References
Askew Page, H. R., Dalsgaard, T., Baldwin, S. N., Jepps, T. A.,
Povstyan, O., Olesen, S. P., & Greenwood, I. A. (2019). TMEM16A is
implicated in the regulation of coronary flow and is altered in
hypertension. British Journal of Pharmacology .
https://doi.org/10.1111/bph.14598
Barrese, V., Stott, J. B., Figueiredo, H. B., Aubdool, A. A., Hobbs, A.
J., Jepps, T. A., … Greenwood, I. A. (2018). Angiotensin II
Promotes K V 7.4 Channels Degradation Through Reduced Interaction With
HSP90 (Heat Shock Protein 90)Novelty and Significance.Hypertension . https://doi.org/10.1161/HYPERTENSIONAHA.118.11116
Barrese, V., Stott, J. B., & Greenwood, I. A. (2018). KCNQ-Encoded
Potassium Channels as Therapeutic Targets. Annual Review of
Pharmacology and Toxicology .
https://doi.org/10.1146/annurev-pharmtox-010617-052912
Bentzen, B. H., Schmitt, N., Calloe, K., Dalby Brown, W., Grunnet, M.,
& Olesen, S. P. (2006). The acrylamide (S)-1 differentially affects Kv7
(KCNQ) potassium channels. Neuropharmacology .
https://doi.org/10.1016/j.neuropharm.2006.07.001
Brueggemann, L. I., Moran, C. J., Barakat, J. A., Yeh, J. Z., Cribbs, L.
L., & Byron, K. L. (2006). Vasopressin stimulates action potential
firing by protein kinase C-dependent inhibition of KCNQ5 in A7r5 rat
aortic smooth muscle cells. AJP: Heart and Circulatory
Physiology , 292 (3), H1352–H1363.
https://doi.org/10.1152/ajpheart.00065.2006
Brueggemann, Lyubov I., Cribbs, L. L., Schwartz, J., Wang, M., Kouta,
A., & Byron, K. L. (2018). Mechanisms of PKA-dependent potentiation of
Kv7.5 channel activity in human airway smooth muscle cells.International Journal of Molecular Sciences .
https://doi.org/10.3390/ijms19082223
Brueggemann, Lyubov I., Haick, J. M., Cribbs, L. L., & Byron, K. L.
(2014). Differential activation of vascular smooth muscle Kv7.4, Kv7.5,
and Kv7.4/7.5 channels by ML213 and ICA-069673. Molecular
Pharmacology . https://doi.org/10.1124/mol.114.093799
Byron, K. L., & Brueggemann, L. I. (2018). Kv7 potassium channels as
signal transduction intermediates in the control of microvascular tone.Microcirculation . https://doi.org/10.1111/micc.12419
Chadha, P. S., Zunke, F., Zhu, H. L., Davis, A. J., Jepps, T. A.,
Olesen, S. P., … Greenwood, I. A. (2012). Reduced KCNQ4-encoded
voltage-dependent potassium channel activity underlies impaired
β-adrenoceptor-mediated relaxation of renal arteries in hypertension.Hypertension , 59 (4), 877–884.
https://doi.org/10.1161/HYPERTENSIONAHA.111.187427
Chen, X., Li, W., Hiett, S. C., & Obukhov, A. G. (2016). Novel Roles
for Kv7 Channels in Shaping Histamine-Induced Contractions and
Bradykinin-Dependent Relaxations in Pig Coronary Arteries. PLoS
ONE . https://doi.org/10.1371/journal.pone.0148569
Choi, K. L., Aldricht, R. W., Yellen, G., & Hughes, H. (1991).
Tetraethylammonium blockade distinguishes two inactivation mechanisms in
voltage-activated Ki channels (quaternary ammonium ions/open channel
block/ball-and-chain model). Proc. Natl. Acad. Sci. USA .
Crane, G. J., Gallagher, N., Dora, K. A., & Garland, C. J. (2003).
Small-and intermediate-conductance calcium-activated K+ channels provide
different facets of endothelium-dependent hyperpolarization in rat
mesenteric artery. Journal of Physiology .
https://doi.org/10.1113/jphysiol.2003.051896
Crane, G. J., Walker, S. D., Dora, K. A., & Garland, C. J. (2003).
Evidence for a differential cellular distribution of inward rectifier K
channels in the rat isolated mesenteric artery. Journal of
Vascular Research . https://doi.org/10.1159/000070713
Curtis, M. J., Alexander, S., Cirino, G., Docherty, J. R., George, C.
