ideal of48

interpreting a neat result from a randomized controlled trial. Thus, there is a need for methods of synthesis that assess49

the significance of heterogeneous evidence in a systematic, well-grounded, and manageable way. Since traditional50

frequentist statistical methods struggle with aggregating different kinds of information, a more flexible approach is51

required here. We next present a Bayesian approach to drug safety assessment, and then we outline how AI methods52

can serve evidence synthesis. The interaction between AI and this Bayesian approach will be explored in the Results53

section.54

2.1 | E-Synthesis: Bayesian epistemology for evidence aggregation in pharmacovigilance55

E-Synthesis is a Bayesian framework for evidence evidence aggregation in pharmacosurveillance to support timely deci-56

sionmaking based on all the available ’safety signals’8;9;10;11;12. The framework rests on Bayesian epistemology, which57

unlike Bayesian statistics enables representation of and reasoning with uncertainties attaching to arbitrary proposi-58

tions. In previous papers, we have presented its philosophical foundations8, studied the incorporation evidence qual-59

ities11, investigated the aggregation of knowledge concerning biological mechanisms and dose-response10;9, and60

made strides towards applying E-Synthesis in personalized medicine12. Next, we give a brief overview of E-Synthesis.61

1https://www.nhs24.scot
2https://www.exscientia.ai/news-insights/sumitomo-dainippon-pharma-and-exscientia-joint-development

https://www.nhs24.scot
https://www.exscientia.ai/news-insights/sumitomo-dainippon-pharma-and-exscientia-joint-development
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2.1.1 | Motivation and goal62

The risk-benefit profile of a drug is assessed and updated throughout the development process: after its formula is pro-63

posed, during its synthesization, and in the post-marketing period. There is no point at which its safety is definitively64

established: its developers and drug regulators must make multiple judgements at different phases of development,65

using heterogenous evidence, such as whether to withdraw the drug. Currently, these decisions are made using sys-66

tematic reviews that combine the wide variety of available evidence (pre-clinical studies, clinical trials, spontaneous67

reports, basic research etc.) to justify or undermine hypotheses about the presence or absence of causal relations68

between the drug and harms. However, it is difficult to combine heterogeneous data with various sources, modalities69

(observational vs. experimental) and different degrees of external and internal validity. The ultimate objective of E-70

Synthesis is to surmount this difficulty, by providing a systematic, epistemologically principled, and usable method for71

combining evidence.72

This framework rests on the paradigmatic philosophical account of uncertain inference (Bayesian epistemology) in73

order to provide a theoretically justified probability of a drug causing a harm on the basis of all the available evidence.74

It employs a Bayesian network13 incorporating indicators of causality derived from Bradford-Hill “guidelines”14 as75

well as evidence qualities and uncertainties attaching to these evidence qualities. Unlike the GRADE approach which76

is not straight-forwardly applicable to decision problems15, the probability produced by E-Synthesis has been designed77

to be used for making decisions via the maximization of expected utilities.78

2.1.2 | Bayesian networks79

In order to have an inferential mechanism that can handle heterogeneous types of evidence, E-Synthesis utilises the80

tools of Bayesian networks and Bayesian epistemology. We provide a brief introduction to these ideas and the ratio-81

nale of their implementation in E-Synthesis.82

Bayesian epistemology is a philosophical theory about (a) what sort of beliefs and strength (“degree”) of beliefs can
be rational in a particular context and (b) how those beliefs should be revised upon learning new evidence. Bayesianism
formalises degrees of beliefs as probabilities; it thus inherits the formal constraints of the probability calculus. Thus,
P (H ) represents a researcher’s degree of belief in a hypothesis H , while P (H | E) represents their degree of belief in
H conditional on acquiring evidence E. In the case where our hypothesis is that of the drug causing an ADR (denoted
by c©), this conditional probability can be determined using Bayes’ Theorem:

P ( c© |E) = P ( c©) · P (E | c©)
P ( c©) · P (E | c©) +∑N

i=2 P (Hi ) · P (E |Hi )
,

where the hypotheses Hi and c© = H1 constitute a mutually inconsistent and exhaustive partition.383

