6. References
Ackermann, M. (2015). A functional perspective on phenotypic
heterogeneity in microorganisms. Nature Reviews. Microbiology ,13 (8), 497–508. https://doi.org/10.1038/nrmicro3491
Aon, J. C., Tecson, R. C., & Loladze, V. (2018). Saccharomyces
cerevisiae morphological changes and cytokinesis arrest elicited by
hypoxia during scale-up for production of therapeutic recombinant
proteins. Microbial Cell Factories , 17 (1), 195.
https://doi.org/10.1186/s12934-018-1044-2
Campbell, K., Vowinckel, J., Mülleder, M., Malmsheimer, S., Lawrence,
N., Calvani, E., … Ralser, M. (2015). Self-establishing
communities enable cooperative metabolite exchange in a eukaryote.ELife , 4 . https://doi.org/10.7554/eLife.09943
Campbell, K., Vowinckel, J., & Ralser, M. (2016). Cell‐to‐cell
heterogeneity emerges as consequence of metabolic cooperation in a
synthetic yeast community. Biotechnology Journal , 11 (9),
1169–1178. https://doi.org/10.1002/biot.201500301
Davis, K. M., & Isberg, R. R. (2016). Defining heterogeneity within
bacterial populations via single cell approaches. BioEssays :
News and Reviews in Molecular, Cellular and Developmental Biology ,38 (8), 782–790. https://doi.org/10.1002/bies.201500121
de Matos Simoes, R., Tripathi, S., & Emmert-Streib, F. (2012).
Organizational structure and the periphery of the gene regulatory
network in B-cell lymphoma. BMC Systems Biology , 6 (1), 38.
https://doi.org/10.1186/1752-0509-6-38
Dykhuizen, D. E., & Hartl, D. L. (1983). Selection in chemostats.Microbiological Reviews , 47 (2), 150–168.
https://doi.org/10.1128/MMBR.47.2.150-168.1983
Ellis, B., Haaland, P., Hahne, F., Meur, N. Le, Gopalakrishnan, N.,
Spidlen, J., … Finak, G. (2020). FlowCore: Basic structures
for flow cytometry data . R package version 2.0.1 .
Franchini, A. G., & Egli, T. (2006). Global gene expression in
Escherichia coli K-12 during short-term and long-term adaptation to
glucose-limited continuous culture conditions. Microbiology ,152 (7), 2111–2127. https://doi.org/10.1099/mic.0.28939-0
Gresham, D., Desai, M. M., Tucker, C. M., Jenq, H. T., Pai, D. A., Ward,
A., … Dunham, M. J. (2008). The repertoire and dynamics of
evolutionary adaptations to controlled nutrient-limited environments in
yeast. PLoS Genetics , 4 (12), e1000303.
https://doi.org/10.1371/journal.pgen.1000303
Gresham, D., & Hong, J. (2015). The functional basis of adaptive
evolution in chemostats. FEMS Microbiology Reviews , 39 (1),
2–16. https://doi.org/10.1111/1574-6976.12082
Hong, J., & Gresham, D. (2014). Molecular specificity, convergence and
constraint shape adaptive evolution in nutrient-poor environments.PLoS Genetics , 10 (1), e1004041.
https://doi.org/10.1371/journal.pgen.1004041
Jansen, M. L. A., Diderich, J. A., Mashego, M., Hassane, A., de Winde,
J. H., Daran-Lapujade, P., & Pronk, J. T. (2005). Prolonged selection
in aerobic, glucose-limited chemostat cultures of Saccharomyces
cerevisiae causes a partial loss of glycolytic capacity.Microbiology (Reading, England) , 151 (Pt 5), 1657–1669.
https://doi.org/10.1099/mic.0.27577-0
Kundu, K., Weber, N., Griebler, C., & Elsner, M. (2020). Phenotypic
heterogeneity as key factor for growth and survival under oligotrophic
conditions. Environmental Microbiology , 22 (8), 3339–3356.
https://doi.org/10.1111/1462-2920.15106
Maharjan, R. P., Seeto, S., & Ferenci, T. (2007). Divergence and
Redundancy of Transport and Metabolic Rate-Yield Strategies in a Single
Escherichia coli Population. Journal of Bacteriology ,189 (6), 2350–2358. https://doi.org/10.1128/JB.01414-06
Mashego, M. R., Jansen, M. L. A., Vinke, J. L., van Gulik, W. M., &
Heijnen, J. J. (2005). Changes in the metabolome of Saccharomyces
cerevisiae associated with evolution in aerobic glucose-limited
chemostats. FEMS Yeast Research , 5 (4–5), 419–430.
https://doi.org/10.1016/j.femsyr.2004.11.008
Peebo, K., & Neubauer, P. (2018). Application of Continuous Culture
Methods to Recombinant Protein Production in Microorganisms.Microorganisms , 6 (3), 56.
https://doi.org/10.3390/microorganisms6030056
Robinson, M. D., McCarthy, D. J., & Smyth, G. K. (2010). edgeR: a
Bioconductor package for differential expression analysis of digital
gene expression data. Bioinformatics , 26 (1), 139–140.
https://doi.org/10.1093/bioinformatics/btp616
Rugbjerg, P., & Olsson, L. (2020). The future of self-selecting and
stable fermentations. Journal of Industrial Microbiology &
Biotechnology , 47 (11), 993–1004.
https://doi.org/10.1007/s10295-020-02325-0
Schreiber, F., & Ackermann, M. (2020). Environmental drivers of
metabolic heterogeneity in clonal microbial populations. Current
Opinion in Biotechnology , 62 , 202–211.
https://doi.org/10.1016/j.copbio.2019.11.018
Seresht, K. A., Cruz, A. L., de Hulster, E., Hebly, M., Palmqvist, E.
A., van Gulik, W., … Olsson, L. (2013). Long-term adaptation of
Saccharomyces cerevisiae to the burden of recombinant insulin
production. Biotechnology and Bioengineering , 110 (10),
2749–2763. https://doi.org/10.1002/bit.24927
Wenger, J. W., Piotrowski, J., Nagarajan, S., Chiotti, K., Sherlock, G.,
& Rosenzweig, F. (2011). Hunger artists: yeast adapted to carbon
limitation show trade-offs under carbon sufficiency. PLoS
Genetics , 7 (8), e1002202.
https://doi.org/10.1371/journal.pgen.1002202
Wickham, H. (2016). ggplot2: Elegant Graphics for Data Analysis .
(Springer-Verlag New York, Ed.), Journal of the Royal Statistical
Society: Series A (Statistics in Society) . Retrieved from
https://ggplot2.tidyverse.org
Wright, N. R., Rønnest, N. P., & Sonnenschein, N. (2020). Single-Cell
Technologies to Understand the Mechanisms of Cellular Adaptation in
Chemostats. Frontiers in Bioengineering and Biotechnology ,8:579841 . https://doi.org/10.3389/fbioe.2020.579841
Wright, N. R., Wulff, T., Palmqvist, E. A., Jørgensen, T. R., Workman,
C. T., Sonnenschein, N., … Herrgård, M. J. (2020). Fluctuations
in glucose availability prevent global proteome changes and
physiological transition during prolonged chemostat cultivations of
Saccharomyces cerevisiae. Biotechnology and Bioengineering ,117 (7), 2074–2088. https://doi.org/10.1002/bit.27353