H., Giembycz, M. A., … Ahluwalia, A. (2018). Experimental design
and analysis and their reporting II: updated and simplified guidance for
authors and peer reviewers. British Journal of Pharmacology .
https://doi.org/10.1111/bph.14153
Dora, K. A., Gallagher, N. T., McNeish, A., & Garland, C. J. (2008).
Modulation of endothelial cell KCa3.1 channels during
endothelium-derived hyperpolarizing factor signaling in mesenteric
resistance arteries. Circulation Research .
https://doi.org/10.1161/CIRCRESAHA.108.172379
Goto, K., Rummery, N. M., Grayson, T. H., & Hill, C. E. (2004).
Attenuation of conducted vasodilatation in rat mesenteric arteries
during hypertension: role of inwardly rectifying potassium channels.The Journal of Physiology , 561 (Pt 1), 215–231.
https://doi.org/10.1113/jphysiol.2004.070458
Greenberg, H. Z. E., Shi, J., Jahan, K. S., Martinucci, M. C., Gilbert,
S. J., Vanessa Ho, W. S., & Albert, A. P. (2016). Stimulation of
calcium-sensing receptors induces endothelium-dependent vasorelaxations
via nitric oxide production and activation of IKCa channels.Vascular Pharmacology . https://doi.org/10.1016/j.vph.2016.01.001
Hagiwara, S., Miyazaki, S., Moody, W., & Patlak, J. (1978). Blocking
effects of barium and hydrogen ions on the potassium current during
anomalous rectification in the starfish egg. The Journal of
Physiology . https://doi.org/10.1113/jphysiol.1978.sp012338
Jepps, T. A., Bentzen, B. H., Stott, J. B., Povstyan, O. V.,
Sivaloganathan, K., Dalby-Brown, W., & Greenwood, I. A. (2014).
Vasorelaxant effects of novel Kv7.4 channel enhancers ML213 and NS15370.British Journal of Pharmacology , 171 (19), 4413–4424.
https://doi.org/10.1111/bph.12805
Jepps, T. A., Olesen, S. P., Greenwood, I. A., & Dalsgaard, T. (2016).
Molecular and functional characterization of Kv7 channels in penile
arteries and corpus cavernosum of healthy and metabolic syndrome rats.British Journal of Pharmacology .
https://doi.org/10.1111/bph.13444
Jepps, Thomas A., Chadha, P. S., Davis, A. J., Harhun, M. I., Cockerill,
G. W., Olesen, S. P., … Greenwood, I. A. (2011). Downregulation
of Kv7.4 channel activity in primary and secondary hypertension.Circulation . https://doi.org/10.1161/CIRCULATIONAHA.111.032136
Jepps, Thomas A., Greenwood, I. A., Moffatt, J. D., Sanders, K. M., &
Ohya, S. (2009). Molecular and functional characterization of Kv 7 K + channel in murine
gastrointestinal smooth muscles. American Journal of
Physiology-Gastrointestinal and Liver Physiology .
https://doi.org/10.1152/ajpgi.00057.2009
Kurata, H. T., & Fedida, D. (2006). A structural interpretation of
voltage-gated potassium channel inactivation. Progress in
Biophysics and Molecular Biology .
https://doi.org/10.1016/j.pbiomolbio.2005.10.001
Mani, B. K., Robakowski, C., Brueggemann, L. I., Cribbs, L. L.,
Tripathi, A., Majetschak, M., & Byron, K. L. (2016). Kv7.5 Potassium
Channel Subunits Are the Primary Targets for PKA-Dependent Enhancement
of Vascular Smooth Muscle Kv7 Currents. Molecular Pharmacology ,89 (3), 323–334. https://doi.org/10.1124/mol.115.101758
McGuire, J. J., Ding, H., & Triggle, C. R. (2001). Endothelium-derived
relaxing factors: A focus on endothelium-derived hyperpolarizing
factor(s). Canadian Journal of Physiology and Pharmacology .
https://doi.org/10.1139/y01-025
Mills, T. A., Greenwood, S. L., Devlin, G., Shweikh, Y., Robinson, M.,
Cowley, E., … Wareing, M. (2015). Activation of
K<inf>V</inf>7 channels
stimulates vasodilatation of human placental chorionic plate arteries.Placenta , 36 (6), 638–644.
https://doi.org/10.1016/j.placenta.2015.03.007
Mondéjar-Parreño, G., Moral-Sanz, J., Barreira, B., De la Cruz, A.,
Gonzalez, T., Callejo, M., … Cogolludo, A. (2019). Activation of
Kv7 channels as a novel mechanism for NO/cGMP-induced pulmonary
vasodilation. British Journal of Pharmacology .
https://doi.org/10.1111/bph.14662
Morales-Cano, D., Moreno, L., Barreira, B., Pandolfi, R., Chamorro, V.,
Jimenez, R., … Cogolludo, A. (2015). Kv7 channels critically
determine coronary artery reactivity: Left-right differences and
down-regulation by hyperglycaemia. Cardiovascular Research ,106 (1), 98–108. https://doi.org/10.1093/cvr/cvv020
Ng, F. L., Davis, A. J., Jepps, T. A., Harhun, M. I., Yeung, S. Y., Wan,
A., … Greenwood, I. A. (2011). Expression and function of the K +
channel KCNQ genes in human arteries. British Journal of
Pharmacology , 162 (1), 42–53.
https://doi.org/10.1111/j.1476-5381.2010.01027.x
Ohya, S., Sergeant, G. P., Greenwood, I. A., & Horowitz, B. (2003).
Molecular variants of KCNQ channels expressed in murine portal vein
myocytes: A role in delayed rectifier current. Circulation
Research . https://doi.org/10.1161/01.RES.0000070880.20955.F4
Oliveras, A., Roura-Ferrer, M., Solé, L., De La Cruz, A., Prieto, A.,
Etxebarria, A., … Felipe, A. (2014). Functional assembly of
Kv7.1/Kv7.5 channels with emerging properties on vascular muscle
physiology. Arteriosclerosis, Thrombosis, and Vascular Biology .
https://doi.org/10.1161/ATVBAHA.114.303801
Parsons, S. J. W., Hill, A., Waldron, G. J., Plane, T., & Garland, C.
J. (1994). The relative importance of nitric oxide and nitric
oxide‐independent mechanisms in acetylcholine‐evoked dilatation of the
rat mesenteric bed. British Journal of Pharmacology .
https://doi.org/10.1111/j.1476-5381.1994.tb17136.x
Peredo, H. A., Feleder, E. C., & Adler-Graschinsky, E. (1997).
Differential effects of acetylcholine and bradykinin on prostanoid
release from the rat mesenteric bed: Role of endothelium and of nitric
oxide. Prostaglandins Leukotrienes and Essential Fatty Acids .
https://doi.org/10.1016/S0952-3278(97)90567-6
Sandow, S. L., Goto, K., Rummery, N. M., & Hill, C. E. (2004).
Developmental changes in myoendothelial gap junction mediated
vasodilator activity in the rat saphenous artery. Journal of
Physiology . https://doi.org/10.1113/jphysiol.2003.058669
Sandow, S. L., Haddock, R. E., Hill, C. E., Chadha, P. S., Kerr, P. M.,
Welsh, D. G., & Plane, F. (2009). What’s where and why at a vascular
myoendothelial microdomain signalling complex. Clinical and
Experimental Pharmacology and Physiology .
https://doi.org/10.1111/j.1440-1681.2008.05076.x
Sandow, S. L., Neylon, C. B., Chen, M. X., & Garland, C. J. (2006).
Spatial separation of endothelial small- and intermediate-conductance
calcium-activated potassium channels (KCa) and connexins: Possible
relationship to vasodilator function? Journal of Anatomy ,209 (5), 689–698.
https://doi.org/10.1111/j.1469-7580.2006.00647.x
Sandow, S. L., Senadheera, S., Bertrand, P. P., Murphy, T. V., & Tare,
M. (2012). Myoendothelial Contacts, Gap Junctions, and Microdomains:
Anatomical Links to Function? Microcirculation .
https://doi.org/10.1111/j.1549-8719.2011.00146.x
Sandow, S. L., Tare, M., Coleman, H. A., Hill, C. E., & Parkington, H.
C. (2002). Involvement of myoendothelial gap junctions in the actions of
endothelium-derived hyperpolarizing factor. Circulation Research .
https://doi.org/10.1161/01.RES.0000019756.88731.83
Schenzer, A. (2005). Molecular Determinants of KCNQ (Kv7) K+ Channel
Sensitivity to the Anticonvulsant Retigabine. Journal of
Neuroscience , 25 (20), 5051–5060.
https://doi.org/10.1523/JNEUROSCI.0128-05.2005
Schnee, M. E., & Brown, B. S. (1998). Selectivity of linopirdine (DuP
996), a neurotransmitter release enhancer, in blocking voltage-dependent
and calcium-activated potassium currents in hippocampal neurons.Journal of Pharmacology and Experimental Therapeutics .