With this mathematical formula, the posterior probability of the hypothesis given the evidence, P ( c© |E), only84

depends on prior probabilities P (Hi ), and likelihoods P (E |Hi )
4. Bayesian epistemology focuses on updating (or “con-85

ditionalising”) for proposition or events in general, whereas in Bayesian statistics focuses on testing statistical models86

using conditional probabilities.87

3For convenience, we use the same symbol denoting a variable and the variable being true.
4The likelihoods are often (but not always) easy to determine, because the content of the hypothesis will often determine a probability for the
evidence due to logical or mathematical reasons. For example, if a hypothesis (with a non-zero prior probability) implies the evidence, then
the likelihood must be 1. Meanwhile, determining the likelihood of the evidence given a statistical hypothesis Hi often just requires using
purely mathematical reasoning, e.g. calculating the probability of a particular series of independent and identically distributed binomial trials
given the hypothesis of a population frequency.
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It is generally very difficult to calculate conditional probabilities directly or to make a long and complex series88

of inferences using them. Bayesian networks offer a convenient means for graphically displaying and reasoning with89

probability functions16;13. We can use them to specify and read-off conditional independencies from a graph. Tech-90

nically, a Bayesian network is defined on a set of pairwise different variables by a directed acyclic graph (edges are91

directed such that the graph does not contain a directed cycle, i.e., it has no path of directed edges which leads back92

to its starting point) and a probability distribution specifying the conditional probabilities of all variables given their93

parent variables (all other variables which directly point to this variable), see Fig.1 for an example graph.94

Technically, this works as follows. Denoting the parents of a variableY by X1, . . . ,Xn one specifies P (Y = y |X1 =95

x1, . . . ,Xn = xn ) ∈ [0, 1] for all possible values y , x1, . . . , xn under the condition that ∑y∈Y P (Y = y |X1 = x1, . . . ,Xn =96

xn ) = 1. This condition ensures that we have defined a probability function that satisfies the standard probability97

calculus. To calculate conditional and unconditional probabilities of interest, one may use the so-called “chain rule".98

2.1.3 | Indicators of causation99

Bayes’ theorem is essential in Bayesian epistemology, but it is by no means clear how to determine the likelihoods100

P (E |Hi ) in pharmacovigilance. To facilitate this task, we employ abstract indicators of causality that are derived from101

Bradford Hill Guidelines: 1) difference making, 2) probabilistic dependence, 3) dose-response relationship, 4) rate102

of growth, 5) temporal precedence and 6) mechanistic knowledge. Conceptually, indicators of causality are testable103

(probabilistic) consequences of the causal hypothesis. For example, we can test whether there is a dose-response104

relationship between drug and adverse effect (higher dosages lead to more and/or stronger adverse effects). How-105

ever, note that neither does the presence of a causal relationship entail the presence of a dose-response relationship106

(anaphylaxis) nor does the presence of a dose-response relationship entail a causal relationship, due to confounding.107

The indicators are probabilistic consequences in these sense that their truth is more likely, if the hypothesis is also108

true, than if the latter is false. P (I nd | c©) > p(I nd ) > P (I nd | c©). In turn P ( c© |I nd ) > P ( c©) > P ( c© |I nd ).109

Thus, there is an association between each relevant experimental study, observational study, case series, case110

report or basic science finding with a set of causal indicators which it is informative about17. E-Synthesis thus analyses111

the inferential process from the raw data to the hypothesis that a causal link holds between Drug and ADR into two112

steps: 1) from data (study reports) to causal indicators; 2) from causal indicators to causality.113

A core idea of Bayesian epistemology is that the confirmatory value of evidence with respect to hypotheses is114

degree-valued. The same holds here with respect to evidence for or against our causal indicators. We use evidential115

modulators to make this fine-grained and incremental element in Bayesian reasoning explicit, by determining the116

quality of evidence as a function of various choices in study design and data analysis (blinding, randomisation, sample117

size, study duration, stratification), see Fig. 1.118

2.1.4 | Evidential modulators119

One key feature of E-Synthesis is the possibility to use assessments of the quality of items of evidence. The assessed120

quality of evidence then modulates the degree to which the item of evidence (dis-)confirms indicators of causation.121

This is achieved by first creating a “report” variable for every item of evidence and then creating for every such variable122

a set of pertinent modulator variables Q1, . . . ,Qk , e.g., duration of a study, sample size and blinding. In the Bayesian123

network, these modulator variables are, together with a set of indicator variables, the parents of the report variable.124

According to the Bayesian approach one then needs to set the conditional probabilities of observing the evidence125
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given their qualities and given the values of the indicator variables, P (Rep = r ep |I nd = i nd ,Q1 = q1, . . . ,Qk = qk ).5126

