References
1. Sklavenitis-Pistofidis, R., G. Getz, and I. Ghobrial,Single-cell RNA sequencing: one step closer to the clinic. Nat
Med, 2021. 27 (3): p. 375-376.
2. Sun, Y., et al., Single-cell RNA sequencing reveals spatial
heterogeneity and immune evasion of circulating tumor cells. Cancer
Biol Med, 2021. 18 (4): p. 934-6.
3. Vieira Braga, F.A., et al., A cellular census of human lungs
identifies novel cell states in health and in asthma. Nat Med, 2019.25 (7): p. 1153-1163.
4. Wang, L., et al., Single-cell transcriptomic analysis reveals
the immune landscape of lung in steroid-resistant asthma exacerbation.Proc Natl Acad Sci U S A, 2021. 118 (2).
5. Bousquet, J., et al., Allergic rhinitis. Nat Rev Dis Primers,
2020. 6 (1): p. 95.
6. Iinuma, T., et al., Pathogenicity of memory Th2 cells is linked
to stage of allergic rhinitis. Allergy, 2018. 73 (2): p.
479-489.
7. Eguíluz-Gracia, I., et al., Rapid recruitment of CD14(+)
monocytes in experimentally induced allergic rhinitis in human
subjects. J Allergy Clin Immunol, 2016. 137 (6): p.
1872-1881.e12.
8. Iinuma, T., et al., Single-cell immunoprofiling after
immunotherapy for allergic rhinitis reveals functional suppression of
pathogenic T(H)2 cells and clonal conversion. J Allergy Clin Immunol,
2022. 150 (4): p. 850-860.e5.
9. Shen, Y., et al., Association between TNFSF4 and BLK gene
polymorphisms and susceptibility to allergic rhinitis. Mol Med Rep,
2017. 16 (3): p. 3224-3232.
10. Sedaghat, A.R., E.C. Kuan, and G.K. Scadding, Epidemiology of
Chronic Rhinosinusitis: Prevalence and Risk Factors. J Allergy Clin
Immunol Pract, 2022. 10 (6): p. 1395-1403.
11. Takeda, K., et al., Allergic conversion of protective mucosal
immunity against nasal bacteria in patients with chronic rhinosinusitis
with nasal polyposis. J Allergy Clin Immunol, 2019. 143 (3): p.
1163-1175.e15.
12. Pistochini, A., et al., Multiple gene expression profiling
suggests epithelial dysfunction in polypoid chronic rhinosinusitis.Acta Otorhinolaryngol Ital, 2019. 39 (3): p. 169-177.
13. Gierahn, T.M., et al., Seq-Well: portable, low-cost RNA
sequencing of single cells at high throughput. Nat Methods, 2017.14 (4): p. 395-398.
14. Kotas, M.E., et al., IL-13-associated epithelial remodeling
correlates with clinical severity in nasal polyposis. J Allergy Clin
Immunol, 2023. 151 (5): p. 1277-1285.
15. Wang, W., et al., Single-cell profiling identifies mechanisms
of inflammatory heterogeneity in chronic rhinosinusitis. Nat Immunol,
2022. 23 (10): p. 1484-1494.
16. Dwyer, D.F., et al., Human airway mast cells proliferate and
acquire distinct inflammation-driven phenotypes during type 2
inflammation. Sci Immunol, 2021. 6 (56).
17. Sockrider, M. and L. Fussner, What Is Asthma? Am J Respir
Crit Care Med, 2020. 202 (9): p. P25-p26.
18. Mims, J.W., Asthma: definitions and pathophysiology. Int
Forum Allergy Rhinol, 2015. 5 Suppl 1 : p. S2-6.
19. Tibbitt, C.A., et al., Single-Cell RNA Sequencing of the T
Helper Cell Response to House Dust Mites Defines a Distinct Gene
Expression Signature in Airway Th2 Cells. Immunity, 2019.51 (1): p. 169-184.e5.
