References
1. Chen N, Zhou M, Dong X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. 2020;395:507-13.
2. Zhang Y. Initial genome release of novel coronavirus. 2020.
3. Wang L-s, Wang Y-r, Ye D-w, Liu Q-qJIJoAA. A review of the 2019 Novel Coronavirus (COVID-19) based on current evidence. 2020:105948.
4. Chen Y, Liu Q, Guo D. Emerging coronaviruses: Genome structure, replication, and pathogenesis. 2020;92:418-23.
5. Wang L-s, Wang Y-r, Ye D-w, Liu Q-q. A review of the 2019 Novel Coronavirus (COVID-19) based on current evidence. International Journal of Antimicrobial Agents 2020:105948.
6. Lu R, Zhao X, Li J, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. The Lancet 2020;395:565-74.
7. Lau SK, Woo PC, Li KS, et al. Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats. 2005;102:14040-5.
8. Liu Y, Gayle AA, Wilder-Smith A, Rocklöv JJJotm. The reproductive number of COVID-19 is higher compared to SARS coronavirus. 2020.
9. Zhang J-S, Chen J-T, Liu Y-X, et al. A serological survey on neutralizing antibody titer of SARS convalescent sera. 2005;77:147-50.
10. Shanmugaraj B, Siriwattananon K, Wangkanont K, Phoolcharoen WJAPJAI. Perspectives on monoclonal antibody therapy as potential therapeutic intervention for Coronavirus disease-19 (COVID-19). 2020:10-8.
11. Roberts A, Thomas WD, Guarner J, et al. Therapy with a severe acute respiratory syndrome–associated coronavirus–neutralizing human monoclonal antibody reduces disease severity and viral burden in golden Syrian Hamsters. 2006;193:685-92.
12. Zhao J, Yang Y, Huang H-P, et al. Relationship between the ABO Blood Group and the COVID-19 Susceptibility. 2020.
13. Guillon P, Clément M, Sébille V, et al. Inhibition of the interaction between the SARS-CoV spike protein and its cellular receptor by anti-histo-blood group antibodies. 2008;18:1085-93.
14. Sohrabi C, Alsafi Z, O’Neill N, et al. World Health Organization declares global emergency: A review of the 2019 novel coronavirus (COVID-19). International Journal of Surgery 2020;76:71-6.
15. Cucinotta D, Vanelli M. WHO Declares COVID-19 a Pandemic. Acta bio-medica : Atenei Parmensis 2020;91:157-60.
16. Winau F, Winau R. Emil von Behring and serum therapy. Microbes and Infection 2002;4:185-8.
17. Ahmed SF, Quadeer AA, McKay MR. Preliminary Identification of Potential Vaccine Targets for the COVID-19 Coronavirus (SARS-CoV-2) Based on SARS-CoV Immunological Studies. 2020;12:254.
18. Xie L, Sun C, Luo C, et al. SARS-CoV-2 and SARS-CoV spike-RBD structure and receptor binding comparison and potential implications on neutralizing antibody and vaccine development. 2020.
19. Hung IF, To KK, Lee C-K, et al. Convalescent plasma treatment reduced mortality in patients with severe pandemic influenza A (H1N1) 2009 virus infection. 2011;52:447-56.
20. Arabi Y, Balkhy H, Hajeer AH, et al. Feasibility, safety, clinical, and laboratory effects of convalescent plasma therapy for patients with Middle East respiratory syndrome coronavirus infection: a study protocol. 2015;4:1-8.
21. Cheng Y, Wong R, Soo Y, et al. Use of convalescent plasma therapy in SARS patients in Hong Kong. 2005;24:44-6.
22. Yeh K-M, Chiueh T-S, Siu L, et al. Experience of using convalescent plasma for severe acute respiratory syndrome among healthcare workers in a Taiwan hospital. 2005;56:919-22.
23. Bao L, Deng W, Gao H, et al. Reinfection could not occur in SARS-CoV-2 infected rhesus macaques. 2020.
24. Liang T, Cai H, Chen YJTFAH, Zhejiang University School of Medicine. Compiled According to Clinical Experience. Handbook of COVID-19 prevention and treatment. 2020.
25. Mair-Jenkins J, Saavedra-Campos M, Baillie JK, et al. The effectiveness of convalescent plasma and hyperimmune immunoglobulin for the treatment of severe acute respiratory infections of viral etiology: a systematic review and exploratory meta-analysis. 2015;211:80-90.
26. Lloyd-Sherlock P, Ebrahim S, Geffen L, McKee M. Bearing the brunt of covid-19: older people in low and middle income countries. 2020;368:m1052.
27. Batool Z, Durrani SH, Tariq SJJoAMCA. Association of ABO and Rh blood group types to hepatitis B, hepatitis C, HIV and Syphillis infection, a five year’experience in healthy blood donors in a tertiary care hospital. 2017;29:90-2.
28. Cheng Y, Cheng G, Chui C, et al. ABO blood group and susceptibility to severe acute respiratory syndrome. 2005;293:1447-51.
29. Dean L, Dean L. Blood groups and red cell antigens: NCBI Bethesda, Md, USA; 2005.
30. Walls AC, Park Y-J, Tortorici MA, Wall A, McGuire AT, Veesler D. Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell 2020.
31. Li F. Structure, Function, and Evolution of Coronavirus Spike Proteins. Annu Rev Virol 2016;3:237-61.
32. Xiao X, Chakraborti S, Dimitrov AS, Gramatikoff K, Dimitrov DS. The SARS-CoV S glycoprotein: expression and functional characterization. Biochemical and Biophysical Research Communications 2003;312:1159-64.
33. Ou X, Liu Y, Lei X, et al. Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. 2020;11:1-12.
34. Li W, Moore MJ, Vasilieva N, et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. 2003;426:450-4.
35. Prabakaran P, Xiao X, Dimitrov DSJB, communications br. A model of the ACE2 structure and function as a SARS-CoV receptor. 2004;314:235-41.
36. Keidar S, Kaplan M, Gamliel-Lazarovich AJCr. ACE2 of the heart: from angiotensin I to angiotensin (1–7). 2007;73:463-9.
37. Hamming I, Timens W, Bulthuis M, et al. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. 2004;203:631-7.
38. Zhou P, Yang X-L, Wang X-G, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. 2020;579:270-3.
39. Qiu T, Mao T, Wang Y, et al. Identification of potential cross-protective epitope between a new type of coronavirus (2019-nCoV) and severe acute respiratory syndrome virus. 2020;47:115-7.
40. LE PENDU J, MARIONNEAU S, CAILLEAU-THOMAS A, ROCHER J, LE MOULLAC-VAIDYE B, CLÉMENT M. ABH and Lewis histo-blood group antigens in cancer. 2001;109:9-26.
41. Zietz M, Tatonetti NPJm. Testing the association between blood type and COVID-19 infection, intubation, and death. 2020.
42. Arendrup M, Hansen J-E, Clausen H, Nielsen C, Mathiesen LR, Nielsen JOJA. Antibody to histo-blood group A antigen neutralizes HIV produced by lymphocytes from blood group A donors but not from blood group B or O donors. 1991;5:441-4.
43. Grant OC, Montgomery D, Ito K, Woods RJJb. 3D Models of glycosylated SARS-CoV-2 spike protein suggest challenges and opportunities for vaccine development. 2020.
44. Waldmann T. Monoclonal antibodies in diagnosis and therapy. 1991;252:1657-62.
45. Mulangu S, Dodd LE, Davey Jr RT, et al. A randomized, controlled trial of Ebola virus disease therapeutics. 2019;381:2293-303.
46. Pettitt J, Zeitlin L, Kim DH, et al. Therapeutic intervention of Ebola virus infection in rhesus macaques with the MB-003 monoclonal antibody cocktail. 2013;5:199ra13-ra13.
47. Long F, Doyle M, Fernandez E, et al. Structural basis of a potent human monoclonal antibody against Zika virus targeting a quaternary epitope. 2019;116:1591-6.
48. Tian X, Li C, Huang A, et al. Potent binding of 2019 novel coronavirus spike protein by a SARS coronavirus-specific human monoclonal antibody. 2020;9:382-5.
49. ter Meulen J, Bakker AB, van den Brink EN, et al. Human monoclonal antibody as prophylaxis for SARS coronavirus infection in ferrets. 2004;363:2139-41.
50. Ter Meulen J, Van Den Brink EN, Poon LL, et al. Human monoclonal antibody combination against SARS coronavirus: synergy and coverage of escape mutants. 2006;3.
51. Zhu Z, Chakraborti S, He Y, et al. Potent cross-reactive neutralization of SARS coronavirus isolates by human monoclonal antibodies. 2007;104:12123-8.
52. Berry JD, Hay K, Rini JM, et al. Neutralizing epitopes of the SARS-CoV S-protein cluster independent of repertoire, antigen structure or mAb technology. MAbs; 2010: Taylor & Francis. p. 53-66.
53. Elshabrawy HA, Coughlin MM, Baker SC, Prabhakar BSJPo. Human monoclonal antibodies against highly conserved HR1 and HR2 domains of the SARS-CoV spike protein are more broadly neutralizing. 2012;7.
54. Greenough TC, Babcock GJ, Roberts A, et al. Development and Characterization of a Severe Acute Respiratory Syndrome—Associated Coronavirus—Neutralizing Human Monoclonal Antibody That Provides Effective Immunoprophylaxis in Mice. 2005;191:507-14.
55. Sui J, Li W, Roberts A, et al. Evaluation of human monoclonal antibody 80R for immunoprophylaxis of severe acute respiratory syndrome by an animal study, epitope mapping, and analysis of spike variants. 2005;79:5900-6.
56. Coughlin MM, Prabhakar BSJRimv. Neutralizing human monoclonal antibodies to severe acute respiratory syndrome coronavirus: target, mechanism of action, and therapeutic potential. 2012;22:2-17.
57. Ng O-W, Keng C-T, Leung CS-W, Peiris JM, Poon LLM, Tan Y-JJPo. Substitution at aspartic acid 1128 in the SARS coronavirus spike glycoprotein mediates escape from a S2 domain-targeting neutralizing monoclonal antibody. 2014;9.
58. Lip K-M, Shen S, Yang X, et al. Monoclonal antibodies targeting the HR2 domain and the region immediately upstream of the HR2 of the S protein neutralize in vitro infection of severe acute respiratory syndrome coronavirus. 2006;80:941-50.
59. Walls AC, Xiong X, Park Y-J, et al. Unexpected receptor functional mimicry elucidates activation of coronavirus fusion. 2019;176:1026-39. e15.
60. Wong SK, Li W, Moore MJ, Choe H, Farzan MJJoBC. A 193-amino acid fragment of the SARS coronavirus S protein efficiently binds angiotensin-converting enzyme 2. 2004;279:3197-201.
61. Lanzavecchia A, Corti D, Sallusto F. Human monoclonal antibodies by immortalization of memory B cells. Current Opinion in Biotechnology 2007;18:523-8.
62. Kwakkenbos MJ, Diehl SA, Yasuda E, et al. Generation of stable monoclonal antibody–producing B cell receptor–positive human memory B cells by genetic programming. Nature Medicine 2010;16:123-8.
63. Traggiai E, Becker S, Subbarao K, et al. An efficient method to make human monoclonal antibodies from memory B cells: potent neutralization of SARS coronavirus. 2004;10:871-5.