Conclusions and unmet needs
NSAIDs, LT modifiers and biologicals are used every day in clinical
practice in treatment of viral infections and common respiratory or
allergic diseases. Although a significant progress has been made in our
understanding how these medications act and how they affect eicosanoid
pathways, there are still no sufficient data available to fully address
all issues important for prediction of their activities affecting immune
response and estimation of their clinical efficacy. This consensus
report summarises up to date knowledge in this complex area and
identifies major knowledge gaps and unmet needs to be addressed in the
future.
Unmet needs
- Assessment of NSAIDs role in alleviating symptoms of viral infections
in general population and in patients with asthma/ allergy with the
strong emphasis on the timing of its administration, their selectivity
and long-term effects.
- Further basic in vitro, in vivo and large clinical studies assessing
NSAIDs influence on the pathogenesis and treatment of COVID-19 are
greatly needed.
- Understanding molecular and cellular mechanisms of eicosanoids
activity in immune response with focus on balance between pro- and
anti-inflammatory properties.
- Characterization of emerging sub-phenotypes, and sub-endotypes of
allergic diseases (asthma, rhinitis, NERD) and potential biomarkers
for the more effective therapy using eicosanoid pathway modifying
drugs (NSAIDs, LTRA, CRTH2 antagonists)
- Evaluation of how the effectiveness of new biologicals for the
treatment of allergic diseases relates to the eicosanoids.
- Re-assessment of the effects of prostanoids in allergic and asthmatic
reactions in humans by targeted intervention studies with selective
inhibitors of receptors or tissue specific synthases.
- Development and testing of novel treatment modalities targeting lipid
mediators (eicosanoids) and their receptors.
References
1. Sokolowska M, Rovati GE, Diamant Z, et al. Current perspective on
eicosanoids in asthma and allergic diseases: EAACI Task Force consensus
report, part I. Allergy. 2021;76(1):114-130.
2. Sheehan WJ, Mauger DT, Paul IM, et al. Acetaminophen versus Ibuprofen
in Young Children with Mild Persistent Asthma. The New England
journal of medicine. 2016;375(7):619-630.
3. Papadopoulos NG, Christodoulou I, Rohde G, et al. Viruses and
bacteria in acute asthma exacerbations–a GA(2) LEN-DARE systematic
review. Allergy. 2011;66(4):458-468.
4. Turunen R, Koistinen A, Vuorinen T, et al. The first wheezing
episode: respiratory virus etiology, atopic characteristics, and illness
severity. Pediatric allergy and immunology : official publication
of the European Society of Pediatric Allergy and Immunology.2014;25(8):796-803.
5. Christensen A, Kesti O, Elenius V, et al. Human bocaviruses and
paediatric infections. The Lancet Child & adolescent health.2019;3(6):418-426.
6. Simoes EA, Carbonell-Estrany X, Rieger CH, et al. The effect of
respiratory syncytial virus on subsequent recurrent wheezing in atopic
and nonatopic children. The Journal of allergy and clinical
immunology. 2010;126(2):256-262.
7. Blanken MO, Rovers MM, Molenaar JM, et al. Respiratory syncytial
virus and recurrent wheeze in healthy preterm infants. The New
England journal of medicine. 2013;368(19):1791-1799.
8. McCarthy MK, Weinberg JB. Eicosanoids and respiratory viral
infection: coordinators of inflammation and potential therapeutic
targets. Mediators of inflammation. 2012;2012:236345.
9. Jakiela B, Gielicz A, Plutecka H, et al. Th2-type cytokine-induced
mucus metaplasia decreases susceptibility of human bronchial epithelium
to rhinovirus infection. American journal of respiratory cell and
molecular biology. 2014;51(2):229-241.
10. Seymour ML, Gilby N, Bardin PG, et al. Rhinovirus infection
increases 5-lipoxygenase and cyclooxygenase-2 in bronchial biopsy
specimens from nonatopic subjects. The Journal of infectious
diseases. 2002;185(4):540-544.
11. Bancos S, Bernard MP, Topham DJ, Phipps RP. Ibuprofen and other
widely used non-steroidal anti-inflammatory drugs inhibit antibody
production in human cells. Cellular immunology.2009;258(1):18-28.
12. Ryan EP, Pollock SJ, Murant TI, Bernstein SH, Felgar RE, Phipps RP.
Activated human B lymphocytes express cyclooxygenase-2 and
cyclooxygenase inhibitors attenuate antibody production. J
Immunol. 2005;174(5):2619-2626.
13. Graham NM, Burrell CJ, Douglas RM, Debelle P, Davies L. Adverse
effects of aspirin, acetaminophen, and ibuprofen on immune function,
viral shedding, and clinical status in rhinovirus-infected volunteers.The Journal of infectious diseases. 1990;162(6):1277-1282.
14. Shirey KA, Lai W, Pletneva LM, et al. Role of the lipoxygenase
pathway in RSV-induced alternatively activated macrophages leading to
resolution of lung pathology. Mucosal immunology.2014;7(3):549-557.
15. Tam VC, Quehenberger O, Oshansky CM, et al. Lipidomic profiling of
influenza infection identifies mediators that induce and resolve
inflammation. Cell. 2013;154(1):213-227.
16. Shirey KA, Pletneva LM, Puche AC, et al. Control of RSV-induced lung
injury by alternatively activated macrophages is IL-4R alpha-, TLR4-,
and IFN-beta-dependent. Mucosal immunology. 2010;3(3):291-300.
17. Buckley CD, Gilroy DW, Serhan CN, Stockinger B, Tak PP. The
resolution of inflammation. Nat Rev Immunol. 2013;13(1):59-66.
18. Coulombe F, Jaworska J, Verway M, et al. Targeted prostaglandin E2
inhibition enhances antiviral immunity through induction of type I
interferon and apoptosis in macrophages. Immunity.2014;40(4):554-568.
19. Tate MD, Ong JDH, Dowling JK, et al. Reassessing the role of the
NLRP3 inflammasome during pathogenic influenza A virus infection via
temporal inhibition. Sci Rep. 2016;6:27912.
20. Zhao J, Legge K, Perlman S. Age-related increases in PGD(2)
expression impair respiratory DC migration, resulting in diminished T
cell responses upon respiratory virus infection in mice. The
Journal of clinical investigation. 2011;121(12):4921-4930.
21. Andreakos E, Papadaki M, Serhan CN. Dexamethasone, pro-resolving
lipid mediators and resolution of inflammation in COVID-19.Allergy. 2021;76(3):626-628.
22. Moore N, Bosco-Levy P, Thurin N, Blin P, Droz-Perroteau C. NSAIDs
and COVID-19: A Systematic Review and Meta-analysis. Drug safety.2021;44(9):929-938.
23. Qiao W, Wang C, Chen B, et al. Ibuprofen attenuates cardiac fibrosis
in streptozotocin-induced diabetic rats. Cardiology.2015;131(2):97-106.
24. Miyoshi H, VanDussen KL, Malvin NP, et al. Prostaglandin E2 promotes
intestinal repair through an adaptive cellular response of
the epithelium. Embo j. 2017;36(1):5-24.
25. Alfajaro MM, Choi JS, Kim DS, et al. Activation of COX-2/PGE2
Promotes Sapovirus Replication via the Inhibition of Nitric Oxide
Production. Journal of virology. 2017;91(3).
26. Radzikowska U, Ding M, Tan G, et al. Distribution of ACE2, CD147,
CD26, and other SARS-CoV-2 associated molecules in tissues and immune
cells in health and in asthma, COPD, obesity, hypertension, and COVID-19
risk factors. Allergy. 2020;75(11):2829-2845.
27. Zhao J, Zhao J, Legge K, Perlman S. Age-related increases in PGD(2)
expression impair respiratory DC migration, resulting in diminished T
cell responses upon respiratory virus infection in mice. The
Journal of clinical investigation. 2011;121(12):4921-4930.
28. Theken KN, Tang SY, Sengupta S, FitzGerald GA. The roles of lipids
in SARS-CoV-2 viral replication and the host immune response. J
Lipid Res. 2021;62:100129.
29. Sokolowska M, Chen LY, Liu Y, et al. Prostaglandin E2 Inhibits NLRP3
Inflammasome Activation through EP4 Receptor and Intracellular Cyclic
AMP in Human Macrophages. J Immunol. 2015;194(11):5472-5487.
30. Vijay R, Fehr AR, Janowski AM, et al. Virus-induced inflammasome
activation is suppressed by prostaglandin
D<sub>2</sub>/DP1
signaling. Proceedings of the National Academy of Sciences.2017;114(27):E5444-E5453.
31. Martha JW, Pranata R, Lim MA, Wibowo A, Akbar MR. Active
prescription of low-dose aspirin during or prior to hospitalization and
mortality in COVID-19: A systematic review and meta-analysis of adjusted
effect estimates. International journal of infectious diseases :
IJID : official publication of the International Society for Infectious
Diseases. 2021;108:6-12.
32. Sokolowska M, Lukasik ZM, Agache I, et al. Immunology of COVID-19:
Mechanisms, clinical outcome, diagnostics, and perspectives-A report of
the European Academy of Allergy and Clinical Immunology (EAACI).Allergy. 2020;75(10):2445-2476.
33. Chen JS, Alfajaro MM, Chow RD, et al. Non-steroidal
anti-inflammatory drugs dampen the cytokine and antibody response to
SARS-CoV-2 infection. Journal of virology. 2021.
34. Archambault AS, Zaid Y, Rakotoarivelo V, et al. High levels of
eicosanoids and docosanoids in the lungs of intubated COVID-19 patients.Faseb j. 2021;35(6):e21666.
35. Schwarz B, Sharma L, Roberts L, et al. Cutting Edge: Severe
SARS-CoV-2 Infection in Humans Is Defined by a Shift in the Serum
Lipidome, Resulting in Dysregulation of Eicosanoid Immune Mediators.J Immunol. 2021;206(2):329-334.
36. Buchheit KM, Hacker JJ, Gakpo DH, Mullur J, Sohail A, Laidlaw TM.
Influence of daily aspirin therapy on ACE2 expression and
function-implications for SARS-CoV-2 and patients with
aspirin-exacerbated respiratory disease. Clinical and experimental
allergy : journal of the British Society for Allergy and Clinical
Immunology. 2021.
37. Terrier O, Dilly S, Pizzorno A, et al. Antiviral Properties of the
NSAID Drug Naproxen Targeting the Nucleoprotein of SARS-CoV-2
Coronavirus. Molecules (Basel, Switzerland). 2021;26(9).
38. Anderson BJ. Paracetamol (Acetaminophen): mechanisms of action.Paediatric anaesthesia. 2008;18(10):915-921.
39. Graham GG, Davies MJ, Day RO, Mohamudally A, Scott KF. The modern
pharmacology of paracetamol: therapeutic actions, mechanism of action,
metabolism, toxicity and recent pharmacological findings.Inflammopharmacology. 2013;21(3):201-232.
40. Reese JT, Coleman B, Chan L, et al. Cyclooxygenase inhibitor use is
associated with increased COVID-19 severity. medRxiv.2021:2021.2004.2013.21255438.
41. Rinott E, Kozer E, Shapira Y, Bar-Haim A, Youngster I. Ibuprofen use
and clinical outcomes in COVID-19 patients. Clinical microbiology
and infection : the official publication of the European Society of
Clinical Microbiology and Infectious Diseases.2020;26(9):1259.e1255-1259.e1257.
42. Abu Esba LC, Alqahtani RA, Thomas A, Shamas N, Alswaidan L, Mardawi
G. Ibuprofen and NSAID Use in COVID-19 Infected Patients Is Not
Associated with Worse Outcomes: A Prospective Cohort Study.Infectious diseases and therapy. 2021;10(1):253-268.
43. Drake TM, Fairfield CJ, Pius R, et al. Non-steroidal
anti-inflammatory drug use and outcomes of COVID-19 in the ISARIC
Clinical Characterisation Protocol UK cohort: a matched, prospective
cohort study. The Lancet Rheumatology. 2021.
44. Park J, Lee SH, You SC, Kim J, Yang K. Non-steroidal
anti-inflammatory agent use may not be associated with mortality of
coronavirus disease 19. Sci Rep. 2021;11(1):5087.
45. Ricke-Hoch M, Stelling E, Lasswitz L, et al. Impaired immune
response mediated by prostaglandin E2 promotes severe COVID-19 disease.PloS one. 2021;16(8):e0255335.
