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[bookmark: _Hlk39826140][bookmark: _Hlk2673468][bookmark: _Hlk39821919]Abstract: Similar to the effects of changes in land use and cover, forest transitions have implications for biodiversity and ecosystem functioning. However, forest transition theory ignores ecologically important characteristics, such as forest age, species composition, vertical structure, and all but the most severe levels of degradation. In this study, based on National Forestry Inventories (NFIs) data and socioeconomic panel data covering more than 40 years (1977–2018), we investigate the spatial-temporal dynamics and the spatial determinants of forest quality transition at the province level in China using spatial econometric regression models. Based on our results, we reached the conclusions that follow. (1) Forest area, forest volume, and forest coverage have greatly improved as of 2018, especially for plantations, but uneven forest distribution is an important feature of forest adaptation to the environment. (2) The global Moran’s I value is greater than 0.3, and the forest quality of the provinces has a positive spatial correlation and exhibits obvious spatial clustering characteristics. In particular, the spatial expansion of forest quality has shown an accelerated concentration from 1977 to 2018. (3) The most suitable model for empirical analysis and interpretation was the Spatial Durbin Model (SDM) with fixed effects. The average annual precipitation and the area ratio of the collective forest are positively correlated with forested quality (significance level 1%). Ultimately, this framework can guide future research, describe actual and potential changes in forest quality associated with forest transitions, and promote management plans that incorporate forest area changes.
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1. Introduction
Forest transition refers to the general reduction in the forest coverage area of a country or region in the early stages of economic and social development, which is followed by an increase in forest coverage area due to forest growth (Fuhrer, 2010; Barbiera et al., 2017). This pattern is similar to the environmental Kuznets curve, which is a U-shaped curve describing the relationship between forest cover area and time (Pfaff and Walker, 2010; Wilson et al., 2019). The U-shaped Kuznets curve shows that economic growth is conducive to forest restoration, but it is not the motivating force that continues to promote forest growth (Lambin and Meyfroidt, 2011; Gong et al., 2019a; Sloan, 2015). Forest transition was first proposed by Mather in 1992 as an emerging concept in the context of global climate change and biodiversity protection (Mather, 1992). Scholars have successively studied forest transition in countries around the world using historical statistical data, remote sensing data, and farmer survey data (Rudel et al., 2005; Näyhä, 2019; Mustalahti, 2018). These studies have mainly focused on forest cover change in the context of economic and social development, but they have not sufficiently described the ecological attributes, goods, and services arising from the different forest transition pathways, and how these factors change over the trajectory of a forest transition pathway.
[bookmark: _Hlk39829483]The ecosystem service concept is currently the focus of both scientific research and environmental policy development and implementation (Kumar et at al., 2013; Lorenzo et al., 2012). Due to the continuity and indivisibility of the changes in the social-economic-environmental system (Vallet et al., 2016), and the fact that different types and ages of forests are known to support different types of species, biodiversity, biomass, and other structural and functional features (Fenichel et al., 2019; Thompson et al., 2011), the process of forest transition cannot be simply and individually divided into periods of forest reduction, the transition point, and forest growth (Daily et al., 2009; Silver et al., 2000). Furthermore, forest transition theory fails to systematically consider the ecological implications, and it ignores ecologically important characteristics (Geels et al., 2017). One of the main goals of sustainable forest management is the preservation of the ecological integrity and ecosystem functions and to maintain the provision of goods and services over time (Meyfroidt and Lambin, 2011). A key property related to this objective is ecosystem resilience. However, the optimal function of the forest ecosystem depends not only on the quantity of forest resources but also on the quality of forest resources (Marull et al., 2015). To promote forest transition, it is not only necessary to transition from decreasing forest area to increasing forest area, but it is also necessary to improve forest quality (Garcia et al., 2020). However, forest quality is not well represented in the forest transition theory, and if degradation is higher in the second phase of the transition, it can happen all along the forest transition curve (Marull et al., 2015). Gillet et al. (2016) studied the central African forest and reported that ecosystem services (such as non-timber forest products), wildlife consumption, and the contribution of these products to household incomes and dietary intake decrease along the forest transition curve. In fact, despite political resolve and global efforts, forest transition theory does not sufficiently account for biophysical differences in forest types and dynamics, and therefore, forest loss, fragmentation, and land degradation continue unabated (Brancalion et al., 2019).
