References
[1] Chen A, Zhang WF, Dong DK, Gong YZ (2020). Fatigue Behavior of
Friction Stir Welded Lap Joints for Dissimilar AA7150-AA2524 Aluminum
Alloy. IOP Conf. Series: Materials Science and Engineering 751: 1-7.
[2] Li Y, Murr L E, McClure J C (1999). Solid-state Flow
Visualization in the Friction-stir Welding of 2024 Al to 6061
Al.Scripta Materialia , 40(9):1041–1046.
[3] Sarsilmaza F, Caydas U, Hascalik A, Tanriover L (2010). The
joint properties of dissimilar aluminum plates joined by friction stir
welding. International journal of materials research, 101 (5): 692–699.
[4] Msomi V, Mbana N (2020). Mechanical properties of friction stir
welded AA1050-H14 and AA5083-H111 joint: sampling aspect. Metals
10(214):1-17
[5] Chaudhari R, Parekh R, Ingle A (2014). Reliability of Dissimilar
Metal Joints using Fusion Welding: A Review. International Conference on
Machine Learning, Electrical and Mechanical Engineering (ICMLEME’2014)
Jan. 8-9, 2014 Dubai (UAE) : 98–104.
[6] Rambabu G, Naik DB, Rao CHV, Rao KS, Reddy GM (2015).
Optimization of friction stir welding parameters for improved corrosion
resistance of AA2219 aluminum alloy joints. Defence Technology. 11:
330–337.
[7] Mofid MA, Abdollah-Zadeh A, Gürza CH (2014). Investigating the
formation of intermetallic compounds during friction stir welding of
magnesium alloy to aluminum alloy in air and under liquid nitrogen.
International Journal of Advanced Manufacturing Technology 71:
1493–1499.
[8] Mishra RS, Ma ZY, Charit I (2003). Friction stir processing: a
novel technique for fabrication of surface composite. Materials science
and engineering A 34: 307-310.
[9] Senthilkumar R, Prakash M, Arun N, Jeyakumar AA (2019). The
effect of the number of passes in friction stir processing of aluminum
alloy (AA6082) and its failure analysis. Applied Surface Science
491:420–431.
[10] Abraham R, Mikhail J, Fasihi P (2019). Effect of friction stir
process parameters on the mechanical properties of 5005-H34 and
7075-T651 aluminium alloys. Materials Science and Engineering: A
751:363–373.
[11] Mehdi H, R.S. Mishra. Effect of friction stir processing on
mechanical properties and heat transfer of TIG welded joint of AA6061
and AA7075. Defence Technology. Inpress.https://doi.org/10.1016/j.dt.2020.04.014
[12] Palani K, Elanchezhian C, Avinash K, Karthik C, Chaitanya K,
Sivanur K, Reddy KY (2018). Influence of friction stir processing
parameters on tensile properties and microstructure of dissimilar AA
8011-H24 and AA 6061-T6 aluminum alloy joints in nugget zone. IOP
Conference Series: Materials Science and Engineering 390: 012108.
doi:10.1088/1757-899X/390/1/012108
[13] Silva J, Costa JM, Loureiro A, Ferreira JM (2013). Fatigue
behaviour of AA6082-T6 MIG welded butt joints improved by friction stir
processing, Materials Design. 51: 315–322.
[14] El-Morsy AW, Ghanem M, Bahaitham H (2018). Effect of Friction
StirWelding Parameters on the Microstructure and Mechanical Properties
of AA2024-T4 Aluminum Alloy. Engineering, Technology and Applied Science
Research 8: 2493–2498.
[15] Susmel L, Hattingh DG, James MN, Tovo R(2017). Multiaxial
fatigue assessment of friction stir welded tubular joints of Al 6082-T6.
International Journal of Fatigue 101: 282–296.
[16] Sun Y, Voyiadjis GZ, Hu W, Shen F, Meng Q (2017). Fatigue and
fretting fatigue life prediction of double-lap bolted joints using
continuum damage mechanics-based approach. International Journal of
Damage Mechanics 6: 162–188.
[17] Eslami S, Farahani BV, Tavares PJ, Moreira PMGP (2018). Fatigue
behaviour evaluation of dissimilar polymer joints: Friction stir welded,
single and double-rivets. International Journal of Fatigue 113:
351–358.
[18] Hussein W , Al-Shammari MA (2018). Fatigue and Fracture
Behaviours of FSW and FSP Joints of AA5083-H111 Aluminium Alloy. IOP
Conference Series: Materials Science and Engineering 454 012055.
doi:10.1088/1757-899X/454/1/012055.
[19] Uematsu Y, Tokaji K (2010). Fatigue Behaviour of Friction Stir
Processed Cast Aluminium and Magnesium Alloys, Materials Science Forum
638-642: 3727-3732.
[20] Park JU, An G, Kim H, Choi J (2014). Development of Fatigue
Life Improvement Technology of Butt Joints Using Friction Stir
Processing, Advances in Mechanical Engineering 2014( 943476): 1-14
21. Yamamoto H, Ito K (2018). Effects of Microstructural Modification
Using Friction Stir Processing on Fatigue Strength of Butt-Welded Joints
for High-Strength Steels. Materials Sciences and Applications 9:
625-636.
