Multiaxial notch fatigue life prediction based on the dominated loading modes under variable amplitude loading
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Abstract
An innovative computational methodology is proposed for fatigue life estimation of notched components subjected to multiaxial variable amplitude loadings. In the proposed methodology, if the calculated uniaxial fatigue damage by axial tension‐compression loading path is more than that by the pure torsional loading path, an axial strain-based multiaxial fatigue damage parameter is selected to compute multiaxial fatigue damage, or else a shear strain-based multiaxial fatigue damage parameter is selected to compute multiaxial fatigue damage. Moreover, the proposed methodology utilizes axial strain-based and shear strain-based multiaxial fatigue damage parameters in replacement of equivalent strain amplitude to take into consideration of the non-proportional additional hardening phenomenon. The fatigue data of 7050-T7451 aluminum alloy and GH4169 superalloy notched specimens are utilized to verify the proposed notch fatigue life prediction methodology, and the prediction results are satisfactory.
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1. Introduction
Fatigue failure is considered as one of the main failure causes for engineering materials and structural components. Numerous engineering components contain some notches, which are generally unavoidable in reality. In addition, these notched components are subjected to variable amplitude multiaxial loadings in the service. Multiaxial loading paths can produce complicated stresses and strains at the notch area and cause a fatigue failure at or near the notch root [1-4]. In order to satisfy the increasing design requirements for notched bodies in terms of light weight, cost reduction, and high reliability, there is a growing need for an efficient and reliable methodology to the fatigue lifetime estimation prediction of notched components experiencing variable amplitude multiaxial loading. 
During the past few decades, a number of fatigue life prediction methodologies have been proposed for notched components. Hertel and Vormwald [5] extended a short crack model to the fatigue lifetime prediction of notched components subjected to multiaxial variable amplitude loading. The effects of load-time sequences because of crack closure were taken into consideration in the extended short crack model. Brighenti and Carpinteri [6] presented a damage model to perform fatigue life prediction of notched components under complicated multiaxial loading history. In the damage model, a suitable endurance function was defined on the basis of effective stress deviator and stress. Based on the Modified Wöhler Curve Method (MWCM) and the Theory of Critical Distances (TCDs) [7], Susmel and Taylor [8, 9] presented a methodology to estimate the fatigue lifetime of notched components experiencing uniaxial/multiaxial variable amplitude loading. The material plane, which contained the direction experiencing maximum variance of resolved shear stress, is regarded as the critical plane. Firat [10] presented a notch analysis approach for the elastic-plastic stress-strain calculations at the notch area. The calculated notch stresses and strains were utilized in the multiaxial fatigue analysis by using Smith-Watson-Topper and Fatemi-Socie damage models. Ince and Glinka [11] proposed a computational analysis approach for performing multiaxial fatigue lifetime prediction of notched components subjected to multiaixal loadings. The proposed computational analysis approach contains an elastic-plastic stress -strain analysis and a critical plane damage parameter. Gates and Fatemi [12] employed local elastic/pseudo Huber-Mises equivalent stress, local Huber-Mises equivalent strain and local Huber-Mises equivalent stress methods to conduct fatigue life analyses of notched components. Mean stress effects were considered using Smith-Watson-Topper, modified Goodman, and modified Morrow models for multiaxial variable amplitude loading. Morishita and Itoh [13] discussed multiaxial low cycle fatigue lifetime estimation of 316L stainless steel notched specimens experiencing multiaxial non-proportional loading. They proposed a local mean strain range to considering the non-proportional additional hardening effect. Campagnolo et al. [14-17] utilized the averaged strain energy density method to analyze the fatigue experiment results of a few notched components. Marangon et al. [18-20] did some investigation about the three-dimensional effects at the tip of rounded notches in plates of finite thickness.
The purpose of the present work is to develop an innovative numerical methodology to the fatigue life estimation of notched specimens under variable amplitude multiaxial loading. In this methodology, the pseudo-elastic stress-strain responses, which are obtained by a linear elastic Finite Element (FE) analysis for a notched component and material stress-strain relation, are utilized as input quantities. Firstly, the axial loading channel and torsional loading channel are respectively selected as the main counting channel, and all other channels are assigned as auxiliary counting channels. Then, the multiaxial cycle counting method is applied on the main and auxiliary counting channels to identify cycles. Subsequently, the uniaxial fatigue damages resulted from axial tension‐compression loading path and pure torsional loading path are evaluated, respectively. If the calculated uniaxial fatigue damage by axial tension‐compression loading path is more than that by the pure torsional loading path, an axial strain-based multiaxial fatigue damage parameter is selected to calculate multiaxial fatigue damage, or else a shear strain-based multiaxial fatigue damage parameter is selected to calculate multiaxial fatigue damage. Finally, combining using Miner's linear cumulative damage law, a fatigue lifetime prediction methodology is presented to evaluate fatigue lifetime of notched specimens. The effectiveness of the presented numerical methodology is evaluated by the experimental results of 7050-T7451 aluminum alloy and GH4169 superalloy notched components under constant and variable amplitude multiaxial loading.
2. Uniaxial notch fatigue life estimation methodology 
2.1 Uniaxial notch fatigue life estimation for axial tension‐compression loading path
The axial stresses and strains at the notch area can be estimated utilizing a uniaxial notch correction method (e.g. Neuber’s rule [21]) and the axial material stress-strain equation, i.e. the Ramberg-Osgood equation [22].
Axial Neuber’s rule:
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 is the elastic modulus. The prefix 
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 denotes increment. The left-hand superscript “e” denotes the pseudo stresses and strains at the notch, which can be obtained from nominal stresses and corresponding stress concentration factor by the linear elastic theory or linear elastic finite element analysis. The left-hand superscript “N” denotes the “real” stresses and strains at the notch, which are calculated according to the elastic-plastic model.