As one of the main countries in Asia working to increase forest area, China has experienced forest transition from the 1980s to the 1990s, and the forest area has transitioned from long-term reduction to the beginning of forest recovery (Li et al., 2017). In particular, the ecological environment has received unprecedented attention since the great floods in the Yangtze River Basin in 1998 (Hong et al., 2019). Subsequently, various regions have successively carried out the Returning Farmland to Forest and Grass projects and the Natural Forest Protection projects, which have played an important role in vegetation restoration (Gong et al., 2019; Tao et al., 2016). The forest area in Asia experienced a net increase in the 1990s, mainly due to the large-scale afforestation in China. China accounted for 25% of the net increase in global leaf area in Asia (Chen et al., 2019). Forest transition in China is of great significance to global carbon storage, biodiversity protection, and improvement of the regional environment (Tong et al., 2018). Although forest coverage and forest area in China have maintained a doubling growth for more than 30 years, the fundamental lack of forests and greenery, low forest quality, and fragile forest ecosystem functions remain unchanged (SFGB, 2019). The volume of forest per hectare is only 72% of the world’s average. Forty-three percent of the area has less than 20% of the forest’s production potential per hectare, and only 31% of the area exceeds 50% of the forest’s production potential (Gao et al., 2011). Thus, there is a significant scope for improving forest quality. Under the rigid constraints of forest area, forestry faces the challenge how to intensify forest management in existing forests in sustainable ways, and it is imperative to shift from quantity expansion to quality improvement (Liu et al., 2014). Accelerating the restoration of degraded ecosystems and accurately improving forest quality are of great significance to resolving the contradictions between the growing economic, social, and environmental demands (Wang et al., 2019).
The dynamic changes in the laws and factors influencing the forest quantity and forest quality may be different. Compared with the change in forest area, the process of the change in forest quality has not been studied in enough detail, and forest quality plays a vital role in forest ecological function. Moreover, the spatial difference in the forest quality in 31 provinces in China is very large. Where will forest quality transition occur with the development of the social economy? What is its spatial distribution? What are the factors influencing it? Will forest transition continue in the future? A sufficiently detailed comprehensive analysis of these issues has not been conducted. In this paper, we propose a conceptual framework for forest quality transition and use the spatial econometric analysis method to explore the spatial differences in forest quality between provinces. In addition, we identify the mechanism of the change in forest quality to enrich the research content and research cases of forest transition and to provide a basis for forest protection and management, quality improvement, and the formulation of sustainable forest resource management policies.
2. Materials and Methods 
2.1 Study Area
Due to China’s vast area, its forest resources exhibit significant interprovincial spatial heterogeneity, and the interaction and influence of various factors need to be explored at the provincial level. In this study, we compiled province-level panel data for mainland China, which covers 31 provincial administrative regions, including 22 provinces, 5 autonomous regions, and 4 municipalities with provincial political, economic, and jurisdictional status from 1973 to 2018. The Hainan Province and Tibetan (also referred to as Xizang) Autonomous Regions were calculated using the linear difference method because of data limitations. Before the establishment of independent municipalities and the adjustment of administrative regions in 1997, Chongqing was a prefecture-level city in Sichuan Province. Therefore, we also calculated the data for the Chongqing municipality before 1997 using the linear difference method. Due to difficulties in obtaining data, this study does not include Hong Kong, Taiwan, and Macau. 
