References
1. Rundstadler, T., et al., Polypyridyl Zinc (II)-Indomethacin Complexes with Potent Anti-Breast Cancer Stem Cell Activity. Molecules, 2018. 23 (9): p. 2253.
2. Bray, F., et al., Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2018. 68 (6): p. 394-424.
3. Ibrahim, A., et al., Cancer incidence in Egypt: results of the national population-based cancer registry program. J Cancer Epidemiol, 2014. 2014 : p. 437971.
4. Dawood, S., L. Austin, and M. Cristofanilli, Cancer stem cells: implications for cancer therapy. Oncology, 2014. 28 (12): p. 1101-1107.
5. Moon, C., et al., Nonsteroidal anti-inflammatory drugs suppress cancer stem cells via inhibiting PTGS2 (cyclooxygenase 2) and NOTCH/HES1 and activating PPARG in colorectal cancer. Int J Cancer, 2014.134 (3): p. 519-29.
6. Palomeras, S., S. Ruiz-Martinez, and T. Puig, Targeting breast cancer stem cells to overcome treatment resistance. Molecules, 2018.23 (9): p. E2193.
7. Al-Hajj, M., et al., Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A, 2003. 100 (7): p. 3983-8.
8. Butti, R., et al., Breast cancer stem cells: biology and therapeutic implications. Int J Biochem Cell Biol, 2019. 107 : p. 38-52.
9. Jia, D., et al., Cardamonin reduces chemotherapy-enriched breast cancer stem-like cells in vitro and in vivo. Oncotarget, 2016.7 (1): p. 771-85.
10. Rigas, B. and G. Tsioulias, The evolving role of nonsteroidal anti-inflammatory drugs in colon cancer prevention: a cause for optimism. J Pharmacol Exp Ther, 2015. 353 (1): p. 2-8.
11. Moris, D., et al., The role of NSAIDs in breast cancer prevention and relapse: current evidence and future perspectives.Breast Care (Basel), 2016. 11 (5): p. 339-344.
12. Allani, S., H. Weissbach, and M. Lopez Toledano, Sulindac induces differentiation of glioblastoma stem cells making them more sensitive to oxidative stress. Neoplasma, 2018. 65 (3): p. 376-388.
13. Qin, S., et al., Indomethacin induces apoptosis in the EC109 esophageal cancer cell line by releasing second mitochondria-derived activator of caspase and activating caspase-3. Mol Med Rep, 2015.11 (6): p. 4694-4700.
14. Akrami, H., et al., Ibuprofen reduces cell proliferation through inhibiting Wnt/beta catenin signaling pathway in gastric cancer stem cells. Cell Biol Int, 2018. 42 (8): p. 949-958.
15. Natarajan, K., et al., Exposure of human breast cancer cells to the anti-inflammatory agent indomethacin alters choline phospholipid metabolites and Nm23 expression. Neoplasia, 2002. 4 (5): p. 409-416.
16. Zhou, Y., et al., Doxorubicin-loaded redox-responsive micelles based on dextran and indomethacin for resistant breast cancer. Int J Nanomedicine, 2017. 12 : p. 6153-6168.
17. Sokar, S., et al., Pharmacokinetic and pharmacologic study of two P-glycoprotein modulating agents combined with doxorubicin. JPCS, 2012. 5 : p. 1-11.
18. Arican, G. and E. Arican, Evaluation of the apoptotic and antiproliferative activities of paclitaxel in Ehrlich ascites tumor cells. Biotechnology & Biotechnological Equipment, 2006.20 (3): p. 69-75.
19. Verma, A. and S. Prasad, Bioactive component, cantharidin from Mylabris cichorii and its antitumor activity against Ehrlich ascites carcinoma. Cell Biol Toxicol, 2012. 28 (3): p. 133-147.
20. El-Naa, M., M. Othman, and S. Younes, Sildenafil potentiates the antitumor activity of cisplatin by induction of apoptosis and inhibition of proliferation and angiogenesis. Drug Des Devel Ther, 2016. 10 : p. 3661-3672.
21. Hather, G., et al., Growth rate analysis and efficient experimental design for tumor xenograft studies. Cancer Inform, 2014.13 (Suppl 4): p. 65–72.
22. Scully, O., et al., Breast cancer metastasis. Cancer Genomics Proteomics, 2012. 9 (5): p. 311-20.
23. Rawindraraj, A., C. Zhou, and V. Pathak, Delayed breast cancer relapse with pleural metastasis and malignant pleural effusion after long periods of disease-free survival. Respirol Case Rep, 2018.6 (9): p. e00375.
24. Zhao, X., Z. Xu, and H. Li, NSAIDs use and reduced metastasis in cancer patients: results from a meta-analysis. Sci Rep, 2017.7 (1): p. 1875.
25. Huang, C., et al., Celecoxib targets breast cancer stem cells by inhibiting the synthesis of prostaglandin E2 and down-regulating the Wnt pathway activity. Oncotarget, 2017. 8 (70): p. 115254-115269.
26. Zhu, C., et al., Phosphosulindac (OXT-328) selectively targets breast cancer stem cells in vitro and in human breast cancer xenografts. Stem Cells, 2012. 30 (10): p. 2065-2075.
27. Tu, L., et al., Effect of aspirin on breast cancer stem cells and stemness of breast cancer. Zhonghua Yi Xue Za Zhi, 2018.98 (44): p. 3598-3602.
28. Fang, D., et al., Antitumor efficacy of the dual PI3K/mTOR inhibitor PF-04691502 in a human xenograft tumor model derived from colorectal cancer stem cells harboring a PIK3CA mutation. PLoS One, 2013. 8 (6): p. e67258.
29. Liu, X., et al., Nonlinear growth kinetics of breast cancer stem cells: implications for cancer stem cell targeted therapy. Sci Rep, 2013. 3 : p. 2473.
30. Pogribny, I., et al., Alterations of microRNAs and their targets are associated with acquired resistance of MCF‐7 breast cancer cells to cisplatin. Int J Cancer, 2010. 127 (8): p. 1785-1794.
31. Zhan, M., et al., miR-145 sensitizes gallbladder cancer to cisplatin by regulating multidrug resistance associated protein 1.Tumour Biol, 2016. 37 (8): p. 10553-10562.
32. Hu, W., et al., Functional miRNAs in breast cancer drug resistance. Onco Targets Ther, 2018. 11 : p. 1529-1541.
33. Koturbash, I., et al., microRNAs as pharmacogenomic biomarkers for drug efficacy and drug safety assessment. Biomark Med, 2015.9 (11): p. 1153-1176.
34. Stubbington, M.J., et al., An atlas of mouse CD4(+) T cell transcriptomes. Biol Direct, 2015. 10 : p. 14.
35. Kyle-Cezar, F., et al., Expression of c-kit and Sca-1 and their relationship with multidrug resistance protein 1 in mouse bone marrow mononuclear cells. Immunology, 2007. 121 (1): p. 122-8.
36. Ivetic, A., Signals regulating L-selectin-dependent leucocyte adhesion and transmigration. Int J Biochem Cell Biol, 2013.45 (3): p. 550-5.
37. McLellan, A., et al., Anatomic location and T-cell stimulatory functions of mouse dendritic cell subsets defined by CD4 and CD8 expression. Blood, 2002. 99 (6): p. 2084-93.
38. Liao, C., M. Zimmer, and C. Wang, The functions of type I and type II natural killer T cells in inflammatory bowel diseases. Inflamm Bowel Dis, 2013. 19 (6): p. 1330-8.
39. Zhao, R., Q. Chen, and Y.-m. He, The effect of Ganoderma lucidum extract on immunological function and identify its anti-tumor immunostimulatory activity based on the biological network. Sci Rep, 2018. 8 (1): p. 12680.
40. Majumder, M., et al., COX‐2 induces breast cancer stem cells via EP4/PI3K/AKT/NOTCH/WNT axis. Stem Cells, 2016. 34 (9): p. 2290-2305.
41. Gong, J., et al., Genotoxic stress induces Sca‐1‐expressing metastatic mammary cancer cells. Mol Oncol, 2018. 12 (8): p. 1249-1263.
42. Okuda, H., et al., miR-7 suppresses brain metastasis of breast cancer stem-like cells by modulating KLF4. Cancer Res, 2013.73 (4): p. 1434-1444.
43. Bourguignon, L., et al., Hyaluronan-CD44 interaction with protein kinase C(epsilon) promotes oncogenic signaling by the stem cell marker Nanog and the Production of microRNA-21, leading to down-regulation of the tumor suppressor protein PDCD4, anti-apoptosis, and chemotherapy resistance in breast tumor cells. J Biol Chem, 2009.284 (39): p. 26533-46.
44. Vidyasekar, P., et al., Genome wide expression profiling of cancer cell lines cultured in microgravity reveals significant dysregulation of cell cycle and MicroRNA gene networks. PloS One, 2015.10 (8): p. e0135958.
45. Zhang, K., et al., MicroRNAs in the diagnosis and prognosis of breast cancer and their therapeutic potential. Int J Oncol, 2014.45 (3): p. 950-958.
46. Hoggatt, J., et al., Differential stem- and progenitor-cell trafficking by prostaglandin E2. Nature, 2013. 495 (7441): p. 365-9.
47. Sinha, P., et al., Prostaglandin E2 promotes tumor progression by inducing myeloid-derived suppressor cells. Cancer Res, 2007.67 (9): p. 4507-4513.
48. Peng, D., et al., Myeloid-derived suppressor cells endow stem-like qualities to breast cancer cells through IL6/STAT3 and NO/NOTCH cross-talk signaling. Cancer Res, 2016. 76 (11): p. 3156-3165.
49. Hanson, E., et al., Myeloid-derived suppressor cells down-regulate L-selectin expression on CD4+ and CD8+ T cells. J Immunol, 2009. 183 (2): p. 937-44.
50. Nguyen, S., et al., Targeting specificity of dendritic cells on breast cancer stem cells: in vitro and in vivo evaluations. Onco Targets Ther, 2015. 8 : p. 323-34.
51. Curtale, G., MiRNAs at the crossroads between innate immunity and cancer: focus on macrophages. Cells, 2018. 7 (2): p. 12.
52. Kumarswamy, R., I. Volkmann, and T. Thum, Regulation and function of miRNA-21 in health and disease. RNA Biol, 2011.8 (5): p. 706-713.
53. Francipane, M., et al., Crucial role of interleukin-4 in the survival of colon cancer stem cells. Cancer Res, 2008. 68 (11): p. 4022-5.
54. Yang, L., et al., IL-10 derived from M2 macrophage promotes cancer stemness via JAK1/STAT1/NF-kappaB/Notch1 pathway in non-small cell lung cancer. Int J Cancer, 2019. 145 (4): p. 1099-1110.
55. Xiang, L. and H. Liang, Interleukin-12 implication in tumor initiating capacity of colorectal cancer stem cells. Chemotherapy, 2016. 5 : p. 209.
56. Bruttel, V. and J. Wischhusen, Cancer stem cell immunology: key to understanding tumorigenesis and tumor immune escape? Front Immunol, 2014. 5 : p. 360.
57. Lazarski, C., et al., IL-4 attenuates Th1-associated chemokine expression and Th1 trafficking to inflamed tissues and limits pathogen clearance. PloS One, 2013. 8 (8): p. e71949.
58. Rutz, S., et al., Notch regulates IL-10 production by T helper 1 cells. Proc Natl Acad Sci U S A, 2008. 105 (9): p. 3497-3502.
59. Disis, L. and E. Stanton, Immunotherapy in breast cancer: an introduction. Breast, 2018. 37 : p. 196-199.
60. Di, J., et al., Functional OCT4-specific CD4+ and CD8+ T cells in healthy controls and ovarian cancer patients. Oncoimmunology, 2013.2 (5): p. e24271.
61. Liang, X., et al., MicroRNA-22 impairs anti-tumor ability of dendritic cells by targeting p38. PLoS One, 2015. 10 (3): p. e0121510.