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Abstract

This paper is about the study of space-time fractional Fokas-Lenells equation that
describes nonlinear wave propagation in optical fibers. Three prominent schemes are
employed for extracting different types of exact soliton solutions. In particular, the expa
function method, the hyperbolic function method and the simplest Riccati equation
scheme are investigated for the said model. As a sequela, a series of soliton solutions are
obtained and verified through MATHEMATICA. The obtained solutions are significant
additions in some specific fields of physics and engineering. Furthermore, the 3D
graphical descriptions are left to analyze the pulse propagation for the reader.

Keywords: Conformable space-time fractional Fokas-Lenells equation; Soliton solutions;
three integration schemes.

1 Introduction

Many complex nonlinear expressions arising in different fields related to science and en-
gineering such as plasma physics, biophysics, optical fibers, biology and nonlinear optics
are best described by the nonlinear fractional differential equations (NFPDEs). A series of
powerful schemes have been composed and executed to find the exact and other solutions of
NFPDEs. For this purpose, different wave transformations are applied to change the non-
linear partial differential equation into a non-linear ordinary differential equation, which
leads for further procedure to reach different types of solutions. The word soliton is used to
describe the particle characteristics of waves propagating in many complex phenomena in
nonlinear sciences, like non-linear optics, fluid dynamics, the linear fractional materialistic
progression of the waves in non-linear fibre optics [1].
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Many powerful approaches have established to search exact soliton solutions in differ-
ent research articles including the fractional exp-function method [2], the ansatz [3, 4],
fractional (G′/G)-expansion scheme [5], modified simple equation [6], the extended trial
equation [7], the fractional functional variable scheme [8], the unified method [9], the first
integral scheme [10, 11], sine-cosine approach [12] and Lie symmetry analysis [13]. There
are many other non-linear approaches that are taken into applications, Kerr law, power
law, parabolic law and dual-power law [14,15]. The chiral nonlinear Schrödinger equation
consists of a perturbation term and a coefficient of Bohm potential. The equation admits
a rich variety of families of optical solitons for a range of five parameters [16]. By using
the F -expansion scheme the explicit Jacobian elliptic solitons in birefringent fibers with
Spatio-temporal dispersion are obtained [17]. Optical solitons of the time-fractional wu-
Zhang system are obtained by using the first integral method [18]. To obtain the soliton
solutions of the space-time non-linear conformable fractional differential equations, Bo-
goyavlenskii equations, the Schrödinger-Hirota equation and the modified KDV-Zakharov-
Kuznetsov equation, two different schemes naming the first integral scheme [19] and the
functional variable scheme are applied [20]. The Sine-Gordon expansion scheme is used
to obtain the solitons of Lakshmanan-Porsezian-Daniel model [21, 22]. The solutions of
fractional Zakharov-Kuznetsov equation along dual-power law non-linearity in the sight of
conformable derivative, the Riccti sub equation scheme is used [23].
Khalil’s conformable fractional derivative as well as Liu’s extended method are used to
obtain the exact solutions along quadratic-cubic-septic non-linearity that are consists on
some perturbation terms. Results obtained are very useful in telecommunication indus-
try [24]. To describe the traveling waves of solutions in magneto-electro-elastic circular rod,
the non-linear longitudinal wave equation is investigated analytically [25–27]. In non-linear
optics, dark solutions show more diligence because of their balanced manual characteristics.
By adjusting corresponding parameters, one can control the periodicity and dimension of
the dark optical solutions of vibration [28,29].

The exact solutions of dynamics in optics with conformable space-time fractional Fokas–Lenells
equation [30] is described in this paper. The aforesaid equation is read as below:

ιDα
t ϕ+ a1D

2β
t ϕ+ a2D

α
t D

β
xϕ+ |ϕ|2(bϕ+ ισDβ

xϕ)

− ιδDβ
x − ιρDβ

x(|ϕ|2nϕ)− ιγϕDβ
x(|ϕ|2n) = 0, 0 < α, β ≤ 1,

(1)

while ι =
√
−1, ϕ(x, t) represents solitons molecules and other forms of nonlinear waves