2.2 Data Source and Descriptions
As a renewable resource, forest quality determines the level of forest ecological value, which was used as the dependent variable. Definitions of forest quality are numerous and diverse, and the term has been used to include biomass, forest health, stand structure, and canopy density. Based on the principle of systematic, quantitative comparability and the effectiveness of the evaluation indicators, we combined the characteristics of China’s forest resources and the integrity of the data with expert opinions of researchers in the fields of forestry, ecology, and forest conservation to establish a forest quality evaluation index system, which contains 4 substructures and 12 indicators. The substructure includes the forest quantity, forest productivity, forest structure, and forest health; the indicators related to forest quality include the forest cover rate, forest land ratio, forest land utilization, volume per unit area, volume quality, volume growth, stand origin structure, stand category structure, stand age structure, forest access, forest fire disaster ratio, and the forest pests and rats damage ratio (Table 1).
[bookmark: _Hlk38725685]The data used to measure the forest quality were obtained from the National Forestry Inventories (NFIs) maintained by China’s State Forestry Administration to collect data for informed and strategic policymaking. From 1950 to 1962, China conducted a forest resource survey in the main forest areas of the major provinces (historical forest resources survey). The National Forest Inventory (NFI) is the main data source for the quantity, quality, and structural changes of forest resources (Zhang, 2006). The NFI data were obtained using the resource survey method based on sampling theory and using fixed sample plots that were rechecked every five years. China has conducted nine forest resource inventories so far. The first NFI was conducted between 1973 and 1976, and the continuous forest inventory framework was established during the second inventory process (1977–1981) and continues to this day. Under this framework, forest resources can be repeatedly inspected at a fixed interval in a continuous and comparable manner according to strict and uniform standards. To maintain data comparability and consistency, in this study, we used the second to ninth forest resource inventory data to analyze the forest quality index.
Changes in the forest quality are not only affected by natural environmental factors but are also significantly affected by the way in which forest resources are used (Barbier et al., 2010). The macro environment of social development determines how the forest resources are used. These uses include the role of economic growth mechanisms in the allocation of forest resources, the changes in forest management practices in response to climate change, demographic factors, and national policy investments. Therefore, we focus on the impact of the above variables on the dynamic changes in forest quality in China. Thus, economic growth factors, demographic factors, national policy investments factors, and biophysical factors were selected as the explanatory variables (Table 2).
[bookmark: _Hlk28010027]The statistics used were primarily obtained from the Social and Economic Statistics Yearbook in China (1977-2018), the Statistical Yearbook in China (1977-2018), China Forestry Statistical Yearbook (1998-2017), China Forestry Yearbook (1949-2018), and China Agriculture and Forestry Database. The precipitation and temperature data were obtained from the Resource and Bio-physical Science Data Cloud Platform (http://www.resdc.cn), which were from 1915 stations nationwide, and the time has been since the establishment of the station. In this paper, we used the inverse distance weighted average method to interpolate the spatial distribution data with a spatial resolution of 500 m × 500 m based on the original site data (Gong et al, 2019), and the specific characteristics of the data were shown in Table 3. 
2.3 Analytical Methods
2.3.1 Construction of Forest Quality Index System
In the process of calculating the forest quality index, the key is the weight of each indicator (Zhang et al., 2020). To avoid human subjective factors in the weighting method, we used the entropy weighting method to establish the forest quality index. The basic idea of the entropy weighting method is to determine the objective weight according to the size of the index’s variability (Cao et al., 2010). The specific steps of the process are as follows.
(1) Normalized index value
Due to the differences in the measurement units of the indicators, the indicators need to be dimensionless. In this study, we used the efficacy coefficient method to standardize the data. The positive indicators were standardized according to the following equation:
,
and the negative indicators were standardized according to the following equation:
,
where  and  are the standardized and original values, respectively, for the jth index in the tth year in the ith province, and  and  are the maximum and minimum values, respectively, for the jth index in the ith province.
(2) Determination of the indicators’ weights
The entropy method uses the information entropy to measure the discrete degree of the index for the comprehensive evaluation of multiple indicators as follows:

,
[bookmark: OLE_LINK3], and 
where  is the proportion of the jth index in the ith province in the tth year,  is the entropy of the jth index, is the information utility value,  in the weight of index j in year t, m is the number of provincial administrative regions, and n is the number of indicators. 
