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Global mild solution for the Navier—Stokes—
Nernst—Planck—Poisson system in Besov-weak-
Herz spaces

Aibo Liu and Jianing Xie!

Abstract. We study a coupled Navier—Stokes—Nernst—Planck—Poisson
system arising from electrohydrodynamics in critical Besov-weak-Herz
spaces. When the initial value sufficiently small, we prove the existence
and uniqueness of global mild solution to the cauchy problem in this
spaces for n > 3. The spaces is larger than some other known critical
spaces.

Keywords. Mild solution; Well-posedness; Besov-weak-Herz spaces; Crit-
ical.

1. introduction

In this paper, we study well-posedness of the following Navier—-Stokes—Nernst—
Planck—Poisson system modeling the motion of an isothermal, incompressible
and viscous Newtonian fluid of charged particles in Besov-weak-Herz spaces

ur+ (u-V)u+ Vp=Au+ A¢pVe in R” x Ry,
V-ou=0 inR"xRy,

ve+ (u- Vo=V -(Vuv—vVg) inR” xRy,

w+ (u- Vo=V (Vw+wVe) inR” xRy,
Ap=v—w inR" xRy,

(u, v, w)|t=0 = (ug, v, wp) in R™

where n > 3, (z,t) € R™ x Ry, u(z,t) € R” denotes the velocity field of the
fluid, p(z,t) € R denotes the pressure, ¢(z,t) € R denotes the electrostatic
potential, {v(z,t), w(z,t)} € R denote the charge densities of the negatively
and positively charged particles, respectively. ApV ¢ stand for Lorenz force
exerted by charged particles.

If v = w = 0, system (1.1) reduces into the well-known nonhomogeneous
incompressible Navier—Stokes equations. It has been paid great attentions for
many years.

If u =0, system (1.1) reduces into the Nernst—Planck—Poisson system,
this system can be regard as degenerate parabolic equations coupled with
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elliptic equation, it has drawn much attention of analysts during the past
years.

For system (1.1), the results are much less, the local smooth solution
has be established in [3], weak solution and regularity in bounded domain
be established in [4] and [5], the global well-posedness for small initial da-
ta in negative-order Besov spaces has be studied in [1], in the modulation
and Lebesgue spaces can refer to [2] and [6], recently, some logarithmical
regularity criteria results be obtained in [7].

Besov-weak-Herz spaces (BWH-spaces) was first introduced in [8](2018)
for deal with the global well-posedness of incompressible Navier-Stokes equa-
tions. In fact, one has the chain of critical spaces given by the continuous
embedding for appropriate index

HEU(R") < L"(R") < L™®(R") < Bp > (R") < BMO~ (R"),

rough speaking, BMO~! and Besov morrey space N,/ " are maximal critical
spaces in the sense that it is not known a larger critical space small solutions
are globally well-posed for Navier-Stokes equations. We also do not known
whether there are inclusion relations between Besov-weak-Herz sapces and
BMO™ or between Besov-weak-Herz sapces and Nr?qjoi, for more detail see
[8]. It clearly that

oo+ —1

Bp?o_ol(Rn) — BWszq,oop (R™),

for appropriate index, so Besov-weak-Herz sapces BWK®:5  can be regard

as expanse critical spaces. e
From (1.1)5, we have
¢=(-A)"Hw—-v)=C 7(10@) — vEyQ))dy for n >3, (1.2)
O T
v¢ — V(—A)_l(w _ ’U) =0, (m — y)(w(y)n_ v(y))dy (13)
Rn lz =y
< C’l/ 7(1”@) — Ug»dy for n >3,
nor =yl

where (—A)~! and V(—A)~! are fourier multiplication operators with sym-
bol |£]|72 and £/|€|72 | they can be regard as Calderén—Zygmund singular
integral operators. Consider a detail, where C' = 2727~ 5T(%;2)/T'(1) and
['(-) is the Gamma functions, C] is a similar constant. Applying the Leray—
Hopf projector P, free divergence conditions and using Duhamel’s principle,
the Cauchy problem (1.1) can be reduced to the integral system:

= G(t)up + B1(u,u) + Ba(w — v, w — v),
= G(t)vy + Bs(u,v) + By(v,w — v), (1.4)
= G(t)wo + Bs(u,w) — By(w,w — v),
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where

B (u,u) = — / t eIAPY - (u @ u)(7)dr,

/t e"IAP(WV (= A) " tw)(7)dr,

0
/ (=DAY . (uv)(r)dr.
0
t
By(v /e(t DAY . (vV(=A) " w)(r)dr,
0

we note a®b := (a;b;)1<i,j<n is tensor product function. The operator P can
be expressed as P = (P; j)nxn where P; ; :=0; j +R;R;, d; ; is the Kronecker
delta and R; = (—A)71/29; is the i-th Riesz transform. G(t) = €' be the
pseudo-differential operator with symbol e~*¢ *. By critical, which mean that
we want to solve the system in functional spaces with norm independent of
the changes of scales which leaves the system invariant. Note that if u, v, w
are smooth solutions for (1.1)(or (1.4)), then

up(z,t) == Mu(dxz, \2t),  oa(x,t) := p(Ax, \%t), (1.5)
oa(z,t) = Moz, \%t),  wa(z,t) = N2w(hz, \°t),
are also solutions with initial data

(uo)r(z) = Au(Az), (¢o)a(z) = d(Az), (1.6)
(vo)a(x) = N2v(Az), (wo)a(x) = N2w(Ax).