The axial stress-strain equation: 
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where 
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 is the proportional (or uniaxial) cyclic strength coefficient, and 
[image: image7.wmf]n

¢

 is the proportional (or uniaxial) cyclic strain hardening exponent.
By using the axial Neuber’s rule and material stress-strain equation, the real notch strain increments 
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 can be obtained. Furthermore, for a given real notch strain increment (
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 can be solved by Mansion-Coffin equation for uniaxial tension‐compression loading path (Eq. (3)).
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The fatigue damage 
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 for the uniaxial tension‐compression loading path is obtained using the following equation:
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2.2 Uniaxial notch fatigue life estimation for pure torsional loading path
The shear stresses and strains at the notch area can be estimated utilizing a shear notch correction method (e.g. Neuber’s rule) and the torsional material stress-strain equation, i.e. the Ramberg-Osgood equation.
Shear Neuber’s rule:
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where 
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 is the shear modulus. 

The shear material stress-strain equation: 
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where 
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 is the shear cyclic strength coefficient, and 
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 is the shear cyclic strain hardening exponent. By using the shear Neuber’s rule and material stress-strain equation, the real notch strain increments 
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[image: image22.wmf]N

g

D

 into torsional Mansion-Coffin equation (Eq. (7)).
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where 
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, b, and c are axial fatigue strength coefficient, fatigue ductility coefficient, fatigue strength exponent, fatigue ductility exponent, respectively. 
The fatigue damage 
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 for the pure torsional loading path is obtained using the following equation:
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3. Proposed multiaxial notch fatigue life estimation methodology 
3.1. Axial strain-based fatigue life estimation of notched component for multiaxial loadings
1. Determination of axial pseudo equivalent strain amplitude on the critical plane
In the current study, for a notched component subjected to multiaxial loading (as shown in Fig.1), the axial pseudo equivalent strain amplitude on the critical plane can be calculated using the axial strain-based multiaxial fatigue damage parameter proposed by Shang and Wang [23], i.e.
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where the right-hand superscript “cr” denotes the critical plane, 
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 is the pseudo largest shear strain amplitude on the maximum shear plane, 
[image: image30.wmf]*