46. Peters-Golden M, Henderson WR, Jr. Leukotrienes. The New
England journal of medicine. 2007;357(18):1841-1854.
47. Capra V, Thompson MD, Sala A, Cole DE, Folco G, Rovati GE.
Cysteinyl-leukotrienes and their receptors in asthma and other
inflammatory diseases: critical update and emerging trends. Med
Res Rev. 2007;27(4):469-527.
48. Diamant Z, Mantzouranis E, Bjermer L. Montelukast in the treatment
of asthma and beyond. Expert Rev Clin Immunol. 2009;5(6):639-658.
49. Langlois A, Ferland C, Tremblay GM, Laviolette M. Montelukast
regulates eosinophil protease activity through a leukotriene-independent
mechanism. The Journal of allergy and clinical immunology.2006;118(1):113-119.
50. Tahan F, Jazrawi E, Moodley T, Rovati GE, Adcock IM. Montelukast
inhibits tumour necrosis factor-alpha-mediated interleukin-8 expression
through inhibition of nuclear factor-kappaB p65-associated histone
acetyltransferase activity. Clinical and experimental allergy :
journal of the British Society for Allergy and Clinical Immunology.2008;38(5):805-811.
51. Mamedova L, Capra V, Accomazzo MR, et al. CysLT1 leukotriene
receptor antagonists inhibit the effects of nucleotides acting at P2Y
receptors. Biochemical pharmacology. 2005;71(1-2):115-125.
52. Woszczek G, Chen LY, Alsaaty S, Nagineni S, Shelhamer JH.
Concentration-dependent noncysteinyl leukotriene type 1
receptor-mediated inhibitory activity of leukotriene receptor
antagonists. J Immunol. 2010;184(4):2219-2225.
53. Ichiyama T, Hasegawa S, Umeda M, Terai K, Matsubara T, Furukawa S.
Pranlukast inhibits NF-kappa B activation in human monocytes/macrophages
and T cells. Clinical and experimental allergy : journal of the
British Society for Allergy and Clinical Immunology.2003;33(6):802-807.
54. Ishinaga H, Takeuchi K, Kishioka C, Suzuki S, Basbaum C, Majima Y.
Pranlukast inhibits NF-kappaB activation and MUC2 gene expression in
cultured human epithelial cells. Pharmacology. 2005;73(2):89-96.
55. Ciana P, Fumagalli M, Trincavelli ML, et al. The orphan receptor
GPR17 identified as a new dual uracil nucleotides/cysteinyl-leukotrienes
receptor. EMBO J. 2006;25(19):4615-4627.
56. Ramires R, Caiaffa MF, Tursi A, Haeggstrom JZ, Macchia L. Novel
inhibitory effect on 5-lipoxygenase activity by the anti-asthma drug
montelukast. Biochemical and biophysical research communications.2004;324(2):815-821.
57. Rius M, Hummel-Eisenbeiss J, Keppler D. ATP-dependent transport of
leukotrienes B4 and C4 by the multidrug resistance protein ABCC4 (MRP4).The Journal of pharmacology and experimental therapeutics.2008;324(1):86-94.
58. Ravasi S, Capra V, Panigalli T, Rovati GE, Nicosia S.
Pharmacological differences among CysLT(1) receptor antagonists with
respect to LTC(4) and LTD(4) in human lung parenchyma. Biochemical
pharmacology. 2002;63(8):1537-1546.
59. Lynch KR, Gary P. O’neill GP, Qingyun Liu Q, et al. Characterization
of the human cysteinyl leukotriene CysLT1 receptor.Nature. 1999;399:789-793.
60. Sarau HM, Ames RS, Chambers J, et al. Identification, molecular
cloning, expression, and characterization of a cysteinyl leukotriene
receptor. Molecular pharmacology. 1999;56(3):657-663.
61. Reiss TF, Altman LC, Chervinsky P, et al. Effects of montelukast
(MK-0476), a new potent cysteinyl leukotriene (LTD4) receptor
antagonist, in patients with chronic asthma. The Journal of
allergy and clinical immunology. 1996;98(3):528-534.
62. Altman LC, Munk Z, Seltzer J, et al. A placebo-controlled,
dose-ranging study of montelukast, a cysteinyl leukotriene-receptor
antagonist. Montelukast Asthma Study Group. The Journal of allergy
and clinical immunology. 1998;102(1):50-56.
63. Malmstrom K, Rodriguez-Gomez G, Guerra J, et al. Oral montelukast,
inhaled beclomethasone, and placebo for chronic asthma. A randomized,
controlled trial. Montelukast/Beclomethasone Study Group. Ann
Intern Med. 1999;130(6):487-495.
64. Lazarinis N, Bood J, Gomez C, et al. Leukotriene E4 induces airflow
obstruction and mast cell activation through the cysteinyl leukotriene
type 1 receptor. The Journal of allergy and clinical immunology.2018;142(4):1080-1089.
65. Drazen JM, Yandava CN, Dube L, et al. Pharmacogenetic association
between ALOX5 promoter genotype and the response to anti-asthma
treatment. Nat Genet. 1999;22(2):168-170.
66. Mougey EB, Feng H, Castro M, Irvin CG, Lima JJ. Absorption of
montelukast is transporter mediated: a common variant of OATP2B1 is
associated with reduced plasma concentrations and poor response.Pharmacogenetics and genomics. 2009;19(2):129-138.
67. Scott JP, Peters-Golden M. Antileukotriene agents for the treatment
of lung disease. American journal of respiratory and critical care
medicine. 2013;188(5):538-544.
68. Kolmert J, Gomez C, Balgoma D, et al. Urinary Leukotriene E4 and
Prostaglandin D2 Metabolites Increase in Adult and Childhood Severe
Asthma Characterized by Type 2 Inflammation. A Clinical Observational
Study. American journal of respiratory and critical care
medicine. 2021;203(1):37-53.
69. Gaber F, Daham K, Higashi A, et al. Increased levels of
cysteinyl-leukotrienes in saliva, induced sputum, urine and blood from
patients with aspirin-intolerant asthma. Thorax.2008;63(12):1076-1082.
70. Rabinovitch N, Graber NJ, Chinchilli VM, et al. Urinary leukotriene
E4/exhaled nitric oxide ratio and montelukast response in childhood
asthma. The Journal of allergy and clinical immunology.2010;126(3):545-551 e541-544.
