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Abstract 
In this article, imperssive exact solutions and hence effective regulations to the non-fractional order and the 

time-fractional order of the biological population models are achevied for the first time in the framwork of 

the Paul-Painlevé approach. When the variables appearing in the exact solutions take specific values, the 

solaitry wave solutions will be easily satisfied.The realized results prove the efficiency of this technique. 
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1. Introduction 

The biological population process is one of the most important principal pillars on which the 

population regulation process depends. The principal axes that identfy this scheme and play a vital 

role to the population regulation process  are position, time and density.Two important 

mathematical models are invented to study these population process, namely: 

(i)-The (2+1)-dimentional non-fractional Zoomeron model (NFZM) mentioned at [1], [2] which is 

a forward stretch for the well knowen (1+1)-NFZM “extensively investigated in the literature “ 

that describes special cases of solitons achieved in different branches of physics. 

(ii)-The time-fractional biological population model (TFBPM) mentioned at [3] which is the other  

well known model that represents the population processes. Particullary, Gurney [4] gives a good 

model to the TFBPM for animals which is a special case of the (2+1)- NFZM. 

Many scientists invented several methods to study the nonlinear partial differential equations. The 

majority of these methods are included in the refrences [5-21]. Recently in the literature, there are 

few works which study these suggested equations. Especially Abazari [22] obtained periodic and 

soliton solutions to Zoomeron equation by means of (G’/G)-expansion method, Kamruzzaman 

Khan, M. Ali Akbar, Md. Abdus Salam, Md. Hamidul Islam [23] using the (G’/G)-expansion 

method to find the traveling wave solutions to the (2+1)-dimensional Zoomeron equation. 

 

The main target of this article is to realize new impressive regulations for the biological population 

models through obtaining the exact solution to these two models (which containe some variables) 

using the Paul-Painlevé approach [24]. When these variables take specific values, we will achieve  

the solaitry wave solutions. 

 

2. Technique description of the Paul-Painlevé approach 
 

To propose this approach , let us firstly propose the general forlasim of the nonlinear evolution 

equation, let us introduce R as a function of (x,t) and its partial derivatives as,  
 



( , , , , ,......) 0,x t xx ttR                                                            (1)                                                     
                                                                                                                                             

 

 

that invoves the highest order derivatives and nonlinear terms. With the aid of the transformation  

0( , ) ( ),x t x C t        equation (2) can be reduced to the following ODE:  

                                                                                                       

                       ( , , ,......) 0,S      
                                                           (2) 

 

Where,    is a function in ( )  and its total derivatives, while   
 

  
.  

According to Paul-Painlevé [24], the exact solution to the nonlinear ordinary differential equation 

can be written in the following form,  
  

0( ) ( ) , ( ) ,NA W X e X R    
                                                   (3) 

Or 
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3. The exact solution to (2+1)-NFZM -equation 
 

In this section, we will apply the Paul-Painlevé as a new technique to realize the exact solution to 

the (2+1)- NFZM [1], "in terms of some variables". Hence, we can easily obtain the traveling wave 

solutions when these variables take specific values. According to [1], [2] the (2+1)-NFZM 

-equation can be written as, 
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Where ( , , ) ( ),x y t x y kt        indicates the amplitude of the relative wave mode.Under this 

transformation equation (9) becomes, 
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Integrating twice with respect to we get,  
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1( 1) 2 0k k k                                         (11) 

           
                  

Where 1k indicates the constancy of integration 

Substituting , ,    at Eq. (10) and equating the coefficients of different powers of ( ) NW e  

to zero, this system of equations implies, 
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When one solves this system, the following results are achieved, 
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Choose 12, 3k k  these two results become, 
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Now, the suggested solution according to the proposed method is; 
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which can be written as, 
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As for the obtained result, it becomes, 
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From which we get these cases; 
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Figure 1. The plot of Eq.(18) in 2D and 3D with values: 0 0 1
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Figure 2. The plot of Eq.(19) in 2D and 3D with values: 0 0 1
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Figure 3. The plot of Eq.(20) in 2D and3D with values: 0 0 1
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Figure 4. The plot of Eq.(21) in 2D and 3D with values: 0 0 1
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Figure 5. The plot of Eq.(22) in 2D and 3D with value 0 0 1
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Figure 6. The plot of Eq.(23) in 2D and 3D with value 0 0 1
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4. Some knots about fractional calculus  

 

Before we apply the Paul-Painlevé approach mentioned above to the TFBPM [3], we firstly give 

some knots about the fractional calculus [25],  

 
Caputo’s fractional derivative [26-34] 

 

Although the fractional calculus is a powerful tool to describe the physical phenomena systems which have 

long-term memory and long-range spatial interaction, there exists distortion between fractional mild and 

strong solutions. This confusion due to the fact that the fractional differential equation introduced a 

non-differentiable solution, this makes solution process difficult, but an approximate continuous solution 

can be realized if we observe the discontinuous solution. In this section we build Preliminary notes and 

remind some distinctive relations to Riemann–Liouville derivatives 
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DEFINITION 1: 