An application of Bayes’ Theorem enables one then to calculate the posterior probability of causal indicators127

which in turn can be used to calculate the posterior probability of the causal hypothesis that the drug causes an ADR128

in the population of interest.129

2.2 | AI for evidence synthesis130

As outlined in the Introduction, AI already has a growing impact on healthcare. However, its potential for evidence131

synthesis is still undeveloped6. This is despite cautious interest within parts of the healthcare industry 7. Greater use132

of AI in evidence synthesis could have many benefits. One is transparency: an algorithm for evidence synthesis can133

be made public in ways that can be difficult or impossible for human judgements. Another is computational scale: the134

accelerating increase in medical data means that the application of AI in evidence synthesis is a growing issue. Insofar135

as evidence syntheses depend on a lot of human input, it will be difficult to keep track of the ever-greater flow of136

information e.g. from case reports and clinical trials. Automation can help alleviate some of the strains in the evidence137

synthesis process.138

We stress that the automation of the entire evidence synthesis process is not a currently realistic goal. Instead,139

a plausible ambition is what has been called “semi-automated evidence synthesis”20 in which parts (perhaps even a140

majority) of the evidence synthesis process is automated using AI software. This would make evidence synthesis more141

manageable and transparent, while preserving vital roles for human judgement in many parts of the process. Some142

researchers are already pursuing such goals on a grand scale21.143

AI can contribute in many ways to the semi-automation research programme. For instance, inference of causality144

from heterogeneous data have been explored22, so as semi-automatic transferring of knowledge from one field to145

another by analogy23;24. Moreover, particular efforts have been deployed on machine learning. Machine learning146

focuses on computer algorithms such that the computers can perform tasks without being expressly compiled to do147

as such. This AI field utilizes different methodologies. There is a particular interest in two perspectives: supervised148

and unsupervised learning25. Supervised learning algorithms build a mathematical model of a set of data that con-149

tains both the inputs and the desired outputs. Through iterative optimization of an objective function, supervised150

learning algorithms learn a function that can be used to predict the output associated with new inputs. An algorithm151

that improves the precision of its outputs after some time is said to have learned how to play out that task. In con-152

trast, unsupervised learning algorithms take a set of data that contains only inputs, and find structure in the data,153

like grouping or clustering of data points. The algorithms, therefore, learn from test data that has not been labeled,154

classified or categorized. Unsupervised learning is usually considered the most advanced edge of research in this field.155

For example, machine learning methods like text mining can help to screen studies for relevance26. There is also156

research on automating the extraction of relevant data from particular studies27. It might even be possible to create157

what has recently been dubbed “living systematic reviews”: once an evidence synthesis has been completed, there158

will be automated identification of relevant subsequent research and extraction of the data that directly addresses159

the subject of the evidence synthesis. Human input would only be required to check the results of this process (which160

will be imperfect) once it has been completed28.161

We deem that E-Synthesis can contribute to this research programme in two ways:162

5Uncertainty about study qualities are represented by probabilities in the fashion usual in Bayesian statistics, e.g., P (Q i = qi ).
6The first automated evidence synthesis systemwas only published in 2019 18 . See 19 for a recent overview of evidence synthesis automation.
7https://blog.evidencepartners.com/past-present-and-future-automation-in-systematic-review-software

https://blog.evidencepartners.com/past-present-and-future-automation-in-systematic-review-software
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1. It is a formal evidence synthesis procedure. Hence, it should ultimately be amenable to semi-automation.163

2. It has a solid methodological basis in Bayesian epistemology and medical practice. E-Synthesis fits well with the164

growing Bayesian paradigm in both statistical practice and the philosophy of science. It also incorporating scien-165

tists’ own successful patterns of reasoning in elements like indicators of causality, as we describe below.166

From the other direction, AI itself can improve E-Synthesis. In the next section, we explore in detail what may come167

out from the interactions of E-Synthesis and AI.168

3 | RESULTS169

As we have seen, AI methods are already employed in the realm of evidence amalgamation and may effectively con-170

tribute to a better functioning of E-Synthesis (Section 2.2). That framework puts forward a decision making model171

to support drug safety assessments, which are usually performed in a collective way by advisory committees, pan-172

els of experts consulting Drug Agencies29. However, significant parts of E-Synthesis are still left to experts and are173

not automated. For instance, the strengths of how strongly different evidential modulators (Section 2.1.4) influence174

confirmation is still input manually by the introduction of an ad hoc weighting scheme. The application of machine175

learning and other AI techniques could lead to remarkable improvements of the quality of decisions.176