Compare to the Navier—Stokes equations, system (1.1) is very compli-
cated to treat, by take advantage of the theorems of Besov-weak-Herz space
and weak-Herz space, heat semigroup estimates, embedding theorems and
interpolation properties, we overcome some difficulties of complex estimates,
proved the existence and uniqueness of global mild solution of system (1.1)
for small initial value.

We stat main results as follows.

Theorem 1.1. Letn >3,1<qg<o0, 5 <p<mn, 0<a<1—% and +*

oza—i—

%, There exist € > 0 and 5 > 0 such that if up € BWKp oo wzth V.
ug = 0, vg,wpy € BWqu oo and HU’OH WKZ a1 + ||U0HBWKQ,Q+%72 +

P,q,00
lwoll . . atm 2 < 4, then there exists a unique mzld solution

BWK,

aa+ aa+- —2

u e L®((0,00); BWK, 400" )7 {v,w} € L*=((0, 00); BWqu 50,
for system (1.1) such that
[ullx + llvlly + l[wlly < 2e,

where space X and Y are deﬁned in section 3. Moreover u(t) = ug in BZ
v(t) = v, w(t) = wy in B2, ast — 0T,

OOOO7

OOOO’
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The paper is written as follows. In section 2, we will establish some
preliminary Lemmas and estimates. In section 3, we will prove the main
results.

2. Preliminaries

In this section, we introduce homogeneous weak-Herz spaces, Sobolev-weak-
Herz spaces and Besov-weak-Herz spaces.
For an integer k € Z, we define the set Ay as

Ap = {z e R™; 281 < o] < 27},
observe that R™ \ {0} = (J,.cy, Ak, weak-Herz space is defined as follows.

Definition 2.1. Let 1 <p< 00, 1< q< > and a € R. The Homogeneous
weak-Herz space WKy | = WKgq(R”) is defined as the set of all measurable
functions such that the following quantity is finite

1
k q .
s, 2 | (Seea2 W hnnan)” #Fa<co
e SUPgkez QkaHfHLm(Ak) if ¢ = oc.
Here, L”* noted the weak L? spaces. If (p,q, ) satisfy the assumed

conditions of above definition, space WK, with the norm || f||y;, Ke is a Ba-

nach space. Holder inequality also holds for homogeneous Weak-Herz spaces,
that is

HfQHWK;{q < C”fHWK

for any 1 < p,p1,p2 < 00,1 < q,q1,92 < 00, and «, a1, s € R, such that
1p=1/p1+1/p2, 1/qg=1/q1 +1/q2, @ = a1 + aa.

WK, < B/ (2.2)

l9llw sz, (2.1)

@]
1:91 P2,92

P

for 1 <p<ooand 0 <a<n(l-1/p). For more details see [9].
We define the homogeneous Sobolev-weak-Herz spaces.

Definition 2.2. Let 1 < p < 00,1 < q < 0 and a,s € R. Recall the Riesz

operator I f = |§\Sf. The homogeneous Sobolev-weak-Herz spaces WK;;IS =
WK;;;(]R”) are defined as

Wi = { € S'®/PI fllyicy, < o0}
For the homogeneous Besov-weak-Herz spaces.

Definition 2.3. Let 1 <p < oo, 1< gq,r <00 and a, s € R. The homogeneous
Besov-weak-Herz spaces BWK®# = BWK%* (R™) are defined as

p,q,T p,q,T

BWEy, = {f € S®)/Piflgwis;, <o}

g7 .
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where

>

1
(Ziea 2180 Iy ) 1 <7 <o,

_ (23
Sup;ez, QJS”Ajf”WKg,q if 7 = oo.

||f||BWK“’S =

p,q,T

(1). The spaces WK oy and BWK®#  are Banach spaces endowed with

P.a,T
the norms || - ||, kop and -1l pw K3 respect.lvely..
(2). The continuous inclusion B .(R") € BW K5, holds for all s € R,

1<p<oo,and 1 < r < oo, where Bf;’,, stands for homogeneous Besov spaces.
For that, it is sufficient to recall the definition of Besov spaces, (2.3) and the
inclusion LP C WKS,OO that is going to be showed in the lemma below:

The estimate for Pseudodifferential operator is important for us.