(3) Establishing the evaluation model
When assessing forest quality, it is necessary to calculate the comprehensive score Y of each province in different years. Higher Y values indicate better forest quality.
 ,
where Cj is the normalized evaluation index value.
[bookmark: OLE_LINK9][bookmark: OLE_LINK10]2.3.2 Spatial Autocorrelation
[bookmark: _Hlk28190939]Global spatial autocorrelation is a description of the spatial characteristics of forest resource attributes across the country (Yang and Chen, 2019). It can measure the overall spatial association and spatial difference of forest resources between regions. The statistical indices for measuring global spatial autocorrelation include Moran’s I, Geary’s C, and Getis’s G (Anselin, 1988). Of these indices, Moran’s I is a common indicator in spatial statistics and can be used to test the correlation of economic variables with geospatial variables. In this paper, we tested the statistics using Moran’s I statistic as a global measurement (Moran, 1950).
,
,
,
,
,
[bookmark: OLE_LINK17][bookmark: OLE_LINK18]where  and  are the observed value of certain geographical attribute in the spatial unit  and unit j, respectively; is the spatial weight value (Anselin, 1988);  is the mean value of regional variables; n is the number of samples,  is the mean square deviation.  is the expected value of Moran’s I,  is the significance level of Moran’s I is commonly tested. The scope of Moran’s I value is [– 1, 1]. When Moran’s I value is greater than zero, a positive spatial autocorrelation of exists which indicates clustering state of spatial geographical phenomena. When Moran’s I value is less than zero, a negative spatial autocorrelation exists which indicates a discrete state of spatial geographical phenomena. When Moran’s I value is approximate 0, a random distribution is presented indicates that there is no spatial correlation between the regions. 
The LISA scatter plot corresponding to the Moran’s I value also reflects the local spatial autocorrelation. However, compared to the LISA scatter plot, the Getis-Ord Gi* values based on the normal distribution hypothesis test are more sensitive than the LISA based on the random distribution hypothesis test (Jin and Wang, 2015). The Getis-Ord Gi* statistics can also be used to detect whether the regional unit is a high-value cluster or a low-value cluster (Hao et al., 2019). In this study, the Getis-Ord Gi* method was used to identify the spatial distribution locations of similar clustering areas of the forest quality index, which makes up for the lack of global spatial autocorrelation analysis of the spatial local relationship characteristics.



The Gi* statistic is the Z-score. The higher the Z-score, the closer the clustering of the high values (hot spots), and the lower the Z-score, the closer the clustering of the low values (cold spots).
2.3.3 Spatial Econometric Regression Models
Once the spatial correlations of the Moran’s I index test were obtained, spatial econometric models were selected to analyze the driving factors of the dynamic change in the forest quality, which effectively solves the spatial dependence problem that cannot be handled by linear regression analysis (Meiyappan et al., 2017). The spatial econometric model includes the spatial lag model (SLM) and the spatial error model (SEM), which are the two basic forms. Further, the spatial Durbin model (SDM) adds the spatial lag of the explanatory variables based on the two basic models and can optimize the above two models to a certain extent. The SLM, is a direct representation of the spatial effects based on the autoregression of the dependent variables. It is primarily used to explore the spatial spillover or diffusion effects of the economic individuals (Anselin, 1988). This model is represented by the follows:
.
Compared with the SLM, the SEM deals with errors in the disturbance and measures the influence of the errors in the dependent variables in the neighboring areas on the observed value in a local area (Anselin et al., 1996). The SEM is represented by the follows:
, where
.
If the explanatory variables of a region are not only affected by the explanatory variables of the surrounding area but also by the explanatory variables of the surrounding area, the SDM should be used. That is, the SDM contains both the endogenous interaction effects () and the exogenous interaction effects (WX) (Anselin, 2002). The basic form of the SDM is:

where  is the dependent variable vector of n × 1,  is the spatial weight matrix of the n × n order, is the independent variable matrix of n × k,  is a coefficient of the spatial lag,  is a parameter vector,  is the random error term,  is a parameter of the spatial error and measures the spatial dependence function of the observed values, μ is the random error vector of the normal distribution, is the spatial lag variable of the explanatory variable in the neighboring region, θ is the coefficient of the exogenous interaction effects.