In the following subsections, we identify three main areas of interaction between E-Synthesis and AI: machine177

learning, information retrieval and graphical decision aids. We conclude that evidence synthesis for pharmacosurveil-178

lance can be enhanced by AI.179

3.1 | Machine Learning180

With the aim of creating automated systems that make better use of the vast amount of accumulating publications and181

promoting the uptake of that evidence into a wide range of contexts, machine learning may represent the backbone182

of E-Synthesis. We deem that, using machine learning, E-Synthesis will be enhanced in identifying, extracting, synthe-183

sizing and interpreting relevant information, converting this into knowledge that can answer complex questions over184

causal associations. We identify two main applications of machine learning for improving E-Synthesis: 1) estimation of185

(conditional) probabilities of causal indicators and learning the weighting schemes of the evidential modulators from186

data and 2) modelling the “linkage between a direct molecular initiating event [..] and an adverse outcome at a bio-187

logical level of organization relevant to risk assessment”30 P. 731. Such “mechanisms” play an important inferential188

role31.189

3.1.1 | Assessing probabilities and predictive powers190

As shown above, E-Synthesis delivers a probability of causal association between a drug and an ADR, based on a191

Bayesian updating of evidence that accrues through causal indicators. Machine learning could help E-Synthesis in:192

• Learning the weighting scheme of the evidential modulators. The task is to determine how likely a study (ob-193

servational or an RCT) is to correctly identify the absence or presence of a causal relationship between drug194

and ADR given the characteristics of the study (e.g., duration and sample size). Machine learning can be used195

to estimate frequencies from past studies, since we know whether the causal link was present and the values of196
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the modulator variables. When selecting the set of studies from which to infer these frequencies we face the197

reference class problem32: Which studies should we learn these frequencies from? Do we include all studies198

of the same/similar drug, similar/same adverse event (reaction), same type of sponsor of study (commercial or199

institutional)33, beneficial and/or adverse effects? There does not seem to be an obvious answer here. What is200

obvious is that considering only studies which are similar to the study under consideration leads to a small set201

of specific studies (little but specific data) while considering many, some of which less similar, studies leads to a202

large set of studies (much but unspecific data). Ample data is the tool of choice to decrease statistical noise while203

specific data helps ensuring that the actual phenomenon of interest is studied. In our world of limited specific204

data, it is impossible to say how to optimally strike a balance between the value of these tools in general.205

• Learning the conditional probabilities of indicators of causation. The goal is to estimate the conditional probabil-206

ity of an indicator variable given c© or its negation (and its other parent variables, if there are any). The predictive207

power of the causal indicators may be inferred from past drugs with a suspected ADR, such that (1) we now know208

whether each of those drugs causes the ADR and (2) which of the indicators they had. Concrete learning applica-209

tions again face a reference class problem. The set of causal indicators was distilled from Hill’s Guidelines and the210

set of modulators was determined from a study of current medical methodology literature. E-Synthesis has always211

been developed with future possible modifications of these sets in mind. Unsupervised machine learning algo-212

rithms may discover further predictors (for instance, the number of authors of published study and/or affiliation213

of study authors), which could give rise to new indicators and/or evidential modulators.214

3.1.2 | Modelling mechanisms215

Machine learning could play a fundamental role also in modelling mechanisms within E-Synthesis. There is already an216

abundant literature on its use in pharmacokinetics and pharmacodynamics34;35 to figure out possible and impossible217

biochemical mechanisms, bypassing in vitro and in vivo checks by fast and efficient deployment of in silico analyses.218

Likewise, a better understanding of absorption, distribution, metabolisation mechanisms – which prove critical for219

dose-response and drug concentration estimation in drug delivery processes – has been highly accelerated by com-220

puter simulations36 and machine learning37;38. Some steps towards such a direction have been already taken in9;10,221

where – in the latter – dose-response algorithms, usually employed in clinical phase II, have been translated to phar-222

macovigilance.223

3.2 | Information retrieval224

Given larger and larger amount of publications available, the need for advanced information retrieval (IR) systems225

increases. AI may also help here. At present, most of present IR systems, such as general search engines (e.g. Google226

and Yahoo) and scientific literature search engines (e.g. PubMed and ACM Digital Library) use keywords to query and227

index documents. However, this traditional keyword-based IR model provides little semantic context for the under-228

standing of user information needs. For example, a keyword usually has several senses and its meaning is ambiguous229

without context. In addition, one meaning can be expressed by many keywords39. There is a long-running research230