Lemma 2.1. [8] Let 1 <p < oo, 1 <q,r <00, =% <a<n(1f%) andm,s €

R. Let P € C™"(R™"\{0}) be a function such that ‘BgP(g)‘ < Cl¢|m=1BD for
all multi-index B satisfying |8| < n. Then

IPOD) g s < Cll s,

p,q,7T

(2.4)

In what follows we present some inclusions involving Sobolev-weak-Herz
and Besov-weak-Herz spaces.

Lemma 2.2. [8] Let s€ R, 1 < p < o0, 1 < g < o0, and—%<a<n(1—%)
and m,s € R. We have the following continuous inclusions

e e o
BWEK), c WKS, C BWKS? (2.5)
BWEKYS C WKgs € BWES, (2.6)

Now we present an embedding theorem of Sobolev type, we will give
the proof of this key Lemma.

Lemma 2.3. Let se R, 1 <p<oo,1<q,r<oo,p<p1 <00, 1 <pr<p

_n 11 _ 1
and =2 < a<n(l+ - — - — ). Then
sz, S UL oonci oo (2.7

the proof can refer to [8].
In particular, forn >3, 5§ <p < o0, 0 < a < min{l _n ﬂ} and

11,1 . .
5= 5t we have follows importance conclusion
P lwise,, < OISl pmeress (28)
||fHBWK§ﬁ'fw B C”fHBWK;:,:ﬂJrQ%- (2.9)
I swiss,, < Ol gonarorss 4 (2.10)

In—p 9"
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Proof. Here, first take the transform p — 2p in (2.7), we choose o = n(ﬁ —

p%), p2 = p, obviously, a < 2—’;, if we suppose a < § — 25 then we have
n on (n n ) (n n) n o n n ™ o
_— — — = _—— — — _— = — = — — — —_— y
2 2 2 2p 2p m 2 p m
which mean ( above inequality guarantee the thirdly inequality hold )
<D n < (1 " 1 1 1 )
al ———<n — ===,
2 2p PP 2p
by the same way, we take the transform p — 2p in (2.7), we choose @ =
n(%ﬁ - ﬁ%), p2 = p, where p; is another p; as a differentiate, then we have

< n< (1+1 1 1)
@ 5 5= n — — < T 5=
2 2 pLoop2p
for the third one, by the same way we haveaﬁ%—%—l—%.
For a
. n n n n non n 1 n
< 5 ol —5z)=5—52)=(5 5 —5)
@ mm{(Q 2p)(2 Zp)} (3 Qp) (53 Qp)
we have )
a<1—%_(g—§—2n) for n>3
and 1 1
(s <
(21? pl) 2

we also suppose a > 0, then we obtain 0 < a < min {1 — %, 2”—1)}, and 0 <
1-— % = 5 < p < o0, the proof of this particular case is thus complete. [

Lemma 2.4. [8] Let sg,51,s €ER, 1 <p < o0, 1< ¢q,r < oo and —% <a<

n(l— %) If so # s1 and s = (1 — 6)sg + 0s1 with 6 € (0,1), then

(WK, WKjf‘,jl)e’r — BWKS?,.
The Beta function is a basic tool, we will give the proof of this Lemma.

Lemma 2.5. Beta function is defined as:
1
B(a,b) = / 2271 — ) ldx
0
fora>0,b>0, B(a,b) is finite positive constant. Then we have

t
/ 77Nt — 1) dr = 2T 71B(a, b)) fora > 0,b > 0.
0

Proof. Let x = 7/t, then d7 = tdz, 0 < x < 1, 7% ' =2 1ol (t—7)b~1 =
t*=1(1 — 2)°~1, we have

t 1
/ 77Nt — ) dr = la=D+0-1)+1 / 2271 — 2)P e =t 1 B(a, b).
0 0
O
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We now give the heat kernel estimates in Besov-weak-Herz spaces.

Lemma26 [8]Letsa€IR s <o,1<p<oo1l<qgr < ocoand
e < a<n(l— 7) Then, there is C > 0 (independent of f) such that

IGO i, < CE 2]l g e (2.11)
for all t > 0. Moreover, if s < o, then we have the estimate
IGO pwrcnr, < CE 2 flgwicg (2.12)

for allt > 0.

Lemma 2.7. [9] Let 1 <p < 2, 0<¢g< o0, 0<y<mand -7 +7<a<
n(l — 5) Let % —1 =2 and T, be a bounded operator from LP>° to L™
1Tl

Lroe < C’1||u||Lp,oc satisfying

T, (f)(2)] < Ca /| |n —d (2.13)

for f € L_lloc with x not belong to supp f. Then T, is also a bounded operator
from WK to WK with ||T,[| < c¢(Cy + C2).