The spatial correlograms for the SLM, SEM and SDM residuals were constructed using the pgirmess package in R (Giraudoux, 2015).
2.3.4 Model Fitting
[bookmark: _Hlk38814694]We selected the coefficient of determination (R2) and the Akaike information criterion (AIC) to compare the residuals of the spatial econometric regression models. The AIC is defined by the following formula (Getis and Aldstadt, 2004):

where is the maximum likelihood estimator and  is the number of unknown parameters. 
we also used the LM test to determine whether the spatial lag effect and the spatial error effect are significant. If the results support one of SLM and SEM, or both, then SDM should be established. Then it is tested whether the SDM can be simplified into SLM and SEM by constructing the Wald statistic and the LR statistic. Hypothesis 1: θ = 0; Hypothesis 2: θ + λβ = 0. If Hypothesis 1 passes the significance test, the SDM can be reduced to a spatial lag model. If Hypothesis 2 passes the significance test, the SDM can be reduced to SEM.
If the LR and Wald statistic are inconsistent with the model chosen by the LM test, the SDM should also be selected because the SDM is the general form of SLM and SEM. We use the sphtest command in the R software used to conduct the test (Bivand, 2015). 
3. Results 
3.1 Dynamic Change in Forest Resource
Forest area, forest volume, and forest coverage decreased to the lowest point from the end of the 1970s to the early 1980s in China (Figures 1a, b, c), which was the inflection point of the forest transition. Thereafter, the forest coverage rate increased continuously (Figure 1a), and the forest area and forest volume also exhibited a relatively stable increase, especially after 1993 (Figures 1b, c). However, although China’s forest area and stocking volume had greatly improved by 2018, they had not recovered to the 1960 level.
From 1950 to 1962, natural forests constituted a large proportion, and plantations accounted for only 4.49%. Then the area proportion of the plantations continued to increase to 37% within 50 years. The area proportion of natural forests decreased rapidly from 1962 to 1981, and the decrease slowed down from 1981 to 2018 (Figure 1d). The volume proportion of natural forests continued to decrease for more than 50 years, reaching a low of 83% in 2018. However, the volume of natural forests still accounted for the majority of the entire stocking volume.
The weights of the resource indicators are greater than those of the disaster indicators (Table 1), indicating that the state of the forest resources is the most important reason for the differences in forest quality among the provincial administrative regions. The indicator with the greatest impact on forest quality is the forest cover rate (0.1724), and the second most important indicator is the volume per unit area (0.1584). Therefore, to improve forest quality, we should increase forest investment and protection and increase forest coverage and forest density. The forest quality index during the study period increased (Figure 1e), but the increase was smaller than the increases in forest area and forest volume, illustrating the difference between forest quality and forest quantity.
Based on the spatial distribution, the three northeastern provinces have the highest forest quality indexes because the Xing’an Mountains and the Changbai Mountain forest areas are concentrated in this region. The forest quality indexes in Sichuan, Chongqing, and Yunan in the southwest are also high because they include the western Sichuan forest area and the northwestern Yunnan forest area. The forest quality indexes of Fujian, Jiangxi, and Zhejiang along the eastern coast are also high. Due to high socioeconomic development levels and fast population growth in Tianjin, Shanghai, and Shandong, certain pressures have been placed on the forest ecosystem; therefore, the forest quality indexes in these areas are low. Ningxia and Qinghai have fragile ecologies and forest resources are scarce, so their forest quality indexes are not high.