20. Alobaidi, A.H., A.M. Alsamarai, and M.A. Alsamarai,Inflammation in Asthma Pathogenesis: Role of T Cells, Macrophages,
Epithelial Cells and Type 2 Inflammation. Antiinflamm Antiallergy
Agents Med Chem, 2021. 20 (4): p. 317-332.
21. Tang, W., et al., Single-cell RNA-sequencing in asthma
research. Front Immunol, 2022. 13 : p. 988573.
22. Izumi, G., et al., CD11b(+) lung dendritic cells at different
stages of maturation induce Th17 or Th2 differentiation. Nat Commun,
2021. 12 (1): p. 5029.
23. Li, Z., et al., Single-cell transcriptomics of mouse lung
reveal inflammatory memory neutrophils in allergic asthma. Allergy,
2022. 77 (6): p. 1911-1915.
24. Li, H., et al., Single-cell transcriptomic analysis reveals
key immune cell phenotypes in the lungs of patients with asthma
exacerbation. J Allergy Clin Immunol, 2021. 147 (3): p.
941-954.
25. Jackson, N.D., et al., Single-Cell and Population
Transcriptomics Reveal Pan-epithelial Remodeling in Type 2-High Asthma.Cell Rep, 2020. 32 (1): p. 107872.
26. Miller, R.L., M.H. Grayson, and K. Strothman, Advances in
asthma: New understandings of asthma’s natural history, risk factors,
underlying mechanisms, and clinical management. J Allergy Clin Immunol,
2021. 148 (6): p. 1430-1441.
27. Raherison, C. and P.O. Girodet, Epidemiology of COPD. Eur
Respir Rev, 2009. 18 (114): p. 213-21.
28. Rabe, K.F. and H. Watz, Chronic obstructive pulmonary
disease. Lancet, 2017. 389 (10082): p. 1931-1940.
29. Aran, D., et al., Reference-based analysis of lung single-cell
sequencing reveals a transitional profibrotic macrophage. Nat Immunol,
2019. 20 (2): p. 163-172.
30. Sauler, M., et al., Characterization of the COPD alveolar
niche using single-cell RNA sequencing. Nat Commun, 2022.13 (1): p. 494.
31. Li, Y., et al., Hedgehog interacting protein (HHIP) represses
airway remodeling and metabolic reprogramming in COPD-derived airway
smooth muscle cells. Sci Rep, 2021. 11 (1): p. 9074.
32. Han, G., et al., Single-Cell Expression Landscape of
SARS-CoV-2 Receptor ACE2 and Host Proteases in Normal and Malignant Lung
Tissues from Pulmonary Adenocarcinoma Patients. Cancers (Basel), 2021.13 (6).
33. Li, X., et al., Single cell RNA sequencing identifies IGFBP5
and QKI as ciliated epithelial cell genes associated with severe COPD.Respir Res, 2021. 22 (1): p. 100.
34. Pei, Y., et al., Combining single-cell RNA sequencing of
peripheral blood mononuclear cells and exosomal transcriptome to reveal
the cellular and genetic profiles in COPD. Respir Res, 2022.23 (1): p. 260.
35. Mei, Q., et al., Idiopathic Pulmonary Fibrosis: An Update on
Pathogenesis. Front Pharmacol, 2021. 12 : p. 797292.
36. Hanmandlu, A., et al., Transcriptomic and Epigenetic Profiling
of Fibroblasts in Idiopathic Pulmonary Fibrosis. Am J Respir Cell Mol
Biol, 2022. 66 (1): p. 53-63.
37. Carraro, G., et al., Single-Cell Reconstruction of Human Basal
Cell Diversity in Normal and Idiopathic Pulmonary Fibrosis Lungs. Am J
Respir Crit Care Med, 2020. 202 (11): p. 1540-1550.
38. Adams, T.S., et al., Single-cell RNA-seq reveals ectopic and
aberrant lung-resident cell populations in idiopathic pulmonary
fibrosis. Sci Adv, 2020. 6 (28): p. eaba1983.