programme of trying to addressing these problems40;41. The push towards integration of semantic context according231

to the user’s information need and the user’s understanding of documents in the collection into IR systems is one232

of the main topics of current IR research39. On the medical side, knowledge extraction may prove fundamental for233

accelerating the bench to bed passage in pharmacological research42. With respect to E-Synthesis, we think that evi-234

dence retrieval may boost its performances, by querying databases for all known names for a drug (alike what is done235
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in databases like VigiBase8), for similar drugs (similarity in terms of active ingredient, drug carrier, chemical structure)236

and similar reactions, for disentangling mechanisms of putative causal connections with respect to different drugs237

causing the same ADR.9238

3.3 | AI-powered graphical decision aids239

Facing an increasing amount of information puts pressure not only on the way such data must be analyzed44, but also240

on the way those data have to be presented for an effective decision making. In fact, researchers with limited informa-241

tion processing capability are usually unable to cope with an exponentially increasing amount of information, leading242

to a phenomenon called “information overload”. This phenomenon haswidely been recognized to have adverse effects243

on decision quality45. The use of graphs as decision aids to reduce the adverse effects of information overload on244

decision quality has been positively investigated both in management46 and communicating risks between patients245

and physicians47. AI could aid these goals by making it easier to visualise the confirmatory impact of (hypothetical) ev-246

idence and the confirmatory impact of indicators. An interactive graphical representation of strengths of associations247

may lead to better decisions based on E-Synthesis.248

4 | DISCUSSION249

We have shown how AI may contribute to pharmacovigilance by improving a Bayesian framework for evidence syn-250

thesis. We think that such applications will also benefit other approaches to evidence synthesis. The prospects for AI251

supported inference in medicine seem bright, yet AI will not cure all ills.252

4.1 | Limitations: AI is not a panacea253

AI can reduce some of the limitations of E-Synthesis, yet some will remain. For instance, while machine learning can254

help in making the weighting scheme of evidential modulators as well as the probabilities of the causal indicators255

more objective, it is still a human who chooses the algorithm for these machine learning operations. There will hence256

continue to be room for subjective choice and disagreement about these choices. Furthermore, graphical decision257

aids can make improve the usability and explainability of decision processes, good decision making under uncertainty258

is a complicated task at which we routinely fail to be optimal48.259

One current limitation of E-Synthesis is its concept of causation. Consider the (simplified) case of taking a drug D260

and an adverse drug reaction A. Currently, E-Synthesis treats causation as categorical and binary: either D causes A261

or it does not. This reflects the traditional approach to causation in philosophy49;50;51;52;53;54. For some decisions,262

this might be sufficient, e.g. if we regard a causal relation from D to A is sufficient for rejecting the use of D in263

medicine, then all we need to determine is the presence or absence of that causal relation. However, policymakers,264

doctors, patients and scientists are often interested in the question of the strength of a causal relation. E-Synthesis265

does not commit us to any particular account of causal strength. There are many options in the literature which may266

be explored55;56;57;58;59.267

8https://www.who-umc.org/vigibase/vigibase/
9There are known examples of linking different drugs to the same ADR 43 . Such evidence can help to exonerate a drug under consideration
by putting the blame on a different drug causing the ADR. However, such evidence may also incriminate the drug under consideration by
elucidating the mechanism between the drug under consideration and the ADR.

https://www.who-umc.org/vigibase/vigibase/
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4.2 | Future Work268

While we can understand causal relations between binary variables by how much (in some sense) the presence of269

the cause variable causes the probability of the effect variable to increase, there is also a pertinent graded sense270

of causation between many valued variables: how strong an ADR does a particular dosage cause? AI holds great271

promise to squeeze such more fine-grained information from evidence, which will require continued interaction be-272

tween stakeholders and scientists from numerous areas. We echo the call for an increase of such interactions to273

improve pharmacovigilance for the good of us all60;61;9.274
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FIGURES411

| Figure 1412

FIGURE LEGENDS413

| Legend of Figure 1414

Graph structure of the Bayesian network for one randomized controlled trial (RCT) which informs us about difference415

making (∆) which in turn informs us about the causal hypothesis. The information provided by the reported study is416

modulated by how well the particular RCT guards against random and systematic error. The evidential modulators for417

an evidence report are SS = Sample Size; D = Study Duration; A = Adjustment for covariates or subgroup analyses418

and the like; SB = Sponsorship Bias; B= Blinding; R = Randomisation.11.419
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