[bookmark: _Hlk860995][bookmark: OLE_LINK11][bookmark: OLE_LINK12]3.2 Spatial Correlation Analysis
[bookmark: _Hlk38726582][bookmark: _Hlk38726642][bookmark: _Hlk38726632]The Moran’s I index of the provincial forest quality index are all greater than 0.3, and the Z-scores are greater than 1.96 from 1977 to 2018. All of the results are significant below the significance level of 0.1, indicating that the forest quality of the provinces has a positive spatial correlation and exhibits significant spatial clustering characteristics, that is, the forest quality indexes of the various provinces have a certain spatial dependence and geographical clustering characteristics at the 99.9% confidence level. In particular, the Moran’s I index increased from 0.3085 to 0.3845, and the Z-value score increased from 2.8703 to 3.5058 from 1977 to 2018, indicating that the spatial expansion of the forest quality was in an accelerated concentration state. Therefore, in the process of quantitatively studying the factors affecting forest quality, the spatial correlation effects should be fully considered.
The Jenks best natural cutoff method for Getis-Ord G* index of the forest quality index was used to cluster and layer the analysis results to form hotspots, sub-hot spots, sub-cold spots, and cold spots (Figure 2). The hotspots and sub-hotspots of the forest quality growth rate are mainly concentrated in the southern collective forests and the southwestern alpine forests. The cold spots and sub-cold spots of the forest quality growth rate are mainly distributed in the semi-arid and arid regions of the northwest. A considerable portion of the area has an annual precipitation of less than 400 mm, which does not meet the most basic requirements for forest growth. The Tianjin, Shanghai, and Jiangsu provinces are cold spots. Although their economic development and geographical locations are superior, they have weak forest resource endowment capacities, and their low levels of forestry development have failed to meet the huge demand for forest resources in regional development.
3.3 Spatial Econometric Model
Spatial econometric model was used to analyze the influencing factors of forest quality, and the Hausman statistical test was positive and very significant (Table 5). Therefore, we rejected the original hypothesis that the random effects are not different from the fixed effects and adopted the fixed effects model. The LM-lag and LM-error passed the significance test for two-way fixed effects. The Robust LM-lag statistic was significant at the 5% test level, whereas the Robust LM-error statistic failed the significance test. That is, the SLM with fixed-effects was more significant. According to the model selection strategy, the SDM need to be further tested, and both the Wald test value and the LR test value pass the 1% significance test based on the results of the SDM test (Tables 6). This indicated that the original assumption that the SDM can be reduced to the SLM and the SEM must be rejected, and thus, the SDM was selected as the optimal model. Furthermore, the R2 and Log L values of the SDM are larger than those of the SLM and SEM, and its AIC and SC values are the smallest. Therefore, the SDM with fixed effects is the best model to analyze the factors influencing provincial forest quality.
[bookmark: _Hlk40363163][bookmark: _Hlk40363233][bookmark: _Hlk39821863]The estimates of the coefficients produced by the SDM confirmed that average annual precipitation has a significant positive impact on forest quality (significant at the 1% level, Table 6). National forest policies also have a positive role in promoting forest quality (significance level 1%). In particular, the collective forest area ratio has a high significance level. Among the economic indicators, GDP per capita and population urbanization rate are positive indicators, and they are within the 5% statistical significance level. The cultivated land area ratio also have a positive effect on forest quality within the 10% statistical significance level. In contrast, population density was a negative indictor, indicating that it inhibits the increase in forest quality. The greater the population density, the greater the pressure on the exploitation and utilization of forest resources, and the more vulnerable the forests were to destruction. In addition, as the population size continued to increase, the demand for water resources also increased, and the environmental problems in arid regions became more prominent.