71. Rabinovitch N, Mauger DT, Reisdorph N, et al. Predictors of asthma
control and lung function responsiveness to step 3 therapy in children
with uncontrolled asthma. The Journal of allergy and clinical
immunology. 2014;133(2):350-356.
72. Edelman JM, Turpin JA, Bronsky EA, et al. Oral montelukast compared
with inhaled salmeterol to prevent exercise-induced bronchoconstriction.
A randomized, double-blind trial. Exercise Study Group. Ann Intern
Med. 2000;132(2):97-104.
73. Price DB, Swern A, Tozzi CA, Philip G, Polos P. Effect of
montelukast on lung function in asthma patients with allergic rhinitis:
analysis from the COMPACT trial. Allergy. 2006;61(6):737-742.
74. Dahlen SE, Malmstrom K, Nizankowska E, et al. Improvement of
aspirin-intolerant asthma by montelukast, a leukotriene antagonist: a
randomized, double-blind, placebo-controlled trial. American
journal of respiratory and critical care medicine. 2002;165(1):9-14.
75. Bisgaard H, Zielen S, Garcia-Garcia ML, et al. Montelukast reduces
asthma exacerbations in 2- to 5-year-old children with intermittent
asthma. American journal of respiratory and critical care
medicine. 2005;171(4):315-322.
76. Bozek A, Warkocka-Szoltysek B, Filipowska-Gronska A, Jarzab J.
Montelukast as an add-on therapy to inhaled corticosteroids in the
treatment of severe asthma in elderly patients. The Journal of
asthma : official journal of the Association for the Care of Asthma.2012;49(5):530-534.
77. Price D, Musgrave SD, Shepstone L, et al. Leukotriene antagonists as
first-line or add-on asthma-controller therapy. The New England
journal of medicine. 2011;364(18):1695-1707.
78. Chalmers GW, Macleod KJ, Little SA, Thomson LJ, McSharry CP, Thomson
NC. Influence of cigarette smoking on inhaled corticosteroid treatment
in mild asthma. Thorax. 2002;57(3):226-230.
79. Gaki E, Papatheodorou G, Ischaki E, Grammenou V, Papa I, Loukides S.
Leukotriene E(4) in urine in patients with asthma and COPD–the effect
of smoking habit. Respiratory medicine. 2007;101(4):826-832.
80. Lazarus SC, Chinchilli VM, Rollings NJ, et al. Smoking affects
response to inhaled corticosteroids or leukotriene receptor antagonists
in asthma. American journal of respiratory and critical care
medicine. 2007;175(8):783-790.
81. Price D, Popov TA, Bjermer L, et al. Effect of montelukast for
treatment of asthma in cigarette smokers. The Journal of allergy
and clinical immunology. 2013;131(3):763-771.
82. Giouleka P, Papatheodorou G, Lyberopoulos P, et al. Body mass index
is associated with leukotriene inflammation in asthmatics.European journal of clinical investigation. 2011;41(1):30-38.
83. Peters-Golden M, Swern A, Bird SS, Hustad CM, Grant E, Edelman JM.
Influence of body mass index on the response to asthma controller
agents. The European respiratory journal. 2006;27(3):495-503.
84. Kowalski ML, Makowska JS, Blanca M, et al. Hypersensitivity to
nonsteroidal anti-inflammatory drugs (NSAIDs) - classification,
diagnosis and management: review of the EAACI/ENDA(#) and
GA2LEN/HANNA*. Allergy. 2011;66(7):818-829.
85. Pace S, Sautebin L, Werz O. Sex-biased eicosanoid biology: Impact
for sex differences in inflammation and consequences for
pharmacotherapy. Biochemical pharmacology. 2017;145:1-11.
86. Pergola C, Dodt G, Rossi A, et al. ERK-mediated regulation of
leukotriene biosynthesis by androgens: a molecular basis for gender
differences in inflammation and asthma. Proc Natl Acad Sci U S A.2008;105(50):19881-19886.
87. Pace S, Pergola C, Dehm F, et al. Androgen-mediated sex bias impairs
efficiency of leukotriene biosynthesis inhibitors in males. The
Journal of clinical investigation. 2017;127(8):3167-3176.
88. Pergola C, Schaible AM, Nikels F, Dodt G, Northoff H, Werz O.
Progesterone rapidly down-regulates the biosynthesis of 5-lipoxygenase
products in human primary monocytes. Pharmacological research.2015;94:42-50.
89. Rossi A, Roviezzo F, Sorrentino R, et al. Leukotriene-mediated sex
dimorphism in murine asthma-like features during allergen sensitization.Pharmacological research. 2019;139:182-190.
90. Pace S, Werz O. Impact of Androgens on Inflammation-Related Lipid
Mediator Biosynthesis in Innate Immune Cells. Frontiers in
immunology. 2020;11:1356.
91. Esposito R, Spaziano G, Giannattasio D, et al. Montelukast Improves
Symptoms and Lung Function in Asthmatic Women Compared With Men.Frontiers in pharmacology. 2019;10:1094.
92. Rabinovitch N, Strand M, Stuhlman K, Gelfand EW. Exposure to tobacco
smoke increases leukotriene E4-related albuterol usage and response to
montelukast. The Journal of allergy and clinical immunology.2008;121(6):1365-1371.
93. Azkur AK, Akdis M, Azkur D, et al. Immune response to SARS-CoV-2 and
mechanisms of immunopathological changes in COVID-19. Allergy.2020;75(7):1564-1581.
94. Gao YD, Ding M, Dong X, et al. Risk factors for severe and
critically ill COVID-19 patients: A review. Allergy.2021;76(2):428-455.
95. Sisakht M, Solhjoo A, Mahmoodzadeh A, Fathalipour M, Kabiri M,
Sakhteman A. Potential inhibitors of the main protease of SARS-CoV-2 and
modulators of arachidonic acid pathway: Non-steroidal anti-inflammatory
drugs against COVID-19. Computers in biology and medicine.2021;136:104686.
96. Fidan C, Aydogdu A. As a potential treatment of COVID-19:
Montelukast. Med Hypotheses. 2020;142:109828.
