REFERENCES
1. Domin, D.; Benito-Garagorri, D.; Mereiter, K.; Fröhlich, J.;
Kirchner, K., Synthesis and Reactivity of Palladium and Nickel β-Diimine
Complexes: Application as Catalysts for Heck, Suzuki, and Hiyama
Coupling Reactions. Organometallics 2005 , 24 ,
3957−3965.
2. Nakamura, A.; Ito, S.; Nozaki, K. Coordination−Insertion
Copolymerization of Fundamental Polar Monomers. Chem. Rev.2009 , 109 , 5215−5244.
3. Chen, C., Designing catalysts for olefin polymerization and
copolymerization: beyond electronic and steric tuning. Nat. Rev.
Chem. 2018 , 2 , 6−14.
4. Johnson, L. K.; Killian, C. M.; Brookhart, M., New Pd(II)- and
Ni(II)-Based Catalysts for Polymerization of Ethylene and
.alpha.-Olefins. J. Am. Chem. Soc. 1995 , 117 ,
6414−6415.
5. Johnson, L. K.; Mecking, S.; Brookhart, M., Copolymerization of
Ethylene and Propylene with Functionalized Vinyl Monomers by
Palladium(II) Catalysts. J. Am. Chem. Soc. 1996 ,118 , 267−268.
6. Drent, E.; van Dijk, R.; van Ginkel, R.; van Oort, B.; Pugh, R. I.,
Palladium catalysed copolymerisation of ethene with alkylacrylates:
polar comonomer built into the linear polymer chain. Chem.Comm.2002 , 7, 744−745.
7. Nakamura, A.; Anselment, T. M. J.; Claverie, J.; Goodall, B.; Jordan,
R. F.; Mecking, S.; Rieger, B.; Sen, A.; van Leeuwen, P. W. N. M.;
Nozaki, K., Ortho-Phosphinobenzenesulfonate: A Superb Ligand for
Palladium-Catalyzed Coordination–Insertion Copolymerization of Polar
Vinyl Monomers. Acc. Chem. Res. 2013 , 46 ,
1438−1449.
8. Carrow, B. P.; Nozaki, K., Synthesis of Functional Polyolefins Using
Cationic Bisphosphine Monoxide–Palladium Complexes. J. Am. Chem.
Soc. 2012 , 134 , 8802−8805.
9. Sui, X.; Dai, S.; Chen, C., Ethylene Polymerization and
Copolymerization with Polar Monomers by Cationic Phosphine Phosphonic
Amide Palladium Complexes. ACS Catal. 2015 , 5 ,
5932−5937.
10. Nakano, R.; Nozaki, K., Copolymerization of Propylene and Polar
Monomers Using Pd/IzQO Catalysts. J. Am. Chem. Soc.2015 , 137 , 10934−10937.
11. Xin, B. S.; Sato, N.; Tanna, A.; Oishi, Y.; Konishi, Y.; Shimizu,
F., Nickel Catalyzed Copolymerization of Ethylene and Alkyl Acrylates.J. Am. Chem. Soc. 2017 , 139 , 3611−3614.
12. Chen, M.; Chen, C., A Versatile Ligand Platform for Palladium- and
Nickel-Catalyzed Ethylene Copolymerization with Polar Monomers.Angew. Chem. Int. Ed. 2018 , 57 , 3094−3098.
13. Mitsushige, Y.; Yasuda, H.; Carrow, B. P.; Ito, S.; Kobayashi, M.;
Tayano, T.; Watanabe, Y.; Okuno, Y.; Hayashi, S.; Kuroda, J.; Okumura,
Y.; Nozaki, K., Methylene-Bridged Bisphosphine Monoxide Ligands for
Palladium-Catalyzed Copolymerization of Ethylene and Polar Monomers.ACS Macro Lett. 2018 , 7 , 305−311.
14. Fu, X.; Zhang, L.; Tanaka, R.; Shiono, T.; Cai, Z., Highly Robust
Nickel Catalysts Containing Anilinonaphthoquinone Ligand for
Copolymerization of Ethylene and Polar Monomers. Macromolecules2017 , 50 , 9216−9221.
15. Zhang, W.; Waddell, P. M.; Tiedemann, M. A.; Padilla, C. E.; Mei,
J.; Chen, L.; Carrow, B. P., Electron-Rich Metal Cations Enable
Synthesis of High Molecular Weight, Linear Functional Polyethylenes.J. Am. Chem. Soc. 2018 , 140 , 8841−8850.
16. Michalak, A.; Ziegler, T., DFT Studies on the Copolymerization of
α-Olefins with Polar Monomers: Comonomer Binding by Nickel- and
Palladium-Based Catalysts with Brookhart and Grubbs Ligands.Organometallics 2001 , 20 , 1521−1532.
17. Nakano, R.; Chung, L. W.; Watanabe, Y.; Okuno, Y.; Okumura, Y.; Ito,
S.; Morokuma, K.; Nozaki, K., Elucidating the Key Role of
Phosphine−Sulfonate Ligands in Palladium-Catalyzed Ethylene
Polymerization: Effect of Ligand Structure on the Molecular Weight and
Linearity of Polyethylene. ACS Catal. 2016 , 6 ,
6101−6113.
18. Rezabal, E.; Ugalde, J. M.; Frenking, G., The trans Effect in
Palladium Phosphine Sulfonate Complexes. J. Phys. Chem. A2017 , 121 , 7709−7716.
19. Wimmer, F. P.; Caporaso, L.; Cavallo, L.; Mecking, S.; Falivene, L.,
Mechanism of Insertion Polymerization of Allyl Ethers.Macromolecules 2018 , 51 , 4525−4531.
20. Nozaki, K.; Kusumoto, S.; Noda, S.; Kochi, T.; Chung, L. W.;
Morokuma, K., Why Did Incorporation of Acrylonitrile to a Linear
Polyethylene Become Possible? Comparison of Phosphine−Sulfonate Ligand
with Diphosphine and Imine−Phenolate Ligands in the Pd-Catalyzed
Ethylene/Acrylonitrile Copolymerization. J. Am. Chem. Soc.2010 , 132 , 16030−16042.
21. Li, M.; Wang, X.; Luo, Y.; Chen, C., A Second-Coordination-Sphere
Strategy to Modulate Nickel- and Palladium-Catalyzed Olefin
Polymerization and Copolymerization. Angew. Chem. Int. Ed.2017 , 56 , 11604−11609.
22. Sun, J.; Chen, M.; Luo, G.; Chen, C.;Luo, Y., Diphosphazane-monoxide
and Phosphine-sulfonate Palladium Catalyzed Ethylene Copolymerization
with Polar Monomers: A Computational Study. Organometallics2019 , 38 , 638−646.
23. Quintal, M. M.; Karton, A.; Iron, M. A.; Boese, A. D.; Martin, J. M.
L., Benchmark Study of DFT Functionals for Late-Transition-Metal
Reactions. J. Phys. Chem. A 2006 , 110 , 709-716.
24. Dohm, S.; Hansen, A.; Steinmetz, M.; Grimme, S.; Checinski, M. P.,
Comprehensive Thermochemical Benchmark Set of Realistic Closed-Shell
Metal Organic Reactions. J. Chem. Theory Comput. 2018 ,14 , 2596−2608.
25. Shamov, G. A.; Budzelaar, P. H. M.; Schreckenbach, G., Performance
of the Empirical Dispersion Corrections to Density Functional Theory:
Thermodynamics of Hydrocarbon Isomerizations and Olefin Monomer
Insertion Reactions. J. Chem. Theory Comput. 2010 ,6 , 477−490.
26. Castro, L.; Kirillov, E.; Miserque, O.; Welle, A.; Haspeslagh, L.;
Carpentier, J.-F.; Maron, L., Are Solvent and Dispersion Effects Crucial
in Olefin Polymerization DFT Calculations? Some Insights from Propylene
Coordination and Insertion Reactions with Group 3 and 4 Metallocenes.ACS Catal. 2015 , 5 , 416−425.
27. Kang, M.; Sen, A.; Zakharov, L.; Rheingold, A. L., Diametrically
Opposite Trends in Alkene Insertion in Late and Early Transition Metal
Compounds: Relevance to Transition-Metal-Catalyzed Polymerization of
Polar Vinyl Monomers. J. Am. Chem. Soc. 2002 ,124 , 12080−12081.
28. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.;
Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G.
A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.;
Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J.
V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams; Ding, F.; Lipparini,
F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.;
Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang,
W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida,
M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.;
Throssell, K.; Montgomery Jr., J. A.; Peralta, J. E.; Ogliaro, F.;
Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov,
V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.;
Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.;
Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.;
Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J.Gaussian 16 Rev. C.01 , Wallingford, CT, 2016.
29. Grimme, S., Semiempirical GGA-type density functional constructed
with a long-range dispersion correction. J. Comput. Chem.2006 , 27 , 1787−1799.
30. Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H., A consistent and
accurate ab initio parametrization of density functional dispersion
correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys.2010 , 132 , 154104.
31. Grimme, S.; Ehrlich, S.; Goerigk, L., Effect of the damping function
in dispersion corrected density functional theory. J. Comput.
Chem. 2011 , 32 , 1456−1465.
32. Hay, P. J.; Wadt, W. R., Ab initio effective core potentials for
molecular calculations. Potentials for K to Au including the outermost
core orbitals. J. Chem. Phys. 1985 , 82 , 299−310.