[bookmark: _Hlk38652982]4. Discussion and Conclusions
4.1 Forest Quality change
[bookmark: _Hlk862686][bookmark: _Hlk521524781][bookmark: _Hlk38380804]Larger scale artificial afforestation is one of the main reasons for the increasing trend of the forest Kuznets curve in some countries and regions in Asia, which has been confirmed in China (Gao et al., 2011). The development of forest resources in China has been accompanied by excessive consumption, governance restoration, and rapid growth (Figures 1 a, b, c). An inflection points in China’s forest transition appeared around 1981. Since then, forest management objectives have gradually shifted to both wood production and ecological construction, and forest resources have increased (Fang et al., 2007; Hu et al., 2013). In particular, the area and volume of plantations have continued to increase (Figure 1d). The rapid expansion of the forest area in China is the main reason for the transition of Asian forests from net loss to net growth (Fao, 2007). However, the overall management level of the plantations has not been high, and the contradiction between effective forest supply and increasing social demand is still prominent, especially the proportion of wood imports to domestic wood consumption increased from 27.9% in 2000 to 50.7% in 2014 (Zhang, 2006). Therefore, it is of great significance and urgency to make full use of the superior light availability and the hot and wet soil conditions in the southern region to develop timber forests and enhance the wood supply capacity of the plantation forests to improve the self-sufficiency rate of the timber industry and to continue to promote the protection of natural forest resources. 
Compared with the substantial increase in quantity, the deterioration of the ecological environment has not been fundamentally reversed in China. The forest quality in China is lower than the world average, and it is still slightly lower than the Asian average (Fang et al., 2001). Scientific research results and production practices have shown that the forest volume per unit area can be increased by 20%–40% (SFGB, 2019), and the potential to improve the forest quality through scientific and reasonable tending and management is high. Therefore, follow-up forestry development should primarily emphasize the importance of improving forest quality from a strategic perspective to transition from extensive forest growth to intensive forest growth.
[bookmark: _Hlk38726761]There are considerable variations in the natural conditions and the level of economic development of the different regions in China, and the improving rates of forest quality vary between the different regions. The hotspots and sub-hotspots of the forest quality growth rate are mainly concentrated in the southern collective forests and the southwestern alpine forests, which have obvious ecological advantages, such as abundant precipitation, good light, and good temperature conditions. The forest resources in these regions are mainly broad-leaved forests with high ecological value. Moreover, the unique geographical advantage has resulted in an economically advantageous position, so the level of forestry development is relatively high. Thus, the regional demand for forestry can be met while improving the level of forest ecological construction. The climatic conditions in the central most provinces (Beijing, Hebei, Tianjin, et al.) are conducive to both forest growth and agricultural development. Therefore, forest land is easily converted into cultivated land under both regulated and unregulated conditions, and the forest land has a faster recovery capacity in forest land restoration projects (Xie et al., 2017). Therefore, these areas are mainly the sub-hot spots and sub-cold spots with respect to forest quality growth rate. The Liaoning, Jilin, and Heilongjiang provinces are located in the northeastern state-owned forest area, including traditional forest areas of the northeast coniferous forests and mixed coniferous and broad-leaved forests (Zhang et al., 2016). This region has good forest quality, rich species availability, and high ecological value. However, the per capita GDP and urbanization levels are low, the ecology is relatively fragile, and the area of ecological public welfare forests is relatively low, resulting in a low forest ecological index and forest ecological construction.
The northwestern semi-arid and arid regions are poorly endowed with forest resources. The precipitation is also low with a considerable number of areas having an average annual precipitation of less than 400 mm (Gong et al., 2019). The climatic conditions are not conducive to the reproduction and restoration of forest trees, and the economic development is relatively backward compared to the western provinces (Li et al., 2010). Thus, these regions, for example, the Shaanxi, Gansu, Ningxia, Qinghai, Xinjiang, and Inner Mongolia provinces in northwestern China, are cold spots and sub-cold spots for forest quality growth rate. It should be noted that these provinces are important ecologically fragile areas. Once important key ecological land is destroyed, its recovery is quite difficult. Another reason why these areas are forest quality growth rate cold spots and sub-cold spots is that grassland quality is not statistically considered in the forest quality index. How to incorporate grassland resources into the forest resource inventory and construct a comprehensive index reflecting the total amount of forest and grassland resources will be considered in future resource inventory studies.