3. proof of main results

3.1. Function space
Let us define the space X and Y as

X = { :(0,00) — BWKgqa;p ﬂWKé"pzq with V-u = 0 such that ||ullx < oo},

Y = {v : (0,00) — BWK;;; N W[.(Qaﬁ72q such that ||v]|y < oo},
where
— (§+45)
Jallx = ol _ gt + 5 Bl
— 1-($+45)
T B A Y

For readability, we now explain how to choose parameters of spaces X
and Y, with the scale

u(z,t) == u(Az, \%t),  oz(z,t) == N2v(Az, \%t),

and analyze the structure of space BWK®® | it is easy obtain

oo

lux(@, Ol pw scoe . = A~ 70 (e, O)ll oy e

P,q,0

loa(@, O)ll gy gos = A2 o, O gy geoe s

by critical, we have s = a + % —land s=a+ % — 2, respectively.
For the second time-depandent part of spaces X and Y, notice the time
scale t — A\%t, we have

A0 ua (2, D) lw g, , = A7 ule, )y g

2p,2q 2p,2q
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(7207 for(@ Dllwis,, = AT F 2 olw, )y,

by critical, we have 8 = % —(5+ %) and f=1— (5 + 4%), respectively.

Now, we can define a product space for solution (u, v, w)

Xy XYy XYy i={(u,v,w) € X xY xY | |ullx + [|[v|]ly + ||w|ly < oo}
(3.1)

And recalling the equations
u= G(t)ug + By (u,u) + Ba(w — v, w — v),
v = G(t)vg + Bs(u,v) + By(v,w — v),
w = G(t)wo + Bs(u, w) — By(w, w — v),

where

¢
Bi(u,u) = 7/ t=TAPY . (u® u)(7)dr,
0

By (v,w) = —/0 eTTAP(WV(—A) " Lw)(r)dr,

Bs(u,v) = 7/0 DAY . (w)(1)dr,

By(v,w) = —/0 et=AY . (vV(=A) " w)(1)dr.

3.2. Estimate for initial value
(1) Let n > 3. We now estimate the initial value ug. Using (2.5), the heat ker-
nel estimates (2.12) with the conditions | a 4+ 75 — 1 < 0| and the embedding

theorem (2.7) with above condition, we have
5= (5+45) . 3= ($+4%) I
iggt’z z 7Ty HG(t)uoHWK%Jq < Ciglgtz 2o ||G(t)U0||BWK§I;f’2q,1
(3.2)
<C o4 2 — <C . L a,a+ 0 — <C . L a,a+ 1.
< HUOHBVVKQ;,Q:QOS 1 < Clluoll, corgo S ||U0||BWKPYQVO+OP :
Moreover, using heat kernel estimates (2.12), we have
G(t aarn_1 < C . Lonat -1,
G ol sy < Clluoll s
from this estimate and (3.2), we get
G(t <C oot 1.
IGOuallx < Cllunl vy
(2) We estimate the initial value vy and wg. By a same way, using (2.5), the
heat kernel estimates (2.12) with a4 g5 —2 < 0 (which can be obtained from
a+ g —1<0, % + 1= %) and the embedding theorem (2.7) with above
condition, we have

=5+ 1ot .. < Csupti~ GGt s, 3.3
21;18 5| ()UOHWKZiz,Zq < 21;18 | ()UOHBWK%?%J (3.3)
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<Cllvoll ., oosg5—2 < Cllvoll - eorz—2 < Cllooll | oorz—2

2p,2q,00 P,2q,00 P,q,00

Moreover, using heat kernel estimates (2.12), we have

IG(tvoll , aarz2 < Cllvoll - aerz-2,

P,q,00 P,q,00

from this estimate and (3.3), we get

IG®wolly < Cllvoll ooss—2,

P,q,00

we ensure v and w are in the same space Y, by a same way, we have

IGEwolly < Cllwpll,  cory-s,

P,q,00

Remark 3.1. Notice the condition of kernel estimate (2.12), it is easy obtain

0<a<n(l- 7) 0<a<n(l- 7) forn >3 with condztzons

and 0 < a<1— %, where (; + 5 = 5), we can take advantage of the heat

kernel estimate (2.12), it is the reason why we chose .