97. Aigner L, Pietrantonio F, Bessa de Sousa DM, et al. The Leukotriene
Receptor Antagonist Montelukast as a Potential COVID-19 Therapeutic.Front Mol Biosci. 2020;7:610132.
98. Barré J, Sabatier JM, Annweiler C. Montelukast Drug May Improve
COVID-19 Prognosis: A Review of Evidence. Frontiers in
pharmacology. 2020;11:1344.
99. Crimi N, Mastruzzo C, Pagano C, Lisitano N, Palermo F, Vancheri C.
Montelukast protects against bradykinin-induced bronchospasm. The
Journal of allergy and clinical immunology. 2005;115(4):870-872.
100. England JT, Abdulla A, Biggs CM, et al. Weathering the COVID-19
storm: Lessons from hematologic cytokine syndromes. Blood Rev.2021;45:100707.
101. Fajgenbaum DC, June CH. Cytokine Storm. The New England
journal of medicine. 2020;383(23):2255-2273.
102. Sala A, Murphy RC, Voelkel NF. Direct airway injury results in
elevated levels of sulfidopeptide leukotrienes, detectable in airway
secretions. Prostaglandins. 1991;42(1):1-7.
103. Sanghai N, Tranmer GK. Taming the cytokine storm: repurposing
montelukast for the attenuation and prophylaxis of severe COVID-19
symptoms. Drug Discov Today. 2020;25(12):2076-2079.
104. Maeba S, Ichiyama T, Ueno Y, Makata H, Matsubara T, Furukawa S.
Effect of montelukast on nuclear factor kappaB activation and
proinflammatory molecules. Annals of allergy, asthma & immunology
: official publication of the American College of Allergy, Asthma, &
Immunology. 2005;94(6):670-674.
105. Ueda T, Takeno S, Furukido K, Hirakawa K, Yajin K. Leukotriene
receptor antagonist pranlukast suppresses eosinophil infiltration and
cytokine production in human nasal mucosa of perennial allergic
rhinitis. Ann Otol Rhinol Laryngol. 2003;112(11):955-961.
106. Almerie MQ, Kerrigan DD. The association between obesity and poor
outcome after COVID-19 indicates a potential therapeutic role for
montelukast. Med Hypotheses. 2020;143:109883.
107. Khan AR, Misdary C, Yegya-Raman N, et al. Montelukast in
hospitalized patients diagnosed with COVID-19. The Journal of
asthma : official journal of the Association for the Care of Asthma.2021:1-7.
108. Bozek A, Winterstein J. Montelukast’s ability to fight COVID-19
infection. The Journal of asthma : official journal of the
Association for the Care of Asthma. 2021;58(10):1348-1349.
109. Hoxha M, Tedesco CC, Quaglin S, et al. Montelukast Use Decreases
Cardiovascular Events in Asthmatics. Frontiers in pharmacology.2020;11:611561.
110. Funk CD. Leukotriene modifiers as potential therapeutics for
cardiovascular disease. Nat Rev Drug Discov. 2005;4(8):664-672.
111. Funk CD, Ardakani A. A Novel Strategy to Mitigate the
Hyperinflammatory Response to COVID-19 by Targeting Leukotrienes.Frontiers in pharmacology. 2020;11:1214.
112. Pettipher R, Hansel TT, Armer R. Antagonism of the prostaglandin D2
receptors DP1 and CRTH2 as an approach to treat allergic diseases.Nat Rev Drug Discov. 2007;6(4):313-325.
113. Claar D, Hartert TV, Peebles RS, Jr. The role of prostaglandins in
allergic lung inflammation and asthma. Expert review of
respiratory medicine. 2015;9(1):55-72.
114. Boonpiyathad T, Capova G, Duchna HW, et al. Impact of high-altitude
therapy on type-2 immune responses in asthma patients. Allergy.2020;75(1):84-94.
115. Rudulier CD, Tonti E, James E, Kwok WW, Larché M. Modulation of
CRTh2 expression on allergen-specific T cells following peptide
immunotherapy. Allergy. 2019;74(11):2157-2166.
116. Diamant Z, Aalders W, Parulekar A, Bjermer L, Hanania NA. Targeting
lipid mediators in asthma: time for reappraisal. Current opinion
in pulmonary medicine. 2019;25(1):121-127.
117. Brightling CE, Brusselle G, Altman P. The impact of the
prostaglandin D(2) receptor 2 and its downstream effects on the
pathophysiology of asthma. Allergy. 2020;75(4):761-768.
118. Singh D, Cadden P, Hunter M, et al. Inhibition of the asthmatic
allergen challenge response by the CRTH2 antagonist OC000459. The
European respiratory journal. 2013;41(1):46-52.
119. Diamant Z, Sidharta PN, Singh D, et al. Setipiprant, a selective
CRTH2 antagonist, reduces allergen-induced airway responses in allergic
asthmatics. Clinical and experimental allergy : journal of the
British Society for Allergy and Clinical Immunology.2014;44(8):1044-1052.
120. Xia J, Abdu S, Maguire TJA, Hopkins C, Till SJ, Woszczek G.
Prostaglandin D(2) receptors in human mast cells. Allergy.2020;75(6):1477-1480.
121. Beasley R, Varley J, Robinson C, Holgate ST. Cholinergic-mediated
bronchoconstriction induced by prostaglandin D2, its initial metabolite
9 alpha,11 beta-PGF2, and PGF2 alpha in asthma. Am Rev Respir
Dis. 1987;136(5):1140-1144.
122. Diamant Z, Timmers MC, van der Veen H, et al. The effect of
MK-0591, a novel 5-lipoxygenase activating protein inhibitor, on
leukotriene biosynthesis and allergen-induced airway responses in
asthmatic subjects in vivo. The Journal of allergy and clinical
immunology. 1995;95(1 Pt 1):42-51.
123. Pettipher R, Hunter MG, Perkins CM, et al. Heightened response of
eosinophilic asthmatic patients to the CRTH2 antagonist OC000459.Allergy. 2014;69(9):1223-1232.
124. Ratner P, Andrews CP, Hampel FC, et al. Efficacy and safety of
setipiprant in seasonal allergic rhinitis: results from Phase 2 and
Phase 3 randomized, double-blind, placebo- and active-referenced
studies. Allergy Asthma Clin Immunol. 2017;13:18.