33. Andrae, D.; Häussermann, U.; Dolg, M.; Stoll, H.; Preuss,
Energy-adjustedab initio pseudopotentials for the second and third row
transition elements. Theor. Chim. Acta 1990 , 77 ,
123−141.
34. Cossi, M.; Rega, N.; Scalmani, G.; Barone, V., Energies, structures,
and electronic properties of molecules in solution with the C-PCM
solvation model. J. Comput. Chem. 2003 , 24 ,
669-681.
35. Marenich, A. V.; Cramer, C. J.; Truhlar, D. G., Universal Solvation
Model Based on Solute Electron Density and on a Continuum Model of the
Solvent Defined by the Bulk Dielectric Constant and Atomic Surface
Tensions. J. Phys. Chem. B 2009 , 113 , 6378−6396.
36. Becke, A. D., Density-functional exchange-energy approximation with
correct asymptotic behavior. Phys.Rev. A 1988 ,38 , 3098−3100.
37. Perdew, J. P., Density-functional approximation for the correlation
energy of the inhomogeneous electron gas. Phys. Rev. B1986 , 33 , 8822−8824.
38. Grimme, S., Semiempirical GGA-type density functional constructed
with a long-range dispersion correction. J. Comput. Chem.2006 , 27 , 1787−1799.
39. Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.;
Pederson, M. R.; Singh, D. J.; Fiolhais, C., Atoms, molecules, solids,
and surfaces: Applications of the generalized gradient approximation for
exchange and correlation. Phys. Rev. B 1992 , 46 ,
6671−6687.
40. Perdew, J. P.; Burke, K.; Ernzerhof, M., Generalized Gradient
Approximation Made Simple. Phys. Rev. Lett. 1996 ,77 , 3865−3868.
41. Hamprecht, F. A.; Cohen, A. J.; Tozer, D. J.; Handy, N. C.,
Development and assessment of new exchange-correlation functionals.J. Chem. Phys. 1998 , 109 , 6264−6271.
42. Boese, A. D.; Doltsinis, N. L.; Handy, N. C.; Sprik, M., New
generalized gradient approximation functionals. J. Chem. Phys.2000 , 112 , 1670−1678.
43. Boese, A. D.; Handy, N. C., A new parametrization of
exchange–correlation generalized gradient approximation functionals.J. Chem. Phys. 2001 , 114 , 5497−5503.
44. Tao, J.; Perdew, J. P.; Staroverov, V. N.; Scuseria, G. E., Climbing
the density functional ladder: nonempirical meta-generalized gradient
approximation designed for molecules and solids. Phys. Rev. Lett.2003 , 91 , 146401.
45. Zhao, Y.; Truhlar, D. G., A new local density functional for
main-group thermochemistry, transition metal bonding, thermochemical
kinetics, and noncovalent interactions. J. Chem. Phys.2006 , 125 , 194101.
46. Boese, A. D.; Handy, N. C., New exchange-correlation density
functionals: The role of the kinetic-energy density. J. Chem.
Phys. 2002 , 116 , 9559−9569.
47. Zhao, Y.; Truhlar, D. G., The M06 suite of density functionals for
main group thermochemistry, thermochemical kinetics, noncovalent
interactions, excited states, and transition elements: two new
functionals and systematic testing of four M06-class functionals and 12
other functionals. Theor. Chem. Acc. 2008 , 120 ,
215−241.
48. Grimme, S., Semiempirical hybrid density functional with
perturbative second-order correlation. J. Chem. Phys.2006 , 124 , 034108.
49. Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J.,
Ab Initio Calculation of Vibrational Absorption and Circular Dichroism
Spectra Using Density Functional Force Fields. J. Phys. Chem.1994 , 98 , 11623−11627.
50. Becke, A. D., Density‐functional thermochemistry. III. The role of
exact exchange. J. Chem. Phys. 1993 , 98 ,
5648−5652.
51. Perdew, J. P.; Wang, Y., Accurate and simple analytic representation
of the electron-gas correlation energy. Phys. Rev. B1992 , 45 , 13244−13249.
52. Becke, A. D., Densityy., Accurate and simple analytic representation
of the electron-gas correlation energy. ra Using Density
FunctionalJ. Chem. Phys. 1996 , 104 , 1040−1046.
53. Adamo, C.; Barone, V., Exchange functionals with improved long-range
behavior and adiabatic connection methods without adjustable parameters:
The mPW and mPW1PW models. J. Chem. Phys. 1998 ,108 , 664−675.
54. Schmider, H. L.; Becke, A. D., Optimized density functionals from
the extended G2 test set. J. Chem. Phys. 1998 ,108 , 9624−9631.
55. Lee, C.; Yang, W.; Parr, R. G., Development of the Colle-Salvetti
correlation-energy formula into a functional of the electron density.Phys.Rev. B 1988 , 37 , 785−789.
56. Wilson, P. J.; Bradley, T. J.; Tozer, D. J., Hybrid
exchange-correlation functional determined from thermochemical data and
ab initio potentials. J. Chem. Phys. 2001 , 115 ,
9233−9242.
57. Adamo, C.; Barone, V., Toward reliable density functional methods
without adjustable parameters: The PBE0 model. J. Chem. Phys.1999 , 110 , 6158−6170.
58. Adamo, C.; Barone, V., Toward reliable adiabatic connection models
free from adjustable parameters. Chem.Phys. Lett. 1997 ,274 , 242−250.
59. Cohen, A. J.; Handy, N. C., Dynamic correlation. Mol. Phys.2001 , 99 , 607−615.
60. Heyd, J.; Scuseria, G. E., Efficient hybrid density functional
calculations in solids: assessment of the Heyd-Scuseria-Ernzerhof
screened Coulomb hybrid functional. J. Chem. Phys. 2004 ,121 , 1187−1192.
61. Krukau, A. V.; Vydrov, O. A.; Izmaylov, A. F.; Scuseria, G. E.,
Influence of the exchange screening parameter on the performance of
screened hybrid functionals. J. Chem. Phys. 2006 ,125 , 224106.
62. Chai, J.-D.; Head-Gordon, M., Long-range corrected hybrid density
functionals with damped atom–atom dispersion corrections. Phys.
Chem. Chem. Phys. 2008 , 10 , 6615−6620.
63. Chai, J. D.; Head-Gordon, M., Systematic optimization of long-range
corrected hybrid density functionals. J. Chem. Phys.2008 , 128 (8), 084106.
64. Staroverov, V. N.; Scuseria, G. E.; Tao, J.; Perdew, J. P.,
Comparative assessment of a new nonempirical density functional:
Molecules and hydrogen-bonded complexes. J. Chem. Phys.2003 , 119 , 12129−12137.
65. Xu, X.; Goddard, W. A., The X3LYP extended density functional for
accurate descriptions of nonbond interactions, spin states, and
thermochemical properties. Proc. Natl. Acad. Sci. USA2004 , 101 , 2673.
66. Vydrov, O. A.; Heyd, J.; Krukau, A. V.; Scuseria, G. E., Importance
of short-range versus long-range Hartree-Fock exchange for the
performance of hybrid density functionals. J. Chem. Phys.2006 , 125 , 074106.
67. Vydrov, O. A.; Scuseria, G. E., Assessment of a long-range corrected
hybrid functional. J. Chem. Phys. 2006 , 125 ,
234109.
68. Winne, J. M.; Catak, S.; Waroquier, M.; Van Speybroeck, V., Scope
and mechanism of the (4+3) cycloaddition reaction of furfuryl cations.Angew. Chem. Int. Ed. 2011 , 50 , 11990−11993.
69. Boese, A. D.; Martin, J. M., Development of density functionals for
thermochemical kinetics. J. Chem. Phys. 2004 ,121 , 3405−3416.
70. Becke, A. D., A new mixing of Hartreeent of density functionals for
thermochemical. J. Chem. Phys. 1993 , 98 ,
1372−1377.
71. Zhao, Y.; Truhlar, D. G., Comparative DFT Study of van der Waals
Complexes: Rare-Gas Dimers, Alkaline-Earth Dimers, Zinc Dimer, and
Zinc-Rare-Gas Dimers. J. Phys. Chem. A 2006 , 110 ,
5121−5129.
72. Zhao, Y.; Truhlar, D. G., Density Functional for Spectroscopy: No
Long-Range Self-Interaction Error, Good Performance for Rydberg and
Charge-Transfer States, and Better Performance on Average than B3LYP for
Ground States. J. Phys. Chem. A 2006 , 110 ,
13126−13130.
73. Zhao, Y.; Schultz, N. E.; Truhlar, D. G., Design of Density
Functionals by Combining the Method of Constraint Satisfaction with
Parametrization for Thermochemistry, Thermochemical Kinetics, and
Noncovalent Interactions. J. Chem. Theory Comput. 2006 ,2 , 364−382.
74. Zhao, Y.; Schultz, N. E.; Truhlar, D. G., Exchange-correlation
functional with broad accuracy for metallic and nonmetallic compounds,
kinetics, and noncovalent interactions. J. Chem. Phys.2005 , 123 , 161103.
75. Schenker, S.; Schneider, C.; Tsogoeva, S. B.; Clark, T., Assessment
of Popular DFT and Semiempirical Molecular Orbital Techniques for
Calculating Relative Transition State Energies and Kinetic Product
Distributions in Enantioselective Organocatalytic Reactions. J.
Chem. Theory Comput. 2011 , 7 , 3586−3595.