39. Habermann, A.C., et al., Single-cell RNA sequencing reveals
profibrotic roles of distinct epithelial and mesenchymal lineages in
pulmonary fibrosis. Sci Adv, 2020. 6 (28): p. eaba1972.
40. Peyser, R., et al., Defining the Activated Fibroblast
Population in Lung Fibrosis Using Single-Cell Sequencing. Am J Respir
Cell Mol Biol, 2019. 61 (1): p. 74-85.
41. Xu, G., et al., The differential immune responses to COVID-19
in peripheral and lung revealed by single-cell RNA sequencing. Cell
Discov, 2020. 6 : p. 73.
42. Wilk, A.J., et al., A single-cell atlas of the peripheral
immune response in patients with severe COVID-19. Nat Med, 2020.26 (7): p. 1070-1076.
43. Yadav, R., et al., Role of Structural and Non-Structural
Proteins and Therapeutic Targets of SARS-CoV-2 for COVID-19. Cells,
2021. 10 (4).
44. Ren, X., et al., COVID-19 immune features revealed by a
large-scale single-cell transcriptome atlas. Cell, 2021.184 (7): p. 1895-1913.e19.
45. Huang, L., et al., Dynamic blood single-cell immune responses
in patients with COVID-19. Signal Transduct Target Ther, 2021.6 (1): p. 110.
46. Ren, X., et al., COVID-19 immune features revealed by a
large-scale single-cell transcriptome atlas. Cell, 2021.184 (23): p. 5838.
47. Melms, J.C., et al., A molecular single-cell lung atlas of
lethal COVID-19. Nature, 2021. 595 (7865): p. 114-119.
48. Wang, C., et al., Development of Single-Cell Transcriptomics
and Its Application in COVID-19. Viruses, 2022. 14 (10).
49. Tang, F., et al., mRNA-Seq whole-transcriptome analysis of a
single cell. Nat Methods, 2009. 6 (5): p. 377-82.
50. Lei, Y., et al., Applications of single-cell sequencing in
cancer research: progress and perspectives. J Hematol Oncol, 2021.14 (1): p. 91.
51. Gong, L., et al., Comprehensive single-cell sequencing reveals
the stromal dynamics and tumor-specific characteristics in the
microenvironment of nasopharyngeal carcinoma. Nat Commun, 2021.12 (1): p. 1540.
52. Ko, J.M., et al., Clonal relationship and alcohol
consumption-associated mutational signature in synchronous
hypopharyngeal tumours and oesophageal squamous cell carcinoma. Br J
Cancer, 2022. 127 (12): p. 2166-2174.
53. Guo, X., et al., Global characterization of T cells in
non-small-cell lung cancer by single-cell sequencing. Nat Med, 2018.24 (7): p. 978-985.
54. Chen, Y.P., et al., Nasopharyngeal carcinoma. Lancet, 2019.394 (10192): p. 64-80.
55. Al-Sarraf, M. and M.S. Reddy, Nasopharyngeal carcinoma. Curr
Treat Options Oncol, 2002. 3 (1): p. 21-32.
56. Olive, K.P., et al., Inhibition of Hedgehog signaling enhances
delivery of chemotherapy in a mouse model of pancreatic cancer.Science, 2009. 324 (5933): p. 1457-61.
57. Tjomsland, V., et al., The desmoplastic stroma plays an
essential role in the accumulation and modulation of infiltrated immune
cells in pancreatic adenocarcinoma. Clin Dev Immunol, 2011.2011 : p. 212810.
58. Zhao, J., et al., Single cell RNA-seq reveals the landscape of
tumor and infiltrating immune cells in nasopharyngeal carcinoma. Cancer
Lett, 2020. 477 : p. 131-143.
59. Huang, Y.M., et al., Integrated analysis of bulk and
single-cell RNA sequencing reveals the interaction of PKP1 and
tumor-infiltrating B cells and their therapeutic potential for
nasopharyngeal carcinoma. Front Genet, 2022. 13 : p. 935749.