3.3. Bilinear estimate

(1) The second part of space X for By (u,w), using (2.5), (2.8) and (2.12), we
have

||Bl(uvu>||wkgp’2 < ||Bi(u,u HBWKQO < ||Bl(uvu)||B [

2p,2q,1 p.2q,1

t
SC’/ ||e(t*T)A]P’V~(u®u)||, .m,w%dT

0 BWK, 5.,

t 1 (llJr’lL)
< _ A2 (g+g; . W 2%~
_C/ (t—1) » PV (U®U)||BWK§’2’q1;dT

L(g+
<c/ (=) Ju @ ul gy g dr
<u;/t_T ) Ju @ uly g dr
. -1 (2+2) N .

gc/o(t )2 ully g Ml gy, dT

t _l_(ayn ,2(17(2+l)) 2
<C | (t—r)"27 TR 2G5 1y % dr

0
SCt_%+(%+%)B(a+QE S+

1 2
5 (G ) Il

we note the conditions |0 < o < min {1 -2 ﬂ} can guarantee o + % >0

2p? 2p

and 1 — (4 + 4"7)) > 0, the previous estimate leads us to

suptéf(%Jrﬁ

() lwics, < Cllullxlulx. (3.4)
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The first part of space X for B; (u u), we have

[Bi(uw,a)|| - aarns <C He“ APV (u@u)| e noadr
BWK BW »

P,4q, (x) p,q,00

< C/ e DAPY - (w@w)l| . oasarnadr
Bw P,q,00
< c/ ) CTIBY - (4 ® )|y e 47
SC/ (t—7')7(a+ﬁ)||u®u||BV[/K2a)(J dr
0 P,q,00
t
S C/ (tiT)_(aJ’_%)”u@u”WKQa dr
0 p,q
t
< C/O (t—T)f(aJrz)HUHWKgp’Qq||u||WK§p72da
t o
<c [ (=26 ) juar
0

n n
< OB(oct 1= (ot g0l

0<a <m1n{1—% Z’L—p} can guarantee o + 55 > 0 and 1 — (o + 35) > 0,
therefore, we obtain the estimate
B carno1 < C , 3.5
1B (wll B [l [l x (3.5)

the estimates (3.4) and (3.5) together give
1B (u, u)llx < Kllulx]lullx, (3.6)

for some positive constant K.

(2) Now, we suppose %Jr % = % and , notice the expression
(1.3)
V(—A)_l(w _ 7}) — Cl (SL‘ - y)<w<y)n_ U(y»dy
R |z —yl
SC’1/ Mdy for n >3,
no o=yl
with satisfy the condition (2.13) of Lemma 2.7 for v = 1, we have
V8 = Dlhyge,,  <Clw=0lhwgg, . 3D
Z-p

in other words, p < n is obtain from the constrained condition of Lemma 2.7.
Using the Holder type inequality (2.1) for weak-Herz spaces, (2.4) and
(3.7), we have

||B2(w_v>w_v)||wf(§p’2q < || Bz(w — v, w — )HBWK‘“’

2p,2q,1
< ||Ba(w — v, w — U)HB 2004 22
p;2q,1
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< C/O e DEP((w — )V (=2) " w =)D, st gy dT

p,2q,1

P,29,00

t

< C/O (t_T)_(E+E)||(w_”)V(_A)_l(w V)| gy g2a0 dr
t

<C [ (=) EB (= 0 (~8) 0= ) g d

t
<0 [ (= B = Dl IV @ = Dl dr

2pp
] 2
2p—p

2p,2q

<c/ F= ) B = 0) g, 0= )y,

<0/ (t — )~ E 8772006 +8) | (w — ) |2 dr

l_miain o
SOrTETEEB( 14 (0t 50 1= (5 + 1))l =)l
_1 a n
SOrEEERB( 1t (0t 501 - (G @)H(w—wu%,
for =1+ (a4 z5) > 0, we only request | o >1- 35 | The condition 0 < a <
min {1 — 35 %} can guarantee 1 — (5 + ) > 0 hold. Above estimate leads
to
supt2~(E ) | By(w —v,w = 0) |y ig. < Cll(w =)} (3-8)
t>0 2p,24

The first part of space X for Ba(w— v, w—v), be the same way, we have

< IBa(w = v,w =) iy

< C/O e AP(w — v)V(=A) " (w — v))(T)HB in adr

WKy q,00"

< C/o |e"AP(w — v)V(=A) " (w — U))(T)HBW P

P,q,©

t

<0 [t =r)HE D= 0 V(=8) w0 = )l kg dr
t

<0 (=) B = )V (8) 0= ) g d

t
<0 = E D=0l IV @ Do, , dr

2pp
,2
2p—p 7

2p,2q

<C/ (O‘+2p 2)”( 7U)HWKSI~),2QH(U) ))HWK dr

<C’/ (t — )"tz )7_2(1_(%“%))”(10—U)||2Yd7'
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_l_nn n 3 n
SOrEETBB( 14 (at go) 5~ (at o)) lw =)}
n., 3 n
coB( 15t 3w D))ol
< ot g5 = o+ 50w =)}
the conditions (% - —) <a< mln{l 2p7 2’;} can guarantee the variates

of Beta function positive, therefore, we obtain the estimate

Bo(w — v, w — warn 1 < — —aly, (3.
Bow —vow =)l sy < Clw = ol o= vy, (39)