4.2 Impact Factors
[bookmark: OLE_LINK6][bookmark: OLE_LINK7][bookmark: _Hlk38726948]Climate factors and human activities are not independent functions but are interlinked in the dynamic change in forest quality in China (Frayera et al., 2014). Resource endowment is the main factor that determines forest quality, precipitation has an obvious positive impact on forest quality (Table 6), and it is the most important factor restricting forest growth, especially in arid and semi-arid regions. Forest coverage can be close to saturation only in areas where the average annual precipitation is greater than 400 mm, whereas the forest coverage is generally less than 30% in areas where the average annual precipitation is less than 400 mm, and most of these areas have less than 10% forest coverage. China’s greening (forest coverage or leaf area index) has not crossed the 400 mm precipitation line (Gao et al., 2020). This fact shows that artificial forestation is also limited by the 400 mm precipitation line in China. Although there was a significant increase in the average annual precipitation between 1981 and 2013, artificial afforestation did not cause significant forest area changes in the arid and semi-arid regions west of the 400 mm precipitation line (Chen et al., 2019). In contrast, the mortality rate of plantations in this area was high (Wang et al., 2019). Therefore, under the background of global warming, future forest construction in the arid and semi-arid regions in northwestern China needs to consider the suitability of climate and the trend in climate change. Furthermore, local-scale plantation construction and maintenance can only be carried out in locations with a guaranteed water supply, and large-scale afforestation is not a good strategy to address climate change.
[bookmark: _Hlk38727102]National forest policy also plays a significant role in promoting forest transition, especially the collective forest area ratio, which is a result of forest tenure reform and has a clear positive effect on forest quality (Table 6). The hotspot areas of the forest quality growth rate index are concentrated in the southern provinces where the forest reform is concentrated. The reason for this has been the increased enthusiasm of farmers following the determination of forest land rights that has effectively promoted increases in forest area and forest volume (Song et al., 2004). The promotion of forest rights reform through democratic decision-making is more conducive to increasing farmers’ input in forest land (Zhang et al., 2016). In addition, the country has increased its investment in forest restoration, which has enhanced the willingness and ability of the farmers to invest in forest land and has significantly increased the planting of forest areas (Rudel, 2009). Therefore, the next step is to continue to deepen forest tenure reform, give full play to the role of market mechanisms in resource allocation, and improve forest quality.
Economic development has been shown to increase forest quality, which is more obvious in the central and eastern provinces. Opening areas to the outside world was identified as a basic national policy in China in the early 1980s, and the turning point in China’s forest transition occurred in the same period, when forest resources transitioned from long-term reduction to growth (Hao et al., 2019). Therefore, rapid economic development has had an important positive impact on the improvement of forest quality. Economic growth created more non-agricultural employment opportunities, which allowed urbanization to accelerate, thereby reducing the pressure on the forests and shifting the industrial structure to secondary and tertiary industries (Ewers, 2006). Moreover, the increase in the urbanization rate of the population led to the reconfiguration of the family labor force. Forest management requires less labor compared with crop cultivation, so it has become a rational decision for farmers to adapt to the shortage of family labor by abandoning cultivated land. The local energy consumption structure also changed, with traditional fuelwood being gradually replaced by new energy sources , thereby promoting the forest transition (DeFries and Pandey, 2010). 
However, with the outflow of the rural population, China’s agricultural output has not decreased but has only increased. More surplus labor is released from agricultural production with the continuous increase in labor costs, which indirectly improves labor, and agricultural machinery replaces labor to mitigate the impact of the decrease in rural labor on agricultural production. And outflow of rural labor has alleviated the excessive labor input, thereby improving the efficiency of the agricultural output (Cropper, and Griffiths, 1994). It is worth mentioning that the change in the cultivated land area ratio has not had a significant effect on the improvement of forest quality due to the characteristics of the national conditions (Table 6). That is, there is no competition and substitution relationship between agriculture and forestry development in China. The ecological benefits generated by forestry contribute to the improvement of the agricultural production efficiency. The agroforestry system is a typical representative of this harmonious symbiosis. In addition, this harmonious symbiosis of agriculture and forestry is also conducive to the development of the tertiary rural leisure tourism industry, which is conducive to the transformation and upgrading of traditional agriculture and forestry.
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