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Hydrological modeling of streamflow approaching the new Hintze
Ribeiro bridge

Abstract

The present work aims to provide reliable estimates of extreme discharge flows and
their probability of occurrence. Such estimates are important for the assessment of
the associated hydrological risk of hydraulic infrastructures, such as bridges and
dams, in the design process as well as during their operations. The hydrological mod-
eling herein developed was applied to estimate the design floods approaching the
new Hintze Ribeiro bridge, in the north of Portugal. It proposes a statistical analysis
of the maximum annual streamflow data by using a flood frequency analysis tech-
nique. The data series were subject to a reliability analysis and the specific modeling
assumptions, required for the study, were appropriately given and tested. An extrap-
olation technique of the missing instantaneous discharge data was herein derived.
Such technique was validated by two distinct methods. The estimations are accurate
with a mean deviation of 7.2% relative to the observed data. A set of probabilistic
models were considered and the models’ performance verified by the goodness-of-
fit tests and Q-0 plots. The model and the parameter uncertainties were taken into
account. Model uncertainties were addressed by comparing the estimated design
floods through selecting the best fitting probability model (M .S) with the approach
that considered the distribution functions which fit well the data (M M). On the other
hand, the computed flow rates were estimated with 95% of confidence to reduce the
inherent parameter uncertainties. An additional accuracy assessment of the paramet-
ric approaches was performed through a comparative analysis of such design floods
with the ones retrieved by application of the non-parametric Kernel density estimate
(KDE). The M M approach showed a lower discrepancy (18.5%) to KDE esti-
mates, when compared with the M S results. A sensitivity analysis of the associated

hydrological risks was also undertaken.
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1 | INTRODUCTION

Bridges, like other hydraulic infrastructures, play an important role in the economic development of a society. In recognition
of their relevance, the assessment of the associated hydrological risk plays a vital role in the design process, as well as during
their operation, namely when such bridges are founded on alluvial riverbeds (Simonovi¢|2012). The risks associated with the
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likelihood of extreme events and their respective consequences call for the prediction, as accurate as possible, of the maximum
annual flow discharges that approach the section of a bridge for different return periods (called design floods), as those may
compromise its stability. According to |Pizarro, Manfreda, and Tubaldil (2020), a deterministic approach is often employed,
neglecting the natural and the epistemic sources of uncertainty that may affect the scour problem, and leading to a one-to-one
relationship between the design flood discharge and the design scour depth (Arneson, Zevenbergen, Lagasse, & Clopper|2012;
Highways Agency|2012; Melville & Coleman|[2000).

The estimation of design floods approaching hydraulic structures requires the determination of instantaneous peak flows from
the historical flood data since there may be significant stream flow fluctuations within hours or even minutes, especially for
small watersheds (Dastorani, Koochi, Darani, Talebi, & Rahimian|2013). An interesting aspect concerns the process by which
hydro-metereological agencies evaluate and make accessible the hydrological data. Most of the times, these agencies publish
only the mean daily flow data, for which the consideration of the mean data in flood studies may cause underestimation of the
design flood thus resulting the sizing of the hydraulic structure for a higher risk of collapse.

The extreme events and their occurrence rate depend, among other factors, on the physical characteristics of the river basin,
the dominant runoff generation mechanisms (Robinson, Sivapalan, & Snell|1995)), the magnitude and variability of the temporal
distribution of rainfall (Kusumastuti, Struthers, Sivapalan, & Reynolds2007), and the stream network geometry and river routing
(Rogger, Kohl, et al.|2012; |[Rogger, Pirkl, et al.[2012). These factors may change along time as a result of the influence of
climate change or socio-economic development aspects, so their estimation remains an area of continuous research interest. In the
literature, several methods can be used, from which the statistical methods (flood frequency analysis) and hydro-meteorological
methods stand out. Whilst both these methods have strengths and weaknesses (Calver, Stewart, & Goodsell|2009; [Sordo-Ward,
Bianucci, Garrote, & Granados|2014), the hydro-meteorological method requires a higher computational capacity.

Flood frequency analysis relates the magnitude of annual maximum flood events to the likely frequency of occurrence of nat-
ural events (Beven|[2019; |[Moran!|1957), by employing probability distribution models that describe the observed data. From
the application of a set of different distributions, statistical tests are commonly used to select the model that best fits the given
time series data from a number of candidate probabilistic distribution models. The selection of a single best distribution model
(i.e. model selection, M .S) represents an implicit assumption that the selected model can adequately describe the frequency
of observed and future flood flow events (Okoli et al.|2018)). Many hydrologists have pointed out ways to deal with the inher-
ent uncertainties, always present in any mathematical evaluation such as from the parameter or model selection (Beven|2019;
McMillan, Westerberg, & Krueger|2018)).

The quantification of model uncertainty, in flood frequency analysis, can be tackled through the consideration of all candidate
probability distribution models in the estimation of the design floods, where the final floods estimate is an average of all individual
estimates, known as model averaging (Okoli, Mazzoleni, Breinl, & Baldassarre|2019). The model averaging can be performed
either by taking the arithmetic mean of the design flood estimates (i.e. arithmetic model averaging, M M) or by attributing
weights to the design floods of each individual candidate probability model (i.e. weighted model averaging, M A) depending
on how best each model fits the time series data (Hoeting, Madigan, Raftery, & Volinsky|[1999; Yan & Moradkhani|2014).
According to |Okoli et al.|(2019), the selection of the best fitting probability distribution is associated with several outliers in
comparison with multiple probability distributions, especially when facing short sample sizes (30 - 50 hydrological years).

Therefore, the present study proposes a hydrological modeling methodology for providing reliable estimates of extreme dis-
charge flows and their occurrence probabilities, constituting thus a relevant input data for the assessment of the safety of new
or existing hydraulic infrastructures. In order to demonstrate the hydrological modeling herein presented, the methodology was
applied to estimate the flood events approaching the new Hintze Ribeiro bridge, built in 2002, over the Douro river, in Portugal.
Various ways of accounting with the inherent uncertainties were also proposed herein.

Following this introduction, Section 2 of this paper presents and discusses the time series analysis techniques and properties,
and describes the assessment of how to deal with the uncertainties inherent to a flood frequency application. In Section 3, the
river basin defined by the case study bridge cross-section is described, and a set of hydrological plausible scenarios are defined.
The application of the hydrological modeling to the new Hintze Ribeiro bridge is presented in Section 4. A sensitivity analysis
of the hydrological risks was also undertaken. Finally, the main conclusions are provided and discussed in Section 5.



2 | HYDROLOGICAL MODELING METHODOLOGY

2.1 | Data reliability analysis

The applicability of any statistical method is preceded by a reliability analysis of the hydrological series under considera-
tion. Such analysis consists on the verification of the consistency and the hypothesis of randomness of that series (Kite 2019
Naghettini & Pinto/2007, among others).

The conformity of data consistency refers to the detection and elimination of gross and/or systematic errors, for instance, using
the usual double-mass technique, firstly developed by |Searcy and Hardison| (1960). A consistency check can reveal inconsisten-
cies entailed by a variety of causes, including changes in land use (e.g. agricultural to forest), the construction of new control
structures (e.g. dams) or modifications in the operation of these structures, changes in the amount of water diverted into or out of
the watershed, the effect of large forest fires, alterations in agricultural practices, and changes to measurement methods or prac-
tices. Moreover, this consistency verification can reveal information regarding magnitude and timing of these aforementioned
causes and determine whether the streamflow data need to be adjusted.

The randomness of an historical series is verified if it guarantees the assumptions of independence, homogeneity and station-
arity (Kite[2019; |[Naghettini & Pinto2007). Those assumptions are usually performed by using non-parametric tests (Hipdlito &
Vaz|2011; [Lencastre, Franco, & Antunes|1984). The independence of the data series is usually assessed by the auto-correlation
coefficient test whereas the homogeneity is verified by the application of the non-parametric test of Mann and Whitney| (1947)
or the local extremes number test. The Mann-Kendall trend test (Kendall[1975; [Mann|1945) or the Spearman tests are typically
used to identify trends on hydrological series. The Wald and Wolfowitz| (1943)) test is also used as a general verification of the
randomness of a series. According to Hipo6lito and Vaz|(2011)) when the hypothesis of randomness is not rejected in more than
two of the four tests, the hydrological series is assumed random and reliable for statistical analyses at a 95% confidence level.

2.2 | Statistical methods
2.2.1 | Flood frequency analysis

Given reliable historical streamflow records, the statistical method known as “flood frequency analysis” can be used to extend
them and hence predict the likely frequency of occurrence of natural events, typically designated as “design floods” (Chow,
Maidment, & Mays|1988)). It often consists of fitting probability distribution functions to records of annual maximum flows that
likely occur at a certain river location, namely at a bridge site for the current study. The accuracy of the estimated design floods,
such as the 100-year flood (a flood with 1% annual frequency of exceedance), is essentially dependent on the record length,
which should be longer than 30 hydrological years.

In flood frequency analysis it is common practice to employ probability distribution models that describe the observed data
(Castellarin et al.|2012; |Chow et al.||1988; |Cunnane|[1989; [Hassan, Hayat, & Noreen|[2019). In the present study, seven
models were considered and their confidence intervals determined, namely for the following distributions: two- and three-
parameter LogNormal (2p and 3p, respectively, being p the number of parameters), Gumbel, Generalized Extreme Value (GEV),
Gamma, LogPearson III, and Weibull. For estimating the parameters of each probability distribution, the method of moments,
the L-moments method and the method of maximum likelihood are the most advisable by hydrologists (Kite|2019)).

2.2.2 | Goodness-of-fit tests and graphical methods

Once the probability distributions are adjusted, the performance of each model is usually assessed based on goodness-of-fit tests
and accuracy measures (D’Agostino|[1986; [Naghettini & Pinto|2007). Generally speaking, goodness-of-fit tests describe how
well a statistical model fits a set of observations, through the analysis of the discrepancy between observed and expected values
under the probabilistic model in consideration.

Goodness-of-fit tests may be divided into qualitative and quantitative non-parametric tests. The former refers to the
Kolmogorov-Smirnov (K.S) test (Massey Jr.|1951), while the latter assigns the Chi-square (x?) test (Kenney & Keeping|1957).
Other tests include the Filliben (Fi) test (Filliben||1975) and the Anderson-Darling (AD) test (Anderson & Darling||1954).
The Anderson-Darling (AD) test constitutes a modification of the Kolmogorov-Smirnov (K.S) test, giving more weight to
the tails than the latter (K.S' test). Each of the goodness-of-fit tests has its own set of particularities, which inherently inter-
feres with the rejection (or not) of a certain probabilistic model for the representation of the time series data under analysis
(Maity|2018bj; [Naghettini & Pinto|2007).
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A measure of accuracy given by the graphical method assessment obