References
  1. Hu J, Du LX, Xie H, et al (2014) Microstructure and mechanical properties of TMCP heavy plate microalloyed steel, Mater. Sci. Eng. A 607:122–131.
  2. Hu J, Du LX, Wang JJ, et al (2013) Structure–mechanical property relationship in low carbon microalloyed steel plate processed using controlled rolling and two-stage continuous cooling, Mater. Sci. Eng. A 585:197–204.
  3. Deardo A J (1995) Multi-phase Microstructures and Their Properties in High Strength Low Carbon Steels, ISIJ Int. 35:946-954.
  4. W. C. Leslie (1981) The Physical Metallurgy of Steels, Mc Graw-Hill.
  5. Kang K, Kwon O, Lee W, et al (1997) Effect of precipitation on the recrystallization behavior of a Nb containing steel, Scr. Mater. 36(11):1303-1308.
  6. I.Tamura, H.Sekine, T.Tanaka, C.Ouchi (1988) Thermomechanical Processing of HSLA Steels, Butterworth and Company, London.
  7. Revilla C, López, B, Rodriguez-Ibabe J M (2014) Carbide size refinement by controlling the heating rate during induction tempering in a low alloy steel. Mater. Des. 62:296-304.
  8. Wang X, Zhou J, Liang Q (2014) Multi-objective optimization of medium frequency induction heating process for large diameter pipe bending. Procedia. Eng. 81:2255-2260.
  9. Silva R.A., Pinto A.L., Kuznetsov, A., Bott, I.S. (2018) Precipitation and grain size effects on the tensile strain-hardening exponents of an API X80 steel pipe after high-frequency hot-induction bending, Metals, 8:168.
  10. T. Gladman (1997) Physical Metallurgy of Microalloyed Steels, Cambridge University Press, Cambridge.
  11. Kim Y W, Song S W, Seo S J, et al (2013) Development of Ti and Mo micro-alloyed hot-rolled high strength sheet steel by controlling thermomechanical controlled processing schedule, Mater. Sci. Eng. A 565:430-438.
  12. Bu FZ, Wang XM, Chen L, et al (2015) Influence of cooling rate on the precipitation behavior in Ti–Nb–Mo microalloyed steels during continuous cooling and relationship to strength, Mater. Charact. 102:146-155.
  13. Sediako D (2012) Optimization of flow stress in cool deformed Nb-microalloyed steel by combining strain induced transformation of retained austenite, cooling rate and heat treatment, Acta Mater. 60:1221-1229.
  14. Hu Z (1999) Computer simulation of pipe-bending processes with small bending radius using local induction heating, J. Mater. Process. Technol. 91:75–79.
  15. Wang X, Xiao FR, Fu YH, et al (2011) Material development for grade X80 heavy-wall hot induction bends. Mater. Sci. Eng. A 530:539–547.
  16. Ahn S T, Kim D S, Nam W J (2005) Microstructural evolution and mechanical properties of low alloy steel tempered by induction heating, J. Mater. Process. Technol. 160:54–58.
  17. V. Sklenička, K. Kuchařová, P. Král, et al (2015) The effect of hot bending and thermal ageing on creep and microstructure evolution in thick-walled P92 steel pipe, Mater. Sci. Eng. A 644:297-309.
  18. Wang X, Liao B, Da-Yong W U, et al (2014) Effects of hot bending parameters on microstructure and mechanical properties of weld metal for X80 hot bends, J Iron Steel Res. Int. 21:1129-1135.
  19. Wang L, Wang B, Zhou P (2018) Misorientation, grain boundary, texture and recrystallization study in X90 hot bend related to mechanical properties, Mater. Sci. Eng. A 711:588-599.
  20. Larzabal G., Isasti N., Rodriguez-Ibabe J.M. et al (2018) Precipitation Strengthening by Induction Treatment in High Strength Low Carbon Microalloyed Hot-Rolled Plates, Metall Mat Trans A 49:946–961.
  21. Zhou T, Yu H, Hu J, et al (2014) Study of microstructural evolution and strength–toughness mechanism of heavy-wall induction bend pipe. Mater. Sci. Eng. A 615:436-446.
  22. Venkatsurya P K C, Jia Z, Misra R D K, et al (2012) Understanding mechanical property anisotropy in high strength niobium-microalloyed linepipe steels, Mater. Sci. Eng. A 556:194-210.
  23. Jun H J, Kang J S, Seo D H, et al (2006) Effects of deformation and boron on microstructure and continuous cooling transformation in low carbon HSLA steels. Mater. Sci. Eng. A 442: 157-162.
  24. Joo M S, Suh D W, Bae J H, et al (2012) Role of delamination and crystallography on anisotropy of Charpy toughness in API-X80 steel, Mater. Sci. Eng. A 546:314-322.
  25. Wang C, Wu X, Liu J, et al (2006) Transmission electron microscopy of martensite- austenite islands in pipeline steel X70, Mater. Sci. Eng. A 438:267-271.
  26. Yang G K, Hwang B, Lee S, et al (2005) Dynamic deformation and fracture behavior of ultrafine-grained aluminum alloy fabricates by equal-channel angular pressing, Metall. Mater. Trans. A 36:2947-2955.
  27. Gleiter H (1971) The structure and properties of high-angle grain boundaries in metals, Phys. Status Solidi B 14: 9-38.
  28. Craven A J, He K, Garvie L A J, et al (2000) Complex heterogeneous precipitation in titanium–niobium microalloyed Al-killed HSLA steels—I. (Ti,Nb)(C,N) particles, Acta Mater. 48: 3857-3868.
  29. Miyamoto G, Takayama N, Furuhara T (2012) Accurate measurement of the orientation relationship of lath martensite and bainite by electron backscatter diffraction analysis, Scripta Mater. 60:1113-1116.
  30. Kitahara H, Ueji R, Tsuji N, et al (2006) Crystallographic features of lath martensite in low-carbon steel, Acta Mater. 54:1279-1288.
  31. Zhang C, Wang Q, Ren J, et al (2012) Effect of martensitic morphology on mechanical properties of an as-quenched and tempered 25CrMo48V steel, Mater. Sci. Eng. A 534:339–346.
  32. Wang X, Zhou J, Liang Q (2014) Multi-objective optimization of medium frequency induction heating process for large diameter pipe bending, Procedia Eng. 81:2255-2260.
  33. Lee H W, Bae J H, Kim M S, et al (2011) Optimum design of pipe bending based on high- frequency induction heating using dynamic reverse moment, Int. J Precis. Eng. Man. 12:1051-1058.
  34. Hu Z (2000) Elasto-plastic solutions for spring-back angle of pipe bending using local induction heating. J. Mater. Process. Technol, 102:103-108.
  35. Zaefferer S, Ohlert J, Bleck W (2004) A study of microstructure, transformation mechanisms and correlation between microstructure and mechanical properties of a low alloyed TRIP steel, Acta Mater. 52:2765–2778.