References
1. Sklavenitis-Pistofidis, R., G. Getz, and I. Ghobrial,Single-cell RNA sequencing: one step closer to the clinic. Nat Med, 2021. 27 (3): p. 375-376.
2. Sun, Y., et al., Single-cell RNA sequencing reveals spatial heterogeneity and immune evasion of circulating tumor cells. Cancer Biol Med, 2021. 18 (4): p. 934-6.
3. Vieira Braga, F.A., et al., A cellular census of human lungs identifies novel cell states in health and in asthma. Nat Med, 2019.25 (7): p. 1153-1163.
4. Wang, L., et al., Single-cell transcriptomic analysis reveals the immune landscape of lung in steroid-resistant asthma exacerbation.Proc Natl Acad Sci U S A, 2021. 118 (2).
5. Bousquet, J., et al., Allergic rhinitis. Nat Rev Dis Primers, 2020. 6 (1): p. 95.
6. Iinuma, T., et al., Pathogenicity of memory Th2 cells is linked to stage of allergic rhinitis. Allergy, 2018. 73 (2): p. 479-489.
7. Eguíluz-Gracia, I., et al., Rapid recruitment of CD14(+) monocytes in experimentally induced allergic rhinitis in human subjects. J Allergy Clin Immunol, 2016. 137 (6): p. 1872-1881.e12.
8. Iinuma, T., et al., Single-cell immunoprofiling after immunotherapy for allergic rhinitis reveals functional suppression of pathogenic T(H)2 cells and clonal conversion. J Allergy Clin Immunol, 2022. 150 (4): p. 850-860.e5.
9. Shen, Y., et al., Association between TNFSF4 and BLK gene polymorphisms and susceptibility to allergic rhinitis. Mol Med Rep, 2017. 16 (3): p. 3224-3232.
10. Sedaghat, A.R., E.C. Kuan, and G.K. Scadding, Epidemiology of Chronic Rhinosinusitis: Prevalence and Risk Factors. J Allergy Clin Immunol Pract, 2022. 10 (6): p. 1395-1403.
11. Takeda, K., et al., Allergic conversion of protective mucosal immunity against nasal bacteria in patients with chronic rhinosinusitis with nasal polyposis. J Allergy Clin Immunol, 2019. 143 (3): p. 1163-1175.e15.
12. Pistochini, A., et al., Multiple gene expression profiling suggests epithelial dysfunction in polypoid chronic rhinosinusitis.Acta Otorhinolaryngol Ital, 2019. 39 (3): p. 169-177.
13. Gierahn, T.M., et al., Seq-Well: portable, low-cost RNA sequencing of single cells at high throughput. Nat Methods, 2017.14 (4): p. 395-398.
14. Kotas, M.E., et al., IL-13-associated epithelial remodeling correlates with clinical severity in nasal polyposis. J Allergy Clin Immunol, 2023. 151 (5): p. 1277-1285.
15. Wang, W., et al., Single-cell profiling identifies mechanisms of inflammatory heterogeneity in chronic rhinosinusitis. Nat Immunol, 2022. 23 (10): p. 1484-1494.
16. Dwyer, D.F., et al., Human airway mast cells proliferate and acquire distinct inflammation-driven phenotypes during type 2 inflammation. Sci Immunol, 2021. 6 (56).
17. Sockrider, M. and L. Fussner, What Is Asthma? Am J Respir Crit Care Med, 2020. 202 (9): p. P25-p26.
18. Mims, J.W., Asthma: definitions and pathophysiology. Int Forum Allergy Rhinol, 2015. 5 Suppl 1 : p. S2-6.
19. Tibbitt, C.A., et al., Single-Cell RNA Sequencing of the T Helper Cell Response to House Dust Mites Defines a Distinct Gene Expression Signature in Airway Th2 Cells. Immunity, 2019.51 (1): p. 169-184.e5.
20. Alobaidi, A.H., A.M. Alsamarai, and M.A. Alsamarai,Inflammation in Asthma Pathogenesis: Role of T Cells, Macrophages, Epithelial Cells and Type 2 Inflammation. Antiinflamm Antiallergy Agents Med Chem, 2021. 20 (4): p. 317-332.
21. Tang, W., et al., Single-cell RNA-sequencing in asthma research. Front Immunol, 2022. 13 : p. 988573.
22. Izumi, G., et al., CD11b(+) lung dendritic cells at different stages of maturation induce Th17 or Th2 differentiation. Nat Commun, 2021. 12 (1): p. 5029.
23. Li, Z., et al., Single-cell transcriptomics of mouse lung reveal inflammatory memory neutrophils in allergic asthma. Allergy, 2022. 77 (6): p. 1911-1915.
24. Li, H., et al., Single-cell transcriptomic analysis reveals key immune cell phenotypes in the lungs of patients with asthma exacerbation. J Allergy Clin Immunol, 2021. 147 (3): p. 941-954.
25. Jackson, N.D., et al., Single-Cell and Population Transcriptomics Reveal Pan-epithelial Remodeling in Type 2-High Asthma.Cell Rep, 2020. 32 (1): p. 107872.