125. Saunders R, Kaul H, Berair R, et al. DP2 antagonism reduces airway
smooth muscle mass in asthma by decreasing eosinophilia and
myofibroblast recruitment. Science translational medicine.2019;11(479).
126. Fajt ML, Gelhaus SL, Freeman B, et al. Prostaglandin D(2) pathway
upregulation: relation to asthma severity, control, and TH2
inflammation. The Journal of allergy and clinical immunology.2013;131(6):1504-1512.
127. Brightling CE, Brusselle G, Altman P. The impact of the
prostaglandin D2 receptor 2 and its downstream effects on the
pathophysiology of asthma. Allergy. 2020;75(4):761-768.
128. Shiraishi Y, Asano K, Niimi K, et al.
Cyclooxygenase-2/prostaglandin D2/CRTH2 pathway mediates double-stranded
RNA-induced enhancement of allergic airway inflammation. J
Immunol. 2008;180(1):541-549.
129. Werder RB, Lynch JP, Simpson JC, et al. PGD2/DP2 receptor
activation promotes severe viral bronchiolitis by suppressing IFN-lambda
production. Science translational medicine. 2018;10(440).
130. Gupta A, Chander Chiang K. Prostaglandin D2 as a mediator of
lymphopenia and a therapeutic target in COVID-19 disease. Med
Hypotheses. 2020;143:110122.
131. Safholm J, Manson ML, Bood J, et al. Prostaglandin E2 inhibits mast
cell-dependent bronchoconstriction in human small airways through the E
prostanoid subtype 2 receptor. The Journal of allergy and clinical
immunology. 2015;136(5):1232-1239.e1231.
132. Lu HC, Mackie K. An Introduction to the Endogenous Cannabinoid
System. Biol Psychiatry. 2016;79(7):516-525.
133. Di Marzo V. New approaches and challenges to targeting the
endocannabinoid system. Nat Rev Drug Discov. 2018;17(9):623-639.
134. Velasco G, Sanchez C, Guzman M. Towards the use of cannabinoids as
antitumour agents. Nat Rev Cancer. 2012;12(6):436-444.
135. Angelina A, Perez-Diego M, Lopez-Abente J, Palomares O. The Role of
Cannabinoids in Allergic Diseases: Collegium Internationale
Allergologicum (CIA) Update 2020. International archives of
allergy and immunology. 2020;181(8):565-584.
136. Sugawara K, Zakany N, Hundt T, et al. Cannabinoid receptor 1
controls human mucosal-type mast cell degranulation and maturation in
situ. The Journal of allergy and clinical immunology.2013;132(1):182-193.
137. Sugawara K, Biro T, Tsuruta D, et al. Endocannabinoids limit
excessive mast cell maturation and activation in human skin. The
Journal of allergy and clinical immunology. 2012;129(3):726-738 e728.
138. Braun A, Engel T, Aguilar-Pimentel JA, et al. Beneficial effects of
cannabinoids (CB) in a murine model of allergen-induced airway
inflammation: role of CB1/CB2 receptors. Immunobiology.2011;216(4):466-476.
139. Vuolo F, Abreu SC, Michels M, et al. Cannabidiol reduces airway
inflammation and fibrosis in experimental allergic asthma.European journal of pharmacology. 2019;843:251-259.
140. Jan TR, Farraj AK, Harkema JR, Kaminski NE. Attenuation of the
ovalbumin-induced allergic airway response by cannabinoid treatment in
A/J mice. Toxicology and applied pharmacology. 2003;188(1):24-35.
141. Giannini L, Nistri S, Mastroianni R, et al. Activation of
cannabinoid receptors prevents antigen-induced asthma-like reaction in
guinea pigs. J Cell Mol Med. 2008;12(6A):2381-2394.
142. Gaffal E, Glodde N, Jakobs M, Bald T, Tuting T. Cannabinoid 1
receptors in keratinocytes attenuate fluorescein isothiocyanate-induced
mouse atopic-like dermatitis. Exp Dermatol. 2014;23(6):401-406.
143. Kim HJ, Kim B, Park BM, et al. Topical cannabinoid receptor 1
agonist attenuates the cutaneous inflammatory responses in
oxazolone-induced atopic dermatitis model. Int J Dermatol.2015;54(10):e401-408.
144. Nam G, Jeong SK, Park BM, et al. Selective Cannabinoid Receptor-1
Agonists Regulate Mast Cell Activation in an Oxazolone-Induced Atopic
Dermatitis Model. Ann Dermatol. 2016;28(1):22-29.
145. Petrosino S, Verde R, Vaia M, Allara M, Iuvone T, Di Marzo V.
Anti-inflammatory Properties of Cannabidiol, a Nonpsychotropic
Cannabinoid, in Experimental Allergic Contact Dermatitis. The
Journal of pharmacology and experimental therapeutics.2018;365(3):652-663.
146. Vaia M, Petrosino S, De Filippis D, et al. Palmitoylethanolamide
reduces inflammation and itch in a mouse model of contact allergic
dermatitis. European journal of pharmacology. 2016;791:669-674.
147. Petrosino S, Cristino L, Karsak M, et al. Protective role of
palmitoylethanolamide in contact allergic dermatitis. Allergy.2010;65(6):698-711.
148. Bozkurt TE, Kaya Y, Durlu-Kandilci NT, Onder S, Sahin-Erdemli I.
The effect of cannabinoids on dinitrofluorobenzene-induced experimental
asthma in mice. Respir Physiol Neurobiol. 2016;231:7-13.
149. Angelina A, Martin-Fontecha M, Ruckert B, et al. The cannabinoid
WIN55212-2 restores rhinovirus-induced epithelial barrier disruption.Allergy. 2020.
150. Angelina A, Pérez-Diego M, López-Abente J, et al. Cannabinoids
induce functional Tregs by promoting tolerogenic DCs via autophagy and
metabolic reprograming. Mucosal immunology. 2021.
151. Esposito G, Pesce M, Seguella L, et al. The potential of
cannabidiol in the COVID-19 pandemic. Br J Pharmacol.2020;177(21):4967-4970.
152. Tahamtan A, Tavakoli-Yaraki M, Salimi V. Opioids/cannabinoids as a
potential therapeutic approach in COVID-19 patients. Expert review
of respiratory medicine. 2020;14(10):965-967.