e

n

e

 is the pseudo largest normal strain excursion between adjacent turning points of the largest shear strain on the critical plane. The upper transverse line “－” denotes the Huber-Mises equivalent stress and strain. The Shang-Wang damage parameter can effectively account for the non-proportional additional hardening effect. It should be noted that, for symmetrical uniaxial and proportional loading paths, the axial strain-based multiaxial fatigue parameter (
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) can be reduced to the equivalent strain amplitude
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2. Determination of axial pseudo equivalent strain-real equivalent stress relationship
Axial equivalent Neuber’s rule:
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The axial equivalent stress-strain equation: 
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With the combination of Eq.(11) and Eq.(12), the axial pseudo equivalent strain-real equivalent stress relationship can be expressed as follow：
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3. Calculation of real equivalent stress amplitude on the critical plane
In this study, in order to consider the additional hardening due to the non-proportionality of external loadings, we propose to utilize axial strain-based multiaxial fatigue parameter in replacement of axial equivalent strain amplitude, i.e.
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According to Eq.(14), the real equivalent stress amplitude on the critical plane (
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) can be determined. 
4. Determination of fatigue life for notched component
According to equivalent Neuber’s rule, the real equivalent strain amplitude (
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) on the critical plane can be calculated by the following expression:
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When the pseudo equivalent strain amplitude (
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3.2. Shear strain-based fatigue life estimation of notched component for multiaxial loadings
1. Determination of shear pseudo equivalent strain amplitude on the critical plane
In the current study, the shear pseudo equivalent strain amplitude on the critical plane can be calculated using the shear strain-based multiaxial fatigue damage parameter proposed by Shang et al. [24], i.e.
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It should be noted that, the Shang-Wang damage parameter can effectively account for the non-proportional additional hardening effect. For symmetrical torsional and proportional loading paths, the shear strain-based multiaxial fatigue parameter (
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2. Determination of shear pseudo equivalent strain-real equivalent stress relationship
Shear equivalent Neuber’s rule:
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The shear equivalent stress-strain equation: 
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With the combination of Eq.(19) and Eq.(20), the shear pseudo equivalent strain-real equivalent stress relationship can be expressed as follow：
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3. Calculation of real equivalent stress amplitude on the critical plane
In this study, in order to consider the additional hardening due to the non-proportionality of external loadings, we propose to utilize shear strain-based multiaxial fatigue parameter in replacement of shear equivalent strain amplitude, i.e.


[image: image54.wmf](

)

(

)

0

2

1

2

2

*

max

2

0

3

22422

N

NN

n

cr

e

ecrcrcr

e

n

GGK

t

g

gtt

e

¢

D

æö

æö

D

DDD

=×+=+

ç÷

ç÷

¢

èø

èø

             (22) 

According to Eq.(22), the real equivalent shear stress amplitude on the critical plane (
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) can be determined. 
4. Determination of fatigue life for notched component
According to equivalent Neuber’s rule, the real equivalent shear strain amplitude (
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) on the critical plane can be calculated by the following expression:
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When the pseudo equivalent strain amplitude (
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) are determined, the real equivalent shear strain amplitude (
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) on the critical plane can be computed by Eq.(23). Furthermore, the real equivalent shear strain amplitude (
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) can be substituted into the Eq.(24) to calculate fatigue lifetime 
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3.3. Selection of fatigue life estimation method based on dominated loading modes
According to the investigated results by some researchers, the choice of employed critical plane model must be representative of the controlling or dominant parameters, which are consistent with observed fatigue damage [25, 26]. In the current study, for a notched component subjected to multiaxial loadings, a fatigue life estimation method, which is based on the dominated loading modes, is proposed. The multiaxial loading paths are composed of axial tension-compression loading path and torsional loading path. The procedure of the proposed estimation method can be drawn as follows:
1. For axial tension-compression loading path, the resulting fatigue damage D( can be calculated using Eq. (4).
2. For torsional loading path, the resulting fatigue damage D( can be calculated using Eq. (8).