[22] Bharti A, Tripathi H (2019). Enhancement of Fatigue Life of
TIG-Welded Joint by Friction Stir Processing. In: Chattopadhyay J.,
Singh R., Prakash O. (eds) Renewable Energy and its Innovative
Technologies. Springer, Singapore
[23] Selvaraj G, Karthikeyan T, Mohanadass R, Indhumath S (2015).
Investigation on mechanical properties of welded aluminium joints of
aa 8011 using friction stir welding. International Journal of Applied
Engineering Research 10(13): 11095-11100.
[24] Braga DFO, de Sousa LMC, Infante V, da Silva LFM, Moreira PMG
(2016). Aluminium Friction Stir Weld-bonded Joints. The Journal
of Adhesion 92(7-9): 665-678.
[25] Mabuwa S, Msomi V (2019). The effect of friction stir
processing on the friction stir welded AA1050-H14 and AA6082-T6 joints.Materials Today: Proceedings. Inpress.https://doi.org/10.1016/j.matpr.2019.10.039.
[26] Gandra J, Miranda R, Vilaça P, Velhinho A, Teixeira JP (2011).
Functionally graded materials produced by friction stir
processing. Journal of Materials Processing Technology 211(11):
1659–1668.
[27] Scialpi A, de Giorgi M, de Filippis LAC, Nobile R, Panella FW
(2008). Mechanical analysis of ultra-thin FSW joined sheets with
dissimilar and similar materials. Materials and Design 29: 928−36.
[28] Moreira PMGP, Santos T, Tavares SMO, Richter- Trummer V, Vilaça
P, DE Castro PMST (2009). Mechanical and metallurgical characterization
of friction stir welding joints of AA6061−T6 with AA6082−T6. Materials
and Design 30: 180−187.
[29] Ilangovan M, Boopathy SR, Balasubramanian V (2015).
Microstructure and tensile properties of friction stir welded dissimilar
AA6061-AA5086 aluminium alloy joints. Transactions on Nonferrous
Meterial Society China 25:1080-1090.
[30] Cavaliere P, Panella F (2008). Effect of tool position on the
fatigue properties of dissimilar 2024-7075 sheets joined by friction
stir welding. Journal of Material Processing Technology 206:249–255.
[31] Guo JF, Chen HC, Sun CN, Bi G, Sun Z, Wei J
(2014).Microstructural and mechanical properties of dissimilar friction
stir welds between AA6082-T6 and AA7075-T651. Material Design 56
185–192.
[32] Sadeesh P, Kannan V M, Rajkumar V, Avinash P, Arivazhagan N,
Ramkumar K, Narayanan S (2014). Studies on Friction Stir Welding of AA
2024 and AA 6061 Dissimilar Metals. Procedia Engineering 75: 145–149.
[33] Simar A, Jonckheere C, Deplus K, Pardoen T, de Meester B
(2010). Comparing similar and dissimilar friction stir welds of
2017-6005 aluminium alloys. Science and Technology of Welding &
Joining 15(3):254-259
[34] Robe H, Zedan Y, Chen J, Feulvarch E, Bocher P (2015).
Microstructural and mechanical characterization of a dissimilar friction
stir welded butt joint made of AA2024-T3 and AA2198-T3. Material
Characterization 110:242-251.
[35] Murr LE (2010). A review of FSW research on dissimilar metal
and alloy systems. Journal Materials Engineering and Performance 19:
1071–1089.
[36] Devireddy K, Devuri V, Cheepu MM, Kumar BK (2018). Analysis of
the Influence of Friction Stir Processing on Gas Tungsten Arc Welding of
2024 Auminum Alloy Weld Zone. International Journal of Mechanical and
Production Engineering Research and Development 8(1):243-252.
[37] Kumar G, Kumar R (2020). Optimization of process parameters of
friction stir welded AA5082-AA7075 butt joints using resonance fatigue
properties. Bulletin Of The Polish Academy OF Sciences Technical
Sciences 68(1): 99-108.
[38] Li H, Gao J, Li Q (2018). Fatigue of friction stirwelded
aluminum alloy joints: a review. Applied Science 8(2626):1-19.
[39] Infante V, Braga DFO, Duarte F, Moreira PMG, de Freitas M, de
Castro PMST (2015). Study of the fatigue behaviour of dissimilar
aluminium joints produced by friction stir welding. International
Journal Fatigue 82(2):310-316.
[40] Rodriguez RI, Jordon JB, Allison PG, Rushing T, Garcia L
(2016). Low-cycle fatigue of dissimilar friction stir welded aluminum
alloys. Materials Science and Engineering: A 654: 236–248.
[41] Song SW, Kim BC, Yoon TJ, Kim NK, Kim IB, Kang CY (2010).
Effect of welding parameters on weld formation and mechanical properties
in dissimilar Al alloy joints by FSW. Materials Transactions 51 (7):
1319–1325.
[42] Abbasi S, Esmailian M, Ahangarani S (2018). Investigation of
the microstructure, micro-texture and mechanical properties of the HSLA
steel, hot-rolled and quenched at different cooling rates.
Metallography, Microstructure, and Analysis (7):596–607.
[43] Theocaris PS (1986). Yield criteria based on void coalescence
mechanisms. International Journal of Solids and Structures 22(4)
445-466.