153. Rossi F, Tortora C, Argenziano M, Di Paola A, Punzo F. Cannabinoid
Receptor Type 2: A Possible Target in SARS-CoV-2 (CoV-19) Infection?Int J Mol Sci. 2020;21(11).
154. Frei RB, Luschnig P, Parzmair GP, et al. Cannabinoid receptor 2
augments eosinophil responsiveness and aggravates allergen-induced
pulmonary inflammation in mice. Allergy. 2016;71(7):944-956.
155. Mimura T, Ueda Y, Watanabe Y, Sugiura T. The cannabinoid receptor-2
is involved in allergic inflammation. Life Sci.2012;90(21-22):862-866.
156. Ferrini ME, Hong S, Stierle A, et al. CB2 receptors regulate
natural killer cells that limit allergic airway inflammation in a murine
model of asthma. Allergy. 2017;72(6):937-947.
157. Martin-Fontecha M, Eiwegger T, Jartti T, et al. The expression of
cannabinoid receptor 1 is significantly increased in atopic patients.The Journal of allergy and clinical immunology.2014;133(3):926-929 e922.
158. Bachert C, Han JK, Desrosiers M, et al. Efficacy and safety of
dupilumab in patients with severe chronic rhinosinusitis with nasal
polyps (LIBERTY NP SINUS-24 and LIBERTY NP SINUS-52): results from two
multicentre, randomised, double-blind, placebo-controlled,
parallel-group phase 3 trials. Lancet (London, England).2019;394(10209):1638-1650.
159. Gevaert P, Omachi TA, Corren J, et al. Efficacy and safety of
omalizumab in nasal polyposis: 2 randomized phase 3 trials. The
Journal of allergy and clinical immunology. 2020;146(3):595-605.
160. Dunican EM, Fahy JV. The Role of Type 2 Inflammation in the
Pathogenesis of Asthma Exacerbations. Ann Am Thorac Soc. 2015;12
Suppl 2:S144-149.
161. Bachert C, Zhang N, Cavaliere C, Weiping W, Gevaert E, Krysko O.
Biologics for chronic rhinosinusitis with nasal polyps. The
Journal of allergy and clinical immunology. 2020;145(3):725-739.
162. Bourdin A, Bjermer L, Brightling C, et al. ERS/EAACI statement on
severe exacerbations in asthma in adults: facts, priorities and key
research questions. The European respiratory journal. 2019;54(3).
163. Del Giacco SR, Bakirtas A, Bel E, et al. Allergy in severe asthma.Allergy. 2017;72(2):207-220.
164. Dougherty RH, Fahy JV. Acute exacerbations of asthma: epidemiology,
biology and the exacerbation-prone phenotype. Clinical and
experimental allergy : journal of the British Society for Allergy and
Clinical Immunology. 2009;39(2):193-202.
165. Calhoun WJ, Dick EC, Schwartz LB, Busse WW. A common cold virus,
rhinovirus 16, potentiates airway inflammation after segmental antigen
bronchoprovocation in allergic subjects. The Journal of clinical
investigation. 1994;94(6):2200-2208.
166. Peters-Golden M. Expanding roles for leukotrienes in airway
inflammation. Current allergy and asthma reports.2008;8(4):367-373.
167. Diamant Z, Hiltermann JT, van Rensen EL, et al. The effect of
inhaled leukotriene D4 and methacholine on sputum cell differentials in
asthma. American journal of respiratory and critical care
medicine. 1997;155(4):1247-1253.
168. Serrano-Candelas E, Martinez-Aranguren R, Valero A, et al.
Comparable actions of omalizumab on mast cells and basophils.Clinical and experimental allergy : journal of the British Society
for Allergy and Clinical Immunology. 2016;46(1):92-102.
169. Zhang HP, Jia CE, Lv Y, Gibson PG, Wang G. Montelukast for
prevention and treatment of asthma exacerbations in adults: Systematic
review and meta-analysis. Allergy and asthma proceedings.2014;35(4):278-287.
170. Yang J, Luo J, Yang L, et al. Efficacy and safety of antagonists
for chemoattractant receptor-homologous molecule expressed on Th2 cells
in adult patients with asthma: a meta-analysis and systematic review.Respiratory research. 2018;19(1):217.
171. Fitzgerald DA, Mellis CM. Leukotriene receptor antagonists in
virus-induced wheezing : evidence to date. Treatments in
respiratory medicine. 2006;5(6):407-417.
172. Laidlaw TM, Mullol J, Woessner KM, Amin N, Mannent LP. Chronic
Rhinosinusitis with Nasal Polyps and Asthma. J Allergy Clin
Immunol Pract. 2021;9(3):1133-1141.
173. Kowalski ML, Agache I, Bavbek S, et al. Diagnosis and management of
NSAID-Exacerbated Respiratory Disease (N-ERD)-a EAACI position paper.Allergy. 2019;74(1):28-39.
174. Celejewska-Wójcik N, Wójcik K, Ignacak-Popiel M, et al.
Subphenotypes of nonsteroidal antiinflammatory disease-exacerbated
respiratory disease identified by latent class analysis. Allergy.2020;75(4):831-840.
175. Christie PE, Tagari P, Ford-Hutchinson AW, et al. Urinary
leukotriene E4 concentrations increase after aspirin challenge in
aspirin-sensitive asthmatic subjects. Am Rev Respir Dis.1991;143(5 Pt 1):1025-1029.
176. Arm JP, O’Hickey SP, Spur BW, Lee TH. Airway responsiveness to
histamine and leukotriene E4 in subjects with aspirin-induced asthma.Am Rev Respir Dis. 1989;140(1):148-153.
177. Cowburn AS, Sladek K, Soja J, et al. Overexpression of leukotriene
C4 synthase in bronchial biopsies from patients with aspirin-intolerant
asthma. The Journal of clinical investigation.1998;101(4):834-846.
178. Corrigan CJ, Napoli RL, Meng Q, et al. Reduced expression of the
prostaglandin E2 receptor E-prostanoid 2 on bronchial mucosal leukocytes
in patients with aspirin-sensitive asthma. The Journal of allergy
and clinical immunology. 2012;129(6):1636-1646.
179. Szczeklik A, Mastalerz L, Nizankowska E, Cmiel A. Protective and
bronchodilator effects of prostaglandin E and salbutamol in
aspirin-induced asthma. American journal of respiratory and
critical care medicine. 1996;153(2):567-571.
180. Yamaguchi H, Higashi N, Mita H, et al. Urinary concentrations of
15-epimer of lipoxin A(4) are lower in patients with aspirin-intolerant
compared with aspirin-tolerant asthma. Clinical and experimental
allergy : journal of the British Society for Allergy and Clinical
Immunology. 2011;41(12):1711-1718.
181. Cahill KN, Bensko JC, Boyce JA, Laidlaw TM. Prostaglandin D₂: a
dominant mediator of aspirin-exacerbated respiratory disease. J
Allergy Clin Immunol. 2015;135(1):245-252.
182. Kowalski ML, Asero R, Bavbek S, et al. Classification and practical
approach to the diagnosis and management of hypersensitivity to
nonsteroidal anti-inflammatory drugs. Allergy.2013;68(10):1219-1232.
183. Flower RJ. The development of COX2 inhibitors. Nat Rev Drug
Discov. 2003;2(3):179-191.
184. Doña I, Barrionuevo E, Salas M, et al. NSAIDs-hypersensitivity
often induces a blended reaction pattern involving multiple organs.Sci Rep. 2018;8(1):16710.
185. FitzGerald GA. COX-2 and beyond: Approaches to prostaglandin
inhibition in human disease. Nat Rev Drug Discov.2003;2(11):879-890.
186. Warner TD, Giuliano F, Vojnovic I, Bukasa A, Mitchell JA, Vane JR.
Nonsteroid drug selectivities for cyclo-oxygenase-1 rather than
cyclo-oxygenase-2 are associated with human gastrointestinal toxicity: a
full in vitro analysis. Proc Natl Acad Sci U S A.1999;96(13):7563-7568.
187. Dona I, Perez-Sanchez N, Eguiluz-Gracia I, et al. Progress in
understanding hypersensitivity reactions to nonsteroidal
anti-inflammatory drugs. Allergy. 2020;75(3):561-575.
188. Eguiluz-Gracia I, Tay TR, Hew M, et al. Recent developments and
highlights in biomarkers in allergic diseases and asthma.Allergy. 2018;73(12):2290-2305.
189. Szczeklik A, Gryglewski RJ, Czerniawska-Mysik G. Relationship of
inhibition of prostaglandin biosynthesis by analgesics to asthma attacks
in aspirin-sensitive patients. British medical journal.1975;1(5949):67-69.
190. Zembowicz A, Mastalerz L, Setkowicz M, Radziszewski W, Szczeklik A.
Safety of cyclooxygenase 2 inhibitors and increased leukotriene
synthesis in chronic idiopathic urticaria with sensitivity to
nonsteroidal anti-inflammatory drugs. Arch Dermatol.2003;139(12):1577-1582.
191. Setkowicz M, Mastalerz L, Podolec-Rubis M, Sanak M, Szczeklik A.
Clinical course and urinary eicosanoids in patients with aspirin-induced
urticaria followed up for 4 years. The Journal of allergy and
clinical immunology. 2009;123(1):174-178.
192. Di Lorenzo G, Pacor ML, Candore G, et al. Polymorphisms of
cyclo-oxygenases and 5-lipo-oxygenase-activating protein are associated
with chronic spontaneous urticaria and urinary leukotriene E4.European journal of dermatology : EJD. 2011;21(1):47-52.
193. Doña I, Jurado-Escobar R, Perkins JR, et al. Eicosanoid mediator
profiles in different phenotypes of nonsteroidal anti-inflammatory
drug-induced urticaria. Allergy. 2019;74(6):1135-1144.
194. Di Lorenzo G, Pacor ML, Vignola AM, et al. Urinary metabolites of
histamine and leukotrienes before and after placebo-controlled challenge
with ASA and food additives in chronic urticaria patients.Allergy. 2002;57(12):1180-1186.
195. Mastalerz L, Setkowicz M, Sanak M, Szczeklik A. Hypersensitivity to
aspirin: common eicosanoid alterations in urticaria and asthma.The Journal of allergy and clinical immunology.2004;113(4):771-775.
196. Bohm I, Speck U, Schild H. A possible role for
cysteinyl-leukotrienes in non-ionic contrast media induced adverse
reactions. Eur J Radiol. 2005;55(3):431-436.
197. Stellato C, de Crescenzo G, Patella V, Mastronardi P, Mazzarella B,
Marone G. Human basophil/mast cell releasability. XI. Heterogeneity of
the effects of contrast media on mediator release. The Journal of
allergy and clinical immunology. 1996;97(3):838-850.
198. Cryer B, Feldman M. Cyclooxygenase-1 and cyclooxygenase-2
selectivity of widely used nonsteroidal anti-inflammatory drugs.Am J Med. 1998;104(5):413-421.
199. Waterbury LD, Silliman D, Jolas T. Comparison of cyclooxygenase
inhibitory activity and ocular anti-inflammatory effects of ketorolac
tromethamine and bromfenac sodium. Curr Med Res Opin.2006;22(6):1133-1140.
200. Mitchell JA, Akarasereenont P, Thiemermann C, Flower RJ, Vane JR.
Selectivity of nonsteroidal antiinflammatory drugs as inhibitors of
constitutive and inducible cyclooxygenase. Proc Natl Acad Sci U S
A. 1993;90(24):11693-11697.
201. Campos C, de Gregorio R, García-Nieto R, Gago F, Ortiz P, Alemany
S. Regulation of cyclooxygenase activity by metamizol. Eur J
Pharmacol. 1999;378(3):339-347.
202. Israel E, Cohn J, Dubé L, Drazen JM. Effect of treatment with
zileuton, a 5-lipoxygenase inhibitor, in patients with asthma. A
randomized controlled trial. Zileuton Clinical Trial Group. JAMA.1996;275(12):931-936.
203. Castro M, Kerwin E, Miller D, et al. Efficacy and safety of
fevipiprant in patients with uncontrolled asthma: Two replicate, phase
3, randomised, double-blind, placebo-controlled trials (ZEAL-1 and
ZEAL-2). EClinicalMedicine. 2021;35:100847.
204. Landray MJ, Haynes R, Hopewell JC, et al. Effects of
extended-release niacin with laropiprant in high-risk patients. N
Engl J Med. 2014;371(3):203-212.