3. Judging the size between the axial fatigue damage D( and the shear fatigue damage D(, if D( ( D(, the axial strain-based fatigue life estimation method (Section 3.1) is utilized to calculate fatigue life, or else D( < D(, the shear strain-based fatigue life estimation method (Section 3.2) is used to calculate fatigue life.
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4. Notch fatigue life prediction based on the dominated loading modes under multiaxial variable amplitude loading
In the current study, a notch fatigue life prediction methodology based on the dominated loading modes is proposed under multiaxial variable amplitude loading. The general process flow for presented lifetime prediction methodology is shown in Fig. 2. 
4.1 Multiaxial cycle counting
For variable amplitude multiaxial loadings, an appropriate cycle counting approach is needed to count a series of individual cycles in the loading history. Langlais et al. [27] proposed a multiaxial cycle counting technique on the basis of a simple uniaxial rainflow counting approach. Multiaxial loading histories are divided into master counting channel and auxiliary counting channels. This technique identifies cycles for the master counting channel, it simultaneously can ensure that important information can be saved on the auxiliary counting channels.

In the proposed methodology, firstly, the axial loading channel and torsional loading channel are respectively selected as the counting channel, and all other channels are assigned as auxiliary channels. Then, the multiaxial cycle counting method proposed by Langlais et al. is applied on the counting channel and auxiliary channels to identify cycles. 
4.2 Multiaxial fatigue damage estimation
When all loading cycles are identified for a multiaxial variable load history, the axial fatigue damage 
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 for pure torsional loading path can be respectively evaluated according to the uniaxial notch fatigue life estimation methodology, as shown in Sections 2.1 and 2.2. Then, if the axial fatigue damage 
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, the axial strain-based multiaxial fatigue model (16) is utilized to determine multiaxial fatigue lifetime in every counted cycle, or else the shear strain-based multiaxial fatigue model (24) is utilized to compute multiaxial fatigue lifetime in every counted cycle (as shown in Section 3.3). Furthermore, the multiaxial fatigue damage for every counted cycle (
[image: image69.wmf]i

D

) can be evaluated by the following equation. 


[image: image70.wmf]fi

i

N

D

1

=

                                                         (26)
where 
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 is the fatigue lifetime with regard to ith counted cycle.

4.3 Fatigue damage accumulation
Once the fatigue damage for every counted cycle is (
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) computed, total fatigue damage 
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 for the entire variable amplitude loading sequence is accumulated by the Miner linear cumulative damage law:
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where 
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 is the total number of counted cycles.
Finally, the predicted fatigue life can be obtained by the following equation:
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5. Experimental verification 

Two sorts of notched shaft specimens are utilized to demonstrate the proposed notch fatigue lifetime estimation methodology. They are GH4169 nickel-based superalloy [28] and 7050-T7451 aluminum alloy [29]. For the selected two materials, the monotonic and cyclic mechanical property parameters, and fatigue properties are listed in Tables 1 and 2, respectively. The configurations and dimensions for the investigated two kinds of notched shaft components are depicted in Fig. 3a and b. 
For 7050-T7451 aluminum alloy notched shaft components, both constant and variable amplitude multiaxial fatigue experiments are performed, and the loading modes for multiaxial fatigue experiments are strain-controlled and load-controlled respectively. For constant amplitude multiaxial fatigue experiments, the loading waveforms are sinusoidal, and employed loading paths are depicted in Fig. 4a-c, and Fig. 5a-c. For variable amplitude multiaxial fatigue experiments, the loading histories are depicted schematically in Figs. 6 and 7. For GH4169 alloy notched shaft components, three different types of fully reversed strain-controlled multiaxial fatigue experiments were performed using triangle waveform, and the investigated loading paths are depicted schematically in Fig. 5a, d and e. For the investigated two materials, the details of cyclic fatigue experiments, experimental results and established FE models can be found in Refs. [28, 29]. It should be noted that the total fatigue lifetime consists of fatigue crack initiation life and fatigue crack propagation life [28]. For notched component, the fatigue crack initiation life is affected by local stress-strain states. In the current study, the proposed methodology is utilized to evaluate the fatigue crack initiation life of notched component. Furthermore, according to the statistical research of experimental results, the fatigue crack initiation life is approximately 33.3% of the total fatigue life for investigated GH4169 alloy notched shaft components [28], and for 7050-T7451 aluminum alloy notched components it is 40.0% [29].