where x and t are independent spatial and temporal variables respectively. The first term
in Eq. (1) represents the linear fractional physical transformation of the pulses in the non-
linear optical fibres. The coefficients a1, a2, δ, ρ and γ are the spatio-temporal dispersion
(STD), group velocity dispersion (GVD), inter-model dispersion (IMD), self-steepening
perturbation term and non-linear dispersion (ND) coefficient, respectively. The parameter
n represents the full nonlinearity of the Eq. (1). If we put α = β = 1, then Eq. (1) gets
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the form of the original Fokas-Lenells equation shown in the [37–39].
Three different types of approaches, the expa function method [31–33], the hyperbolic
function method [34–36] and the simplest equation method [43], are applied to obtain
optical solitons along with some forms of combo-solitons. The scheme of the paper is
represented as: Section (2) is about the limited explanation of the Expa function method
and the hyperbolic function method. Section (3) explain how to apply these methods for
finding new explicit solitons of conformable space-time fractional Fokas-Lenells equation.
At the end, the results are shown in the form of graphs.
Conformable Derivative: Some characteristics of conformable fractional derivative are
[40].
Definition 1: Consider p : (0,∞) → R be a function. Then, for all t > 0,

Dγ
t (p(t)) = lim

ε→0

p(t+ εt1−γ)− p(t)

ε

is known as γ, 0 < γ ≤ 1 order conformable fractional derivative of p. The following are
some useful properties:
Dγ

t (a p+ b q) = aDγ
t (p) + bDγ

t (q), for all a, b ∈ R
Dγ

t (p q) = p Dγ
t (q) + q Dγ

t (p)
Let p : R>0 → R be an γ-differentiable function, where q is a function that is differentiable
over the range defined for p.

Dγ
t (p ◦ q(t)) = t1−γ q′(t) p′(q(t)).

On the above of that, the following rules are valid.
Dγ

t (t
h) = h th−γ , for all h ∈ R

Dγ
t (δ) = 0, where δ is constant.

Dγ
t (p/q) =

qDγ
t (p)−pDγ

t (q)
q2

.

likewise, if p is differentiable, then Dγ
t (p(t)) = t1−γ dp(t)

dt .

2 Optical soliton solutions of Eq. (1) via three integration
schemes

Let us start with the complex-valued function ϕ(x, t) = ψ(η) expιΘ and the fractional
traveling wave transformation

η = ν(
xβ

β
− c

tα

α
) ,Θ = −κx

β

β
+ ω

tα

α
+ θ (2)

Dα
t ϕ = −cνψ′

expιΘ+ωψ expιΘ ι (3)

Dβ
xϕ = νψ

′
expιΘ−κψ expιΘ ι (4)
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D2β
x ϕ = ν2ψ

′′
expιΘ−2νκψ

′
expιΘ ι− κ2ψ expιΘ (5)

Dα
t D

β
xϕ = −cν2ψ′′

expιΘ+νωψ
′
expιΘ ι+ cνκψ

′
expιΘ ι+ κωψ expιΘ (6)

Dβ
x(|ϕ|2n) = 2nνψ

′
ψ2n+1 (7)

Dβ
x(|ϕ|2nϕ) = (2n+ 1)νψ2nψ

′
expιΘ−κψ2n+1 expιΘ ι (8)

By using the Eqs. (3)-(7) and (8) in Eq. (1), we get
Equating the real part:

ν2(a1 − a2c)ψ
′′
+ (a2κω − ω − a1κ

2 − δκ)ψ + (b+ κσ)ψ3 − κρψ2n+1 = 0. (9)

Equating the imaginary part:

(c+ δ + 2a1κ− a2(cκ+ ω)− σψ2 + (ρ+ 2nρ+ 2nγ)ψ2n)ψ
′
= 0. (10)

Considering n = 1, Eqs. (1)-(9) and (10) become:

ιDα
t ϕ+ a1D

2β
t ϕ+ a2D

α
t D

β
xϕ+ |ϕ|2(bϕ+ ισDβ

xϕ)

− ιδDβ
x − ιρDβ

x(|ϕ|2ϕ)− ιγϕDβ
x(|ϕ|2) = 0, 0 < α, β ≤ 1.

(11)

ν2(a1 − a2c)ψ
′′
+ (a2κω − ω − a1κ

2 − δκ)ψ + (b+ κσ)ψ3 − κρψ3 = 0. (12)

and

(c+ δ + 2a1κ− a2(cκ+ ω)− σψ2 + (3ρ+ 2γ)ψ2)ψ
′
= 0. (13)

respectively.
Putting (3ρ+ 2γ − σ) = 0 in Eq. (13), we obtained the following form:

σ = 3ρ+ 2γ (14)

and

c =
δ + 2a1κ− a2ω

a2κ− 1
, a2κ ̸= 1. (15)