the estimates (3.8) and (3.9) together give

[1B2(w —v,w —v)|x < Kllw=vlly[lw—2vly. (3.10)
. 2np
The second part of space Y for Bs(u, v), using (2.5), (2.7) (p2 = 5,%5),

we have

”BS(U»U)HW['(%J < 1Bs(u, )|l gy geae, < ||BB(U»U)||BWK2Q,(1+2%—%

2p,2q,1 N
t
<C [ e DAY ()| . ot gs—1 AT
0 BWK 4,5
In—p 201
¢ ,l,(ngL,L)
gc/(t—T) DY (o) gy gzt T
0 2B 24,00
t 1 o n
gc/ (t— 1) G 8wy gamo dr
2%:1?13'2‘1"’0
<0 =7y B vl ar
2n p »4
<c/ (=) B ully g ol , d7
<C/ g () ) x oy dr

<C/ t— ) GTeta *(%7(‘”4&'#&)|\U||X||U\|Yd7

1 n, 3 a n
<ot it +4B(77 R )
B(— 5+t g+ 0.3 - (G4 L) ulxloly
1 3 a n
<ot riEg( - - - (5 +1)
B(- 1+t )3 - G4 ) el
the conditions (5 — 75) <a< mln{ — %5 2—’;} can guarantee —i—i—(a—ﬁ-%) >

Oand%f(%+4—ﬁ)>0.
Above estimate leads to

sup t' =349 || By (u, 0) |y g, < Cllullxlolly,
t>0 2p,24
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for some positive constant K, we obtain
1B (u, v)|ly < Klullx]|v]ly. (3.11)

Moreover, for the first part norm of Y, we have

t
B aatn_2 < C (t-m)Ay . ayatn_2d
1B,y s 2 <€ [ 1DV )l g ade

P,q,00

t
< C/ ||e(t—‘r)Av (uv)|| o 2a+ﬂ,§d7'
0 BWEK

2np
an—p >

t c n
< C/ (t—r)%_(o""Tﬁ)HV~(uv)HBwkzg,fl dr
0 np

»q,00

Zn—p

t
SC/O(t—T) ~(atzp >Huv\|Bwk2m dr

q,00

2n—p’

— p)i—(at3p) .
<C | (t—7)% 25 HuvHWKQSW dr

0 In—p9

3 _ « n_
<0 [(t=DT Bl ol , o
<C/ t — 7yd=r3) = (Bt a ) ) oy dr
#B( =2 4 (at ). T (@t 15 ullx ol
>~ (&3 2]3 34 @ 2@. Ul x ||V|ly

n., 5 n
< CB( — gt g g = (et o) lullelly.

By the same way, we consider the estimate for By (v, w — v), using (2.5) and
(2.7)

1Ba,w = 0)lwig, . < 1Baw,w = 0)ll gy s

2p,2q,1
< || Ba(v,w — U)”BWKE‘;;*E*%
t ( )A
t—1 1
< C/O |le V- (wV(=A)" w - U))(T)||Bwk§f"2’;l+%*%d7

t
< C/ (t — 7—)*%*(%*%*%
0

(OV(=A)"Hw — ) || gy 21 dT

P,2q,00

t
<0 [ (= BT 8) w0 = 0l gk

t
<C [ (=) B T (8) w0 = 0l gy o

t
<c / (=) F B ol 19C-2)7 0 =) yice, , dr
2p—p -4
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<c/ (t =)~ ol kg 1w = 0)llygs, , d7

2p,2q

<C/ t= 1) E 20 ol (0 — o)y dr

« n

)717(7+

<O ETEB( 1t (0t 3+ 1) Il = o)l

2p
the conditions (%—%) <a< min{l—%, %} can guarantee —1+(a+g5) >
0and 1— (g5 +45)>0.

Above estimate leads to

supt' =53 | Ba(v,w =) lwig < Cllolyli(w = o)y,
t>0 2p.2q

for the first part, we have

HB4('U, w — U)||BWK;):;%_2

t
< (t—-m)A . — -1 - oa,a+ -2
<C [ AT V(8w = (D) o goad

P,q,0

t
<c / el =I8Y - P (A) w0 = )]sy s

<c / PV (09 (—A) " (w — 0)) | gy e dT

<c/ (t = 7)) (0T (~2) " (0 — 0) | 20 _dr

<c/ )OI (0T (=A) 7 (0 — )y e, A7
_ \l-(a+3s) ) ALy )
<0 [[= 1 Bl V20 Dhwies,, dr
<c/ (=) B ol s 0 ol dr
<0 [[(t= 7yt B ol — olytr
< 06(71+<a+ 552~ (@t 52) ) ol v — vl
by the same way, for some positive constant K, we obtain
| Ba(v, w —)|ly < Kl[v]ly|lw—2ly. (3.12)

Combining bilinear estimate (3.6), (3.10), (3.11), (3.12) and initial value
estimate (3.2), (3.3), we obtain some necessary conditions: 2 < p <n, (3 —

2
A)y<a<mingl -2, Aband 4 L1=1
2p 2p’ 2p p . n P’
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For § < p < n, we have (%f%) <0andmin{1f%,%} =1-35;,80
we obtain the last condition P:n > 3,1 <g<o0, 5 <p<n,0<a< 1—%

1,1 _1
and 5 —+ P 5
3.4. Existence and uniqueness
Note the expression of integral equations (1.4) and the definition of space
(3.1):

= G(t)up + B1(u,u) + Ba(w — v, w — v),

= G(t)vy + Bs(u,v) + By(v,w — v),

= G(t)wg + Bs(u,w) — By(w,w — v),

Xu XY, xYy :={(u,v,w) € X xY xY | ||ul|lx + ||v|ly + |w|]y < oo}
We suppose the initial value satisfy

HUOHB coatrzr + Vo]l . aarz2t|lwoll,  aarz <6
1q,00

WK, BWK, BWK,

Denote
®(S) : (uo,vo, wo) — (u,v,w), with B(0,2€) — B(0, 2¢)

is the map from initial value to solutions, where B(0,¢) denote the closed
ball in X,, x Y, x Y,,. Then, for any S := (u,v,w) € X, x Y, XY, with
sufficient small ¢ and e satisfy 0 < € < ﬁ and 0 < 6 < 35, where C' =

max{C1, Cs,C3} as follows

[ullx <G ()uollx + [|Br(w, w)]x + [|Ba(w — v, w — v x

< Cilluoll , - oor g + Kllullx [[ullx + Kfw = vlly w = vfly
p,q,0

2
< S LUK 4 16KE < 35

Wl M

[vlly < 1G(#)volly + (| Bs(u, v)[ly + || Ba(v,w —v)|ly
< Callvoll . etz + Klulx|v]ly + K|y llw = vy
BWK

P,q,00

2
< % FAKE +8Ke < 35

[wlly < IG(#)wolly + [ Bs(u, w)|ly + || Ba(w,w —v)|ly
< Gsllwoll , ootz -2+ Kllullx[[wly + Klw|y|lw =]y

P,q,00

< - 4+4Ke? +8Ke* < %

W ™

it follows that

[ullx + llvlly + f[wlly < 2e,
we obtain the solutions (u,v,w) € B(0,2¢) in X, X Y, X Y, so ® is well-
defined.
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~ On the other hand, for any S = (u,v,w) and S = (u1,v1,w;1) belong
to B(0,2¢), for some bilinear B, it is easy obtain

|B(z,y) — B(z,y)|| = |B(z,y) — B(z,y) + B(z,y) — B(z,9)||

=Bz —z,y) + B(z,y — 9|,
Then, we have
Ju—willx <[[Bi(u—up,u)lx + | Bi(ur, u—w)|x
+ [ B2((w — w1) = (v —v1),w —v) | x + || Ba(wr — v1, (w —w1) = (v—v1))||x
< Kllu —wif[x[lullx + Kfui | x [[u — willx + Kljw — wi[[y lw = v[ly
+ K|v —vlyllw—vly + Kllw = wi|[y|wr — o1y + Kllv = v1][y w1 = v1][y
<20Ke(flu —wlx + flv —villy + lw —willy),
by the same way, we obtain

v —v1lly < 20Ke(([u —ui|[x + [[v—v1]ly + [w — willy)
and
[w—willy <20Ke(|lu —wllx + [[v—villy + lw —willy),

this mean

[2(S) — (Sh)

since 60K e < 1, we get that @(S ) is a contraction map, by the Banach fixed-
point theorem, we can prove the system (1.1) existence a uniqueness global
mild solution.

w — w?

3.5. Time-weak continuity
Lemma 3.1. For every real number s and ug € B? we have G(t)ug — ug

in BS ast— 07.

oo,00

0,007

The proof can see [10].

Lemma 3.2. Let uw € X, v,w € Y. We have By (u,u), Bo(w —v.w — v) con-
verges to 0 in the weak—x topology of BC>O oos B3(u,v), By(vaw —v) converges

to 0 in the weak—x topology ofB ast— 0T,

00,00

Proof. Let ¢ € 31171 and € > 0 an arbitrary number. We can choose ¢ € S
such that ||¢ — 95”1’3% _ <€ Then, we have that

[(Bi(u,u)(t), ¢ = &)| < [|Bi(w,u)(®) | g6 — Sl 1,
< [1Ba(w, @) (Ol s 31116 = By, < KlJullke < Ce.
On the other hand,
[(Bi(u, u)(t), )|

/ (G(t — 7)Pdiv(u ® u)( |d7</ |(Pdiv(u ® u)(7), G(t—T)@’dT
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t
< / v ®w)(r) | s-sa s |Gt = 76 g1 g2 snsnclr

0 ’ s

t t
<G [ Nwe 0@z < C [ Mol
< 5+ 2 [3-(5+3)]
o/ -4 Bl

< Cslull% / PO S dr < O ul 3 e,

we obtain
0 < limsup |(Bi(u,u)(t), ¢)| < limsup |(Bi(u,u)(t), ¢ — ¢)|
t—0t t—0+

+ limsup | (B (u, u) (%), q~5>| < Ce+0.
t—0t+

Since € > 0 is arbitrary, we conclude that limsup, o+ [(B1(u, u)(t),¢)| = 0.
we used that ¢ € B%l is arbitrary.