In the current study, for investigated two sorts of notched shaft components experiencing constant amplitude multiaxial loading, comparisons of predicted fatigue lifetimes with experimental results are shown in Fig. 8a. As shown in Fig. 8a, the predicted fatigue lifetimes agree well with experimentally observed results, and 83.3% of predicted fatigue lifetimes are in a factor of 3 scatter band. Additionally, for 7050-T7451 aluminum alloy notched shaft components subjected to variable amplitude multiaxial loading, predictive fatigue lives using the presented estimation methodology are compared with experimental data in Fig.8b. It can be found that 83.3% of the predictive fatigue lifetimes are within an error factor of 3. The results show that proposed methodology can give satisfactory fatigue lifetime prediction results for notched specimens. 
The experimental verification results show a robust estimation capability of the proposed multiaxial notch fatigue lifetime prediction methodology for the investigated notched specimens. The presented methodology is effective and reliable for fatigue life predictions of notched specimens experiencing multiaxial variable amplitude loadings.

5. Discussions

According to the experimentally measured strain histories, Chen et al. [30] presented a multiaxial fatigue damage method based on the dominated loading modes to evaluate fatigue lifetime for smooth specimens. If the fatigue damage computed by the axial strain parameter is more than that by the shear strain parameter, an axial strain-based multiaxial fatigue model is utilized to determine multiaxial fatigue damage, or else a shear strain-based multiaxial fatigue model is utilized to compute multiaxial fatigue damage. The approach proposed by Chen et al. is proved to be accuracy and reliable for experimental data of six kinds of smooth specimens. However, for realistic notched component, the local strains are difficult to be measured at service conditions. 
In the present work, for notched components subjected to multiaxial variable amplitude loading, a multiaxial notch fatigue life prediction methodology is proposed based on the dominated loading modes. In this methodology, the pseudo-elastic stress-strain responses, which are obtained by a linear elastic Finite Element (FE) analysis for a notched component and material stress-strain relation, are utilized as input quantities. By using material cyclic stress-strain equation and Neuber rule, the pseudo equivalent strain vs. real equivalent stress relationship can be determined. Moreover, the axial strain-based and shear strain-based multiaxial fatigue damage parameters, which can be used to take into consideration of non-proportional additional hardening effect, are utilized to replace the pseudo equivalent strain amplitude in order to calculate the real equivalent stress amplitude on the critical plane. Subsequently, the real equivalent strain amplitude on the critical plane, which can be calculated using the real equivalent stress amplitude and the Neuber rule, is substituted into the Manson-Coffin equation to calculate the fatigue life. Therefore, the proposed multiaxial notch fatigue life prediction methodology is relatively convenient for application. The reasonability of the proposed estimation methodology is verified by GH4169 superalloy and 7050-T7451 aluminum alloy notched specimens under constant and variable amplitude multiaxial loading.

Finally, since Miner linear damage cumulative rule is widespreadly utilized and relatively simple, it is employed for analyzing cumulative fatigue damage in the present study. It is worthy of noting that, the effect of the loading sequence is not taken into consideration because the variable amplitude loading history is not sophisticated in this study. In order to consider the effects of loading sequence, further research can be performed on the proposed methodology combined with nonlinear cumulative damage rule.
5. Conclusions
In the present study, an innovative computational methodology is presented to predict the fatigue life for notched specimens experiencing multiaxial variable amplitude loading. The proposed methodology has been verified using the experimental data of 7050-T7451 aluminum alloy and GH4169 nickel-based superalloy notched components. The main conclusions are outlined as follows: 
(1) For various kinds of variable amplitude multiaxial loadings, the proposed methodology can well predict fatigue lives, and most of predicted fatigue lives for notched components are in a factor of 3.

(2) The proposed notch fatigue life prediction methodology, which is based on the dominated loading modes, takes into consideration of the major causes and damage mechanisms affecting the fatigue failure process.

(3) The pseudo equivalent strain vs. real equivalent stress relationship are determined using material cyclic stress-strain equation and Neuber rule, which can be used to take into consideration of non-proportional additional hardening effect.
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