26. Miller, R.L., M.H. Grayson, and K. Strothman, Advances in asthma: New understandings of asthma’s natural history, risk factors, underlying mechanisms, and clinical management. J Allergy Clin Immunol, 2021. 148 (6): p. 1430-1441.
27. Raherison, C. and P.O. Girodet, Epidemiology of COPD. Eur Respir Rev, 2009. 18 (114): p. 213-21.
28. Rabe, K.F. and H. Watz, Chronic obstructive pulmonary disease. Lancet, 2017. 389 (10082): p. 1931-1940.
29. Aran, D., et al., Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage. Nat Immunol, 2019. 20 (2): p. 163-172.
30. Sauler, M., et al., Characterization of the COPD alveolar niche using single-cell RNA sequencing. Nat Commun, 2022.13 (1): p. 494.
31. Li, Y., et al., Hedgehog interacting protein (HHIP) represses airway remodeling and metabolic reprogramming in COPD-derived airway smooth muscle cells. Sci Rep, 2021. 11 (1): p. 9074.
32. Han, G., et al., Single-Cell Expression Landscape of SARS-CoV-2 Receptor ACE2 and Host Proteases in Normal and Malignant Lung Tissues from Pulmonary Adenocarcinoma Patients. Cancers (Basel), 2021.13 (6).
33. Li, X., et al., Single cell RNA sequencing identifies IGFBP5 and QKI as ciliated epithelial cell genes associated with severe COPD.Respir Res, 2021. 22 (1): p. 100.
34. Pei, Y., et al., Combining single-cell RNA sequencing of peripheral blood mononuclear cells and exosomal transcriptome to reveal the cellular and genetic profiles in COPD. Respir Res, 2022.23 (1): p. 260.
35. Mei, Q., et al., Idiopathic Pulmonary Fibrosis: An Update on Pathogenesis. Front Pharmacol, 2021. 12 : p. 797292.
36. Hanmandlu, A., et al., Transcriptomic and Epigenetic Profiling of Fibroblasts in Idiopathic Pulmonary Fibrosis. Am J Respir Cell Mol Biol, 2022. 66 (1): p. 53-63.
37. Carraro, G., et al., Single-Cell Reconstruction of Human Basal Cell Diversity in Normal and Idiopathic Pulmonary Fibrosis Lungs. Am J Respir Crit Care Med, 2020. 202 (11): p. 1540-1550.
38. Adams, T.S., et al., Single-cell RNA-seq reveals ectopic and aberrant lung-resident cell populations in idiopathic pulmonary fibrosis. Sci Adv, 2020. 6 (28): p. eaba1983.
39. Habermann, A.C., et al., Single-cell RNA sequencing reveals profibrotic roles of distinct epithelial and mesenchymal lineages in pulmonary fibrosis. Sci Adv, 2020. 6 (28): p. eaba1972.
40. Peyser, R., et al., Defining the Activated Fibroblast Population in Lung Fibrosis Using Single-Cell Sequencing. Am J Respir Cell Mol Biol, 2019. 61 (1): p. 74-85.
41. Xu, G., et al., The differential immune responses to COVID-19 in peripheral and lung revealed by single-cell RNA sequencing. Cell Discov, 2020. 6 : p. 73.
42. Wilk, A.J., et al., A single-cell atlas of the peripheral immune response in patients with severe COVID-19. Nat Med, 2020.26 (7): p. 1070-1076.
43. Yadav, R., et al., Role of Structural and Non-Structural Proteins and Therapeutic Targets of SARS-CoV-2 for COVID-19. Cells, 2021. 10 (4).
44. Ren, X., et al., COVID-19 immune features revealed by a large-scale single-cell transcriptome atlas. Cell, 2021.184 (7): p. 1895-1913.e19.
45. Huang, L., et al., Dynamic blood single-cell immune responses in patients with COVID-19. Signal Transduct Target Ther, 2021.6 (1): p. 110.
46. Ren, X., et al., COVID-19 immune features revealed by a large-scale single-cell transcriptome atlas. Cell, 2021.184 (23): p. 5838.
47. Melms, J.C., et al., A molecular single-cell lung atlas of lethal COVID-19. Nature, 2021. 595 (7865): p. 114-119.
48. Wang, C., et al., Development of Single-Cell Transcriptomics and Its Application in COVID-19. Viruses, 2022. 14 (10).
49. Tang, F., et al., mRNA-Seq whole-transcriptome analysis of a single cell. Nat Methods, 2009. 6 (5): p. 377-82.
50. Lei, Y., et al., Applications of single-cell sequencing in cancer research: progress and perspectives. J Hematol Oncol, 2021.14 (1): p. 91.
51. Gong, L., et al., Comprehensive single-cell sequencing reveals the stromal dynamics and tumor-specific characteristics in the microenvironment of nasopharyngeal carcinoma. Nat Commun, 2021.12 (1): p. 1540.
52. Ko, J.M., et al., Clonal relationship and alcohol consumption-associated mutational signature in synchronous hypopharyngeal tumours and oesophageal squamous cell carcinoma. Br J Cancer, 2022. 127 (12): p. 2166-2174.