A real function ( ), 0g x x  is supposed to be in space ,D   if there exists a real number ,q   

Such that 1( ) ( ),qg x x g x Where 1( ) [0, )g x D                                                  

 

DEFINITION 2: 

A real function ( ), 0g x x is supposed to be in space , {0}mD m N   if
mg D .                 (24) 

 

DEFINITION 3: 

Let 1g D and    , then the left hand side of Riemann–Liouville integral of order , 0  is given by 
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DEFINITION 4: 

The (left-sided) Caputo partial fractional derivative of g with respect to t , 1 , {0}mg D m N  , is 

defined as  
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Furthermore, according to Grünwald–Letnikov,Caputo and Riemann–Liouville [26, 27] and the Modified 

Riemann- Liouville derivative by Jumarie [28, 29]. These definitions and some properties for the 

Jumarie’s derivative of order   are listed as follows, 
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Moreover, the operator tD
 satisfies the following basic properties: 
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Also, let us introduce the cconformable fractional derivative which is stated as follows, 

If the function :[0, ) ,   thus the conformable fractional derivative of ( ) , 0x x is defined 

as 
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For which all original differentiation rules that applied for the ordinary functions have been 

realized [40].  

Now, Let us propose the general form of the NLFPDE in terms of  the modified 

Riemann-Liouville derivatives ,t xD D   as, 
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According to [33, 34] the fractal derivative can be generally defined as, 
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wher 0x  is the smallest scale beyond which there is no physical understanding. Now, using the fractional 

complex nonlinear transformation[30,34], 

0( , ) ( ),
(1 ) (1 )

k x ct
x t

 

    
 

   
   

                                  (41)              

(where 0, andk c  are constant with , 0k c  ), we will transform equation (39) to this ordinary 

differential equation (ODE) with integer order, namely: 
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According to [3], the TFBPM is given as: 
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   ,      ,      , while  and 2( )r   represent the density and the princple support 

of population respictvely bulit on births and deaths while λ, and r are constants. 

 

 5. The exact solution to the time-fraction order of the biological population model 
 

To apply the cosructed approach to the time-fraction order of the biological population model 

(TFBPM), 

let us consider this complex transformation, 
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Thus, according to this transformation Eq. (33) becomes, 
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Hence, according to the proposed method the suggested solution is; 
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Substituting 2 , ,  at Eq. (45) and equating the coefficients of different powers of ( ) NW e   to 

zero, this system of equations implies, 
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When one solves this system, the following results are achieved, 
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According to the proposed method the solution is, 
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As for the obtained result, it becomes, 
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From which we get these cases; 
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 Figure 7. The plot of Eq.(51) in 2D and 3D with value 0 02, 0.5, 2, 1, 2, 4, 2,A A N X k r         

 

Case (2): 0

2 2
, ,

3

r
A r A N

c


  

 
2

2

02

( ) ,

1

r

c

r

c

r

c

e
r

e
X

c









 



 
 
 
  

 
 

                                                 (52)

 

 

 
Figure 8. The plot of Eq.(52) in 2D and 3D with value 0 02, 0.5, 2, 1, 2, 4, 2,A A N X k r          
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Figure 9. The plot of Eq.(53) in 2D and 3D with value 0 02, 0.5, 2, 1, 2, 4, 2,A A N X k r          
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 Figure 10. The plot of Eq.(54) in 2D and 3D with values;

 
0 02, 0.5, 2, 1, 2, 4, 2,A A N X k r           

 
 

6.Results and discussion 

 
(a) Firstly, for the (2+1)-dimensional Zoomeron model according to the obtained results and the 

corresponding figures (1-6) we notice that the proposed technique achieved solutions which 

weren’t satisfied by [22], [23] whose using the (G'/G)-expansion method. In adtion to, there are 

many solutions realized using the proposed method which weren’t obtained using [41] which use 

the exp-function method. Furthermore, the simulation of the solitary solutions is achieved as [42] 

for the bounded traveling wave solution of this model using the bifurcation method of dynamical 

system and numerical simulation method. Also some of the obtained solutions are agreements with 

the solution achieved by [43] in some cases and increase in other cases. 

(b) For the time fraction population equation, some of the achieved solutions using the constructed 

technique are more accurate than obtained by [36] who use the Homotopy analysis sumudu 

transformation method and [39],[40] whose use Homotopy perturbation method and Homotopy 

analysis respectivlyand the other are new.  
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7. Conclusion 

The Paul-Painlevé approach has been effectively used for the first time to find new imperssive 

regulations for the biological population models with its different forms which are the 

non-fractional order biological population (2+1)-Zoomeron model (NFBPZM) Figures (1-6) and 

the time-fractional order biological population model (TFBPM) Figures (7-10). Some of the 

realized results agree with the results previously obtained by other authors [22, 23] for the 

NFBPZM and [36], [38-40] for TFBPM in some cases and increase in other cases. The satisfying 

results of this new accurate regulations prove the efficiency of this tichnique. 
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