[(Ba(w —v,w = )(t),¢ = §)| < | Ba(w —v,w = 0) (Ol g1 _ll6— 0l ,
< |Ba(w—v,w 0O, earzald—dlg, < Klw—vl}e<Ce

Kp,q,00"

On the other hand,
|<Bg(w —v,w —v)(t), (;~5>|
< [ G- n)B(w - )9 (~8) (w = o)) )ldr

/ (P (=) (w = v))(r), Gt = 7)) |dr
< [ 1B = V(=) 0 = ) gz G = e
<0y [ =)V (=A) " (w = 0) (D) e s
<Gy [ =0T (=8 w0 = ),

<G [ 1w = Dllwis, , IV =) lhyics, , o

2p,2q 2pp 249

) N = )lwics, N = Dl , 4

t
—2 2 -1 35
gc(;nw—vn%/OT Yt dr < Ogl|w — o271,
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therein

n n 1
(—1+a+2—ﬁ):(a+%—§)>0, for p < n,
we have used (2.2): WK%Z — WKE,%O — B;o(,i?*"/p) with the condition P.
Then, we obtain

0< litm(s)lip KBg(w —v,w — v)(t),¢>‘ < lim sup ‘<Bg(w —v,w—0)(t), o — ¢>|

t—0+
+ lim sup |<Bg(w —v,w —v)(t), ¢>>| < Ce+0,
t—0+
by the same way, we conclude that lim sup,_, o+ |<Bg(w —v,w—v)(t), ¢>’ =0.
For Bs(u,v) and By(v,w — v), we can only choose ¢ € B%l, using the
bilinear estimate for B3 and B4, we can obtain the same consequence. The
proof is now complete. O

Acknowledgment

The authors would like to thank the referees for their valuable comments. This
work was partially supported by the National Science Foundation of China
under grant (No. 11801247 and No. 71501031) and the Program Funded
by Liaoning Province Education Administration (No. LN201783639 and No.
LN2017QN036).

References

[1] J.H. Zhao, C. Deng, S.B. Cui, Global well-posedness of a dissipative system
arising in electrohydrodynamics in negative-order Besov spaces, J. Math. Phys.
51(9)(2010).

[2] C. Deng, J.H. Zhao, S.B. Cui, Well-posedness of a dissipative nonlinear eletro-
hydrodynamic system in modulation spaces, Nonlinear Anal.73(2010).

[3] J.W. Jerome, Analytical approaches to charge transport in a moving medium,
Transp. Theory Stat. Phys. 31(2002).

[4] M. Schmuck, Analysis of the Navier—Stokes—Nernst—Planck—Poisson system,
Math. Models Meth. Appl.Sci. 19(2009).

[5] R.J. Ryham, Ezistence, uniqueness, reqularity and long-term behavior for dissi-
pative systems modeling electrohydrodynamics, arXiv:0910.4973.

[6] J.H. Zhao, C. Deng, S.B. Cui, Well-posedness of a dissipative system modeling
electrohydrodynamics in Lebesgue spaces, Differential Equations and Applica-
tions 3(3)(2011).

[7] J.H. Zhao, Logarithmical reqularity criteria in terms of pressure for the three
dimensional nonlinear dissipative system modeling electro-diffusion, 22(2016).

[8] L.C.F. Ferreira, J.E. Pérez-Lépez Besov-weak-Herz spaces and global solutions
for Navier—Stokes equations, arXiv:1704.07001(2018).

[9] Y. Tsutsui, The Navier—Stokes equations and weak Herz spaces, Adv. Differ.
Equ. 16(11-12)(2011).

[10] H. Kozono, M. Yamazaki, Semilinear heat equations and the Navier—Stokes

equation with distributtions in new function spaces as initial data, Commun.
Partial Differ. Equ.19(5-6)(1994).



Global mild solution

Aibo Liu

Department of Mathematics,
Liaoning Normal University,
Dalian 116029, P.R.China
e-mail: 1iuaibo2013@163. com

Jianing Xie'

School of Mathematics,

Dongbei University of Finance and Economics,
Dalian, 116025,

P.R.China

e-mail: xiejianing@dufe.edu.cn

19