53. Guo, X., et al., Global characterization of T cells in non-small-cell lung cancer by single-cell sequencing. Nat Med, 2018.24 (7): p. 978-985.
54. Chen, Y.P., et al., Nasopharyngeal carcinoma. Lancet, 2019.394 (10192): p. 64-80.
55. Al-Sarraf, M. and M.S. Reddy, Nasopharyngeal carcinoma. Curr Treat Options Oncol, 2002. 3 (1): p. 21-32.
56. Olive, K.P., et al., Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer.Science, 2009. 324 (5933): p. 1457-61.
57. Tjomsland, V., et al., The desmoplastic stroma plays an essential role in the accumulation and modulation of infiltrated immune cells in pancreatic adenocarcinoma. Clin Dev Immunol, 2011.2011 : p. 212810.
58. Zhao, J., et al., Single cell RNA-seq reveals the landscape of tumor and infiltrating immune cells in nasopharyngeal carcinoma. Cancer Lett, 2020. 477 : p. 131-143.
59. Huang, Y.M., et al., Integrated analysis of bulk and single-cell RNA sequencing reveals the interaction of PKP1 and tumor-infiltrating B cells and their therapeutic potential for nasopharyngeal carcinoma. Front Genet, 2022. 13 : p. 935749.
60. Jin, S., et al., Single-cell transcriptomic analysis defines the interplay between tumor cells, viral infection, and the microenvironment in nasopharyngeal carcinoma. Cell Res, 2020.30 (11): p. 950-965.
61. Steuer, C.E., et al., An update on larynx cancer. CA Cancer J Clin, 2017. 67 (1): p. 31-50.
62. Song, L., et al., Cellular heterogeneity landscape in laryngeal squamous cell carcinoma. Int J Cancer, 2020.147 (10): p. 2879-2890.
63. Lin, C., et al., Single-cell transcriptomic landscapes of a rare human laryngeal chondrosarcoma. J Cancer Res Clin Oncol, 2022.148 (4): p. 783-792.
64. Wang, X., et al., Construction and validation of immune-related LncRNAs classifier to predict prognosis and immunotherapy response in laryngeal squamous cell carcinoma. World J Surg Oncol, 2022. 20 (1): p. 164.
65. Wang, C., et al., The heterogeneous immune landscape between lung adenocarcinoma and squamous carcinoma revealed by single-cell RNA sequencing. Signal Transduct Target Ther, 2022. 7 (1): p. 289.
66. Wu, F., et al., Single-cell profiling of tumor heterogeneity and the microenvironment in advanced non-small cell lung cancer. Nat Commun, 2021. 12 (1): p. 2540.
67. Kim, N., et al., Single-cell RNA sequencing demonstrates the molecular and cellular reprogramming of metastatic lung adenocarcinoma.Nat Commun, 2020. 11 (1): p. 2285.
68. Duesenberg, M., et al., Does cortisol modulate emotion recognition and empathy? Psychoneuroendocrinology, 2016. 66 : p. 221-7.
69. Bangert, C., et al., Comprehensive Analysis of Nasal Polyps Reveals a More Pronounced Type 2 Transcriptomic Profile of Epithelial Cells and Mast Cells in Aspirin-Exacerbated Respiratory Disease. Front Immunol, 2022. 13 : p. 850494.
70. Ma, J., et al., Single-cell analysis pinpoints distinct populations of cytotoxic CD4(+) T cells and an IL-10(+)CD109(+) T(H)2 cell population in nasal polyps. Sci Immunol, 2021. 6 (62).
71. Kim, J.Y., et al., Targeting ETosis by miR-155 inhibition mitigates mixed granulocytic asthmatic lung inflammation. Front Immunol, 2022. 13 : p. 943554.
72. Wang, Y., et al., Single-cell transcriptomic characterization reveals the landscape of airway remodeling and inflammation in a cynomolgus monkey model of asthma. Front Immunol, 2022. 13 : p. 1040442.
73. Liégeois, M., et al., Airway Macrophages Encompass Transcriptionally and Functionally Distinct Subsets Altered by Smoking.Am J Respir Cell Mol Biol, 2022. 67 (2): p. 241-252.
74. Yuan, Y., et al., CINS: Cell Interaction Network inference from Single cell expression data. PLoS Comput Biol, 2022.18 (9): p. e1010468.
75. Morse, C., et al., Proliferating SPP1/MERTK-expressing macrophages in idiopathic pulmonary fibrosis. Eur Respir J, 2019.54 (2).
76. Ziegler, C.G.K., et al., SARS-CoV-2 Receptor ACE2 Is an Interferon-Stimulated Gene in Human Airway Epithelial Cells and Is Detected in Specific Cell Subsets across Tissues. Cell, 2020.181 (5): p. 1016-1035.e19.
77. Plasschaert, L.W., et al., A single-cell atlas of the airway epithelium reveals the CFTR-rich pulmonary ionocyte. Nature, 2018.560 (7718): p. 377-381.
78. Mould, K.J., et al., Airspace Macrophages and Monocytes Exist in Transcriptionally Distinct Subsets in Healthy Adults. Am J Respir Crit Care Med, 2021. 203 (8): p. 946-956.