60. Jin, S., et al., Single-cell transcriptomic analysis defines
the interplay between tumor cells, viral infection, and the
microenvironment in nasopharyngeal carcinoma. Cell Res, 2020.30 (11): p. 950-965.
61. Steuer, C.E., et al., An update on larynx cancer. CA Cancer J
Clin, 2017. 67 (1): p. 31-50.
62. Song, L., et al., Cellular heterogeneity landscape in
laryngeal squamous cell carcinoma. Int J Cancer, 2020.147 (10): p. 2879-2890.
63. Lin, C., et al., Single-cell transcriptomic landscapes of a
rare human laryngeal chondrosarcoma. J Cancer Res Clin Oncol, 2022.148 (4): p. 783-792.
64. Wang, X., et al., Construction and validation of
immune-related LncRNAs classifier to predict prognosis and immunotherapy
response in laryngeal squamous cell carcinoma. World J Surg Oncol,
2022. 20 (1): p. 164.
65. Wang, C., et al., The heterogeneous immune landscape between
lung adenocarcinoma and squamous carcinoma revealed by single-cell RNA
sequencing. Signal Transduct Target Ther, 2022. 7 (1): p. 289.
66. Wu, F., et al., Single-cell profiling of tumor heterogeneity
and the microenvironment in advanced non-small cell lung cancer. Nat
Commun, 2021. 12 (1): p. 2540.
67. Kim, N., et al., Single-cell RNA sequencing demonstrates the
molecular and cellular reprogramming of metastatic lung adenocarcinoma.Nat Commun, 2020. 11 (1): p. 2285.
68. Duesenberg, M., et al., Does cortisol modulate emotion
recognition and empathy? Psychoneuroendocrinology, 2016. 66 :
p. 221-7.
69. Bangert, C., et al., Comprehensive Analysis of Nasal Polyps
Reveals a More Pronounced Type 2 Transcriptomic Profile of Epithelial
Cells and Mast Cells in Aspirin-Exacerbated Respiratory Disease. Front
Immunol, 2022. 13 : p. 850494.
70. Ma, J., et al., Single-cell analysis pinpoints distinct
populations of cytotoxic CD4(+) T cells and an IL-10(+)CD109(+) T(H)2
cell population in nasal polyps. Sci Immunol, 2021. 6 (62).
71. Kim, J.Y., et al., Targeting ETosis by miR-155 inhibition
mitigates mixed granulocytic asthmatic lung inflammation. Front
Immunol, 2022. 13 : p. 943554.
72. Wang, Y., et al., Single-cell transcriptomic characterization
reveals the landscape of airway remodeling and inflammation in a
cynomolgus monkey model of asthma. Front Immunol, 2022. 13 : p.
1040442.
73. Liégeois, M., et al., Airway Macrophages Encompass
Transcriptionally and Functionally Distinct Subsets Altered by Smoking.Am J Respir Cell Mol Biol, 2022. 67 (2): p. 241-252.
74. Yuan, Y., et al., CINS: Cell Interaction Network inference
from Single cell expression data. PLoS Comput Biol, 2022.18 (9): p. e1010468.
75. Morse, C., et al., Proliferating SPP1/MERTK-expressing
macrophages in idiopathic pulmonary fibrosis. Eur Respir J, 2019.54 (2).
76. Ziegler, C.G.K., et al., SARS-CoV-2 Receptor ACE2 Is an
Interferon-Stimulated Gene in Human Airway Epithelial Cells and Is
Detected in Specific Cell Subsets across Tissues. Cell, 2020.181 (5): p. 1016-1035.e19.
77. Plasschaert, L.W., et al., A single-cell atlas of the airway
epithelium reveals the CFTR-rich pulmonary ionocyte. Nature, 2018.560 (7718): p. 377-381.
78. Mould, K.J., et al., Airspace Macrophages and Monocytes Exist
in Transcriptionally Distinct Subsets in Healthy Adults. Am J Respir
Crit Care Med, 2021. 203 (8): p. 946-956.