Senadheera, S., Kim, Y., Grayson, T. H., Toemoe, S., Kochukov, M. Y.,
Abramowitz, J., … Sandow, S. L. (2012). Transient receptor
potential canonical type 3 channels facilitate endothelium-derived
hyperpolarization-mediated resistance artery vasodilator activity.Cardiovascular Research . https://doi.org/10.1093/cvr/cvs208
Shimokawa, H., Yasutake, H., Fujii, K., Owada, M. K., Nakaike, R.,
Fukumoto, Y., … Takeshita, A. (1996). The importance of the
hyperpolarizing mechanism increases as the vessel size decreases in
endothelium-dependent relaxations in rat mesenteric circulation.Journal of Cardiovascular Pharmacology .
https://doi.org/10.1097/00005344-199611000-00014
Smith, P. D., Brett, S. E., Luykenaar, K. D., Sandow, S. L., Marrelli,
S. P., Vigmond, E. J., & Welsh, D. G. (2008). KIR channels function as
electrical amplifiers in rat vascular smooth muscle. Journal of
Physiology . https://doi.org/10.1113/jphysiol.2007.145474
Sonkusare, S. K., Dalsgaard, T., Bonev, A. D., & Nelson, M. T. (2016).
Inward rectifier potassium (Kir2.1) channels as end-stage boosters of
endothelium-dependent vasodilators. Journal of Physiology .
https://doi.org/10.1113/JP271652
Spoerri, E., Jentsch, J., & Glees, P. (1975). Apamin from bee venom.
Effects of the neurotoxin on subcellular particles of neural cultures.FEBS Letters . https://doi.org/10.1016/0014-5793(75)80006-8
Stott, J. B., & Greenwood, I. A. (2015). Complex role of Kv7 channels
in cGMP and camp-mediated relaxations. Channels , 9 (3),
117–118. https://doi.org/10.1080/19336950.2015.1046732
Stott, Jennifer B., Barrese, V., Jepps, T. A., Leighton, E. V., &
Greenwood, I. A. (2015). Contribution of Kv7 channels to natriuretic
peptide mediated vasodilation in normal and hypertensive rats.Hypertension , 65 (3), 676–682.
https://doi.org/10.1161/HYPERTENSIONAHA.114.04373
Stott, Jennifer B., Jepps, T. A., & Greenwood, I. A. (2014). KV7
potassium channels: A new therapeutic target in smooth muscle disorders.Drug Discovery Today .
https://doi.org/10.1016/j.drudis.2013.12.003
Wang, H. R., Wu, M., Yu, H., Long, S., Stevens, A., Engers, D. W.,
… McManus, O. B. (2011). Selective inhibition of the K ir2 family
of inward rectifier potassium channels by a small molecule probe: The
discovery, SAR, and pharmacological characterization of ML133. ACS
Chemical Biology . https://doi.org/10.1021/cb200146a
Wu, M., Wang, H., Yu, H., Makhina, E., Xu, J., Dawson, E. S., …
Li, M. (2010). A potent and selective small molecule Kir2.1
inhibitor . Probe Reports from the NIH Molecular Libraries
Program .
Wulff, H., Miller, M. J., Hänsel, W., Grissmer, S., Cahalan, M. D., &
Chandy, K. G. (2000). Design of a potent and selective inhibitor of the
intermediate- conductance Ca2+-activated K+ channel, IKCa1: A potential
immunosuppressant. Proceedings of the National Academy of Sciences
of the United States of America .
https://doi.org/10.1073/pnas.97.14.8151
Yeung, S. Y. M., Pucovský, V., Moffatt, J. D., Saldanha, L., Schwake,
M., Ohya, S., & Greenwood, I. A. (2007). Molecular expression and
pharmacological identification of a role for Kv7 channels in murine
vascular reactivity. British Journal of Pharmacology ,151 (6), 758–770. https://doi.org/10.1038/sj.bjp.0707284
Yu. (2013). Identification of a novel, small molecule activator of KCNQ1
channels. In Probe Reports from the NIH Molecular Libraries
Program [Internet].
Zechariah, A., Tran, C. H. T., Hald, B. O., Sandow, S. L., Sancho, M.,
Kim, M. S. M., … Welsh, D. G. (2020). Intercellular Conduction
Optimizes Arterial Network Function and Conserves Blood Flow Homeostasis
During Cerebrovascular Challenges. Arteriosclerosis, Thrombosis,
and Vascular Biology . https://doi.org/10.1161/ATVBAHA.119.313391
Zhong, X. Z., Harhun, M. I., Olesen, S. P., Ohya, S., Moffatt, J. D.,
Cole, W. C., & Greenwood, I. A. (2010). Participation of KCNQ (Kv7)
potassium channels in myogenic control of cerebral arterial diameter.Journal of Physiology .
https://doi.org/10.1113/jphysiol.2010.192823
Tables