2.1 The expa function scheme

Balancing ψ
′′
and ψ3 in Eq. (12), we attain N = 1. Consequently, the solution of Eq. (12)

can be represented in symmetrical extended form as [31–33]:

ψ(η) =
α0 + α1a

η

β0 + β1aη
(16)

By putting Eq. (16) into Eq. (12) and using Eq. (2), we obtain a series of polynomials
in the powers of aη. By assimilating all the coefficients of these polynomials to zero, we
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attain a system of non-linear equations. By Mathematical tool, the below different types
of soliton sets are obtained:
Set 1:

α0 = −
ιβ0

√
ν0√

−b+ κρ− κσ
, α1 =

ιβ1
√
ν0√

−b+ κρ− κσ
,

ν = ∓
√
2
√
ν0√

a2c log
2(a)− a1 log

2(a)
, ν0 = a1κ

2 − a2κω + δκ+ ω.
(17)

ϕ1(x, t) = −
ι
√
ν0(β0 − β1a

ν(x
β

β
− ctα

α
)
)√

κ(ρ− σ)− b(β1a
ν(x

β

β
− ctα

α
)
+ β0)

× exp(ι(θ +
ωtα

α
+

(−κ)xβ

β
)) (18)

where ν and ν0 given in Eq. (17).
Set 2:

α0 =
ιβ0

√
ν0√

−b+ κρ− κσ
, α1 = −

ιβ1
√
ν0√

−b+ κρ− κσ
,

ν = ∓
√
2
√
ν0√

a2c log
2(a)− a1 log

2(a)
, ν0 = a1κ

2 − a2κω + δκ+ ω.
(19)

ϕ2(x, t) =
ι
√
ν0(β0 − β1a

ν(x
β

β
− ctα

α
)
)√

κ(ρ− σ)− b(β1a
ν(x

β

β
− ctα

α
)
+ β0)

× exp(ι(θ +
ωtα

α
+

(−κ)xβ

β
)) (20)

where ν and ν0 are given in Eq. (19).
Here the three types of 3D graphics are displayed in figures 1-2 for some of solutions.
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Figure 1: 3D wave profiles of |ϕ(x, t)1| for different α = 0.5, 0.8, 1. values, appears in
Eq. (18), are displayed corresponding to b = −3, a2 = 2, ω = κ = δ = 1, and a1 = 1.
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Figure 2: 3D wave profiles of Real(ϕ(x, t)1) for different α = 0.5, 0.8, 1. values, appears in
Eq. (18), are displayed corresponding to b = −3, a2 = 2, ω = κ = δ = 1, and a1 = 1.
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2.2 The hyperbolic function scheme

Now we apply the hyperbolic functions scheme [34,35,41,42] to the conformable space-time
fractional Fokas-Lnells Eq. (11).
Case 1:

dρ

dη
= sinh(ρ) (21)

Balancing ψ
′′
and ψ3 in Eq. (12), we attain N = 1.

ψ(ξ) = A1 cosh(w(ξ)) +A0 +B1 sinh(w(ξ)). (22)

where A1 and B1 can not be both zero at a time.
By putting the Eq. (22) into the Eq. (12), and comparing coefficients, we will obtain a sets
of non-linear algebraic equations and finally by solving them we get the following different
solutions:
Set 1:

A0 = 0, A1 = 0, B1 = −
√
2
√
ν0√

b− κρ+ κσ
, ν = ∓

√
ν0√

a2c− a1
, ν0 = −(a1κ

2 − a2κω + δκ+ ω).

(23)

ϕ1(x, t) =

√
2
√
ν0√

b+ κ(σ − ρ)
csch(ν(

xβ

β
− ctα

α
))× exp(ι(θ +

ωtα

α
+

(−κ)xβ

β
)) (24)

Set 2:

A0 = 0, A1 = 0, B1 =

√
2
√
ν0√

b− κρ+ κσ
, ν = ∓

√
ν0√

a2c− a1
, ν0 = −(a1κ

2−a2κω+δκ+ω). (25)

ϕ2(x, t) = −
√
2
√
ν0√

b+ κ(σ − ρ)
csch(ν(

xβ

β
− ctα

α
))× exp(ι(θ +

ωtα

α
+

(−κ)xβ

β
)) (26)

Set 3:

A0 = 0, A1 = −
√
ν0√

b− κρ+ κσ
,B1 = 0, ν = ∓

√
ν0√

2
√
a2c− a1

, ν0 = a1κ
2 − a2κω + δκ+ ω.

(27)

ϕ3(x, t) =

√
ν0√

b+ κ(σ − ρ)
coth(ν(

xβ

β
− ctα

α
))× exp(ι(θ +

ωtα

α
+

(−κ)xβ

β
)) (28)

Set 4:

A0 = 0, A1 = −
√
ν0√

b− κρ+ κσ
, B1 = −

√
ν0√

b− κρ+ κσ
,

ν = ∓
√
2
√
ν0√

a2c− a1
, ν0 = a1κ

2 − a2κω + δκ+ ω.

(29)
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ϕ4(x, t) =

√
ν0√

b+ κ(σ − ρ)
(coth(ν(

xβ

β
−ct

α

α
))+csch(ν(

xβ

β
−ct

α

α
)))× exp(ι(θ+

ωtα

α
+
(−κ)xβ

β
))

(30)
Set 5:

A0 = 0, A1 = −
√
ν0√

b− κρ+ κσ
, B1 =

√
ν0√

b− κρ+ κσ
,

ν = ∓
√
2
√
ν0√

a2c− a1
, ν0 = a1κ

2 − a2κω + δκ+ ω.

(31)

ϕ5(x, t) =

√
ν0√

b+ κ(σ − ρ)
(csch(ν(

xβ

β
−ct

α

α
))−coth(ν(

xβ

β
−ct

α

α
)))× exp(ι(θ+

ωtα

α
+
(−κ)xβ

β
))

(32)
Set 6:

A0 = 0, A1 =

√
ν0√

b− κρ+ κσ
, B1 = 0, ν = ∓

√
ν0√

2
√
a2c− a1

, ν0 = a1κ
2 − a2κω + δκ+ ω.

(33)

ϕ6(x, t) = −
√
ν0√

b− κρ+ κσ
coth

(
ν

(
xβ

β
− ctα

α

)))
× exp ι

(
θ +

ωtα

α
+

(−κ)xβ

β

)
(34)

Set 7:

A0 = 0, A1 =

√
ν0√

b− κρ+ κσ
, B1 = −

√
ν0√

b− κρ+ κσ
,

ν = ∓
√
2
√
ν0√

a2c− a1
, ν0 = a1κ

2 − a2κω + δκ+ ω.

(35)

ϕ7(x, t) =

√
ν0√

b+ κ(σ − ρ)
(coth(ν(

xβ

β
−ct

α

α
))+csch(ν(

xβ

β
−ct

α

α
)))× exp(ι(θ+

ωtα

α
+
(−κ)xβ

β
))

(36)
Set 8:

A0 = 0, A1 =

√
ν0√

b− κρ+ κσ
, B1 =

√
ν0√

b− κρ+ κσ
,

ν = ∓
√
2
√
ν0√

a2c− a1
, ν0 = a1κ

2 − a2κω + δκ+ ω.

(37)

ϕ8(x, t) = −
√
ν0√

b+ κ(σ − ρ)
(coth(ν(

xβ

β
−ct

α

α
))+csch(ν(

xβ

β
−ct

α

α
)))×exp(ι(θ+

ωtα

α
+
(−κ)xβ

β
))

(38)
Here the three types of 3D graphics are displayed in figures 3-4 for some of solutions.
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Figure 3: 3D wave profiles of |ϕ(x, t)1| for different α = 0.5, 0.8, 1. values, appears in
Eq. (24), are displayed corresponding to b = −3, a2 = 2, ω = κ = δ = 1, and a1 = 1.
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Figure 4: 3D wave profiles of Real(ϕ(x, t)1) for different α = 0.5, 0.8, 1. values, appears in
Eq. (24), are displayed corresponding to b = −2, κ = 2, a2 = ω = δ = 1, and a1 = −1.

Case 2:
dρ

dη
= cosh(ρ) (39)
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In the same way describe above, we can get a system of non-linear algebraic equations and
solving them we get the below solutions:
Set 1:

A0 = 0, A1 = −
√
2
√
ν0√

b− κρ+ κσ
, B1 = 0, ν = ∓

√
ν0√

a2c− a1
, ν0 = a1κ

2−a2κω+δκ+ω. (40)

ϕ1(x, t) = −
√
2
√
ν0√

b+ κ(σ − ρ)
csc(ν(

xβ

β
− ctα

α
))× exp(ι(θ +

ωtα

α
+

(−κ)xβ

β
)) (41)

Set 2:

A0 = 0, A1 =

√
2
√
ν0√

b− κρ+ κσ
, B1 = 0, ν = ∓

√
ν0√

a2c− a1
, ν0 = a1κ

2−a2κω+δκ+ω. (42)

ϕ2(x, t) =

√
2
√
ν0√

b− κρ+ κσ
csc(ν(

xβ

β
− ctα

α
))× exp(ι(θ +

ωtα

α
+

(−κ)xβ

β
)) (43)

Set 3:

A0 = 0, A1 = 0, B1 = −
√
ν0√

b− κρ+ κσ
, ν = ∓

√
ν0√

2
√
a2c− a1

, ν0 = −(a1κ
2−a2κω+δκ+ω).

(44)

ϕ3(x, t) =

√
−a1κ2 + a2κω − δκ− ω√

b+ κ(σ − ρ)
cot(ν(

xβ

β
− ctα

α
))× exp(ι(θ +

ωtα

α
+

(−κ)xβ

β
)) (45)

Set 4:

A0 = 0, A1 = −
√
ν0√

b− κρ+ κσ
, B1 = −

√
ν0√

b− κρ+ κσ
,

ν = ∓
√
2
√
ν0√

a2c− a1
, ν0 = −(a1κ

2 − a2κω + δκ+ ω).

(46)

ϕ4(x, t) = −
√
ν0√

b+ κ(σ − ρ)
(csc(ν(

xβ

β
−ct

α

α
))−cot(ν(

xβ

β
−ct

α

α
)))× exp(ι(θ+

ωtα

α
+
(−κ)xβ

β
))

(47)
Set 5:

A0 = 0, A1 =

√
ν0√

b− κρ+ κσ
, B1 = −

√
ν0√

b− κρ+ κσ
,

ν = ∓
√
2
√
ν0√

a2c− a1
, ν0 = −(a1κ

2 − a2κω + δκ+ ω).

(48)

ϕ5(x, t) =

√
ν0√

b+ κ(σ − ρ)
(cot(ν(

xβ

β
− ctα

α
))+csc(ν(

xβ

β
− ctα

α
)))×exp(ι(θ+

ωtα

α
+
(−κ)xβ

β
))

(49)
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Set 6:

A0 = 0, A1 = 0, B1 =

√
ν0√

b− κρ+ κσ
, ν = ∓

√
ν0√

2
√
a2c− a1

, ν0 = −(a1κ
2−a2κω+ δκ+ω).

(50)

ϕ6(x, t) = −
√
ν0√

b+ κ(σ − ρ)
cot(ν(

xβ

β
− ctα

α
))× exp(ι(θ +

ωtα

α
+

(−κ)xβ

β
)) (51)

Set 7:

A0 = 0, A1 = −
√
ν0√

b− κρ+ κσ
, B1 =

√
ν0√

b− κρ+ κσ
,

ν = ∓
√
2
√
ν0√

a2c− a1
, ν0 = −(a1κ

2 − a2κω + δκ+ ω).

(52)

ϕ7(x, t) = −
√
ν0√

b+ κ(σ − ρ)
(cot(ν(

xβ

β
−ct

α

α
))+csc(ν(

xβ

β
−ct

α

α
)))× exp(ι(θ+

ωtα

α
+
(−κ)xβ

β
))

(53)
Set 8:

A0 = 0, A1 =

√
ν0√

b− κρ+ κσ
, B1 =

√
ν0√

b− κρ+ κσ
,

ν = ∓
√
2
√
ν0√

a2c− a1
, ν0 = −(a1κ

2 − a2κω + δκ+ ω).

(54)

ϕ8(x, t) =

√
ν0√

b+ κ(σ − ρ)
(csc(ν(

xβ

β
− ctα

α
))− cot(ν(

xβ

β
− ctα

α
)))

× exp(ι(θ +
ωtα

α
+

(−κ)xβ

β
)) (55)

2.3 The simplest riccati equation scheme

By putting the solution in a finite series form given in [43] as:

U(η) =
m∑
i=1

biφ
i(η) (56)

where bi(i = 1, 2, ...,m) are non-variables to be find out and factor bm ̸= 0. The function
φ(η) fulfills the some ODEs. In this research, we use the Riccati equations as the simplest
equation

φ′(η) = φ2(η) + Ω (57)
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where Ω is a non-variable and the prime represent derivative w.r.t η. After that we get
family of solutions to Eq. (57) due to variations of Ω, see [43]. Using Eq. (56) in Eq. (12)
with along Eq. (57), one may establish a polynomial in φ. After comparing the coefficients
of said polynomial equal to zero, one can obtain a set of non-linear algebraic equations.
With the help of symbolic software mathematica, we solve the obtained set of equations
for the values of b0, b1, ν and are approached to the following results:
Case 1:

b0 = 0, b1 = −
√
ν0√

bΩ− kρΩ+ kσΩ
, ν = ±

√
ν√

2
√
a2cΩ− a1Ω

, ν = a1k
2 − a2kω + δk + ω.

When Ω < 0,
Hence, we gain the solitary wave solution

u(x, t) = −
√
ν√

bΩ− kρΩ+ kσΩ
(−

√
−Ωtanh

(√
−Ω

(
ν(
xβ

β
− c

tα

α
)

))
)× e

i(−k xβ

β
+ω tα

α
+θ)

(58)
or

u(x, t) = −
√
ν0√

bΩ− kρΩ+ kσΩ
(−

√
−Ωcoth

(√
−Ω

(
ν(
xβ

β
− c

tα

α
)

))
)× e

i(−k xβ

β
+ω tα

α
+θ)

.

(59)
When Ω > 0,
Hence, we gain the periodic function solution

u(x, t) = −
√
ν0√

bΩ− kρΩ+ kσΩ
(
√
Ωtan

(√
Ω

(
ν(
xβ

β
− c

tα

α
)

))
)× e

i(−k xβ

β
+ω tα

α
+θ)

(60)

or

u(x, t) = −
√
ν0√

bΩ− kρΩ+ kσΩ
(−

√
Ωcot

(√
Ω

(
ν(
xβ

β
− c

tα

α
)

))
)× e

i(−k xβ

β
+ω tα

α
+θ)

. (61)

Case 2:

b0 = 0, b1 =

√
ν0√

bΩ− kρΩ+ kσΩ
, ν = ±

√
ν0√

2
√
a2cΩ− a1Ω

, ν0 = a1k
2 − a2kω + δk + ω.

When Ω < 0,
Hence, we gain the solitary wave solution

u(x, t) =

√
ν0√

bΩ− kρΩ+ kσΩ
(−

√
−Ωtanh

(√
−Ω

(
ν(
xβ

β
− c

tα

α
)

))
)× e

i(−k xβ

β
+ω tα

α
+θ)

(62)
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or

u(x, t) =

√
ν0√

bΩ− kρΩ+ kσΩ
(−

√
−Ωcoth

(√
−Ω

(
ν(
xβ

β
− c

tα

α
)

))
)× e

i(−k xβ

β
+ω tα

α
+θ)

.

(63)
When Ω > 0,
Hence, we gain the periodic function solution

u(x, t) =

√
ν0√

bΩ− kρΩ+ kσΩ
(
√
Ωtan

(√
Ω

(
ν(
xβ

β
− c

tα

α
)

))
)× e

i(−k xβ

β
+ω tα

α
+θ)

(64)

or

u(x, t) =

√
ν0√

bΩ− kρΩ+ kσΩ
(−

√
Ωcot

(√
Ω

(
ν(
xβ

β
− c

tα

α
)

))
)× e

i(−k xβ

β
+ω tα

α
+θ)

. (65)

Here the three types of 3D graphics are displayed in figures 5-6 for some of solutions.

0

5

0.5

1

5

1.5

(a)

t

0

2

x

0

-5 -5

0

0.05

5

0.1

0.15

0.2

5

0.25

0.3

(b)

t

0

0.35

x

0.4

0

-5 -5

0

0.05

5

0.1

0.15

0.2

5

0.25

0.3

(c)

t

0

0.35

x

0.4

0

-5 -5

Figure 5: 3D wave profiles of |ϕ(x, t)1| for different α = 0.5, 0.8, 1. values, appears in
Eq. (58), are displayed corresponding to b = −2, a2 = ω = δ = 1, and a1 = κ = −1.
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Figure 6: 3D wave profiles of Real(ϕ(x, t)1) for different α = 0.5, 0.8, 1. values, appears in
Eq. (58), are displayed corresponding to b = −2, a2 = ω = δ = 1, and a1 = κ = −1.

3 Conclusion

The dark, singular and combined exact soliton solutions of the space-time fractional Fokas-
Lenells equation that modelled the nonlinear propagation in optical fibers have been es-
tablished. A complex travelling wave transformation and the conformable differentiation
are used to transform the fractional-order derivative into an ordinary one. In particular,
three important integration schemes, the Expa function, the hyperbolic function and the
simplest equation schemes, are employed. The obtained solutions, with certain conditions
between constants, are also described by their 3D-graphs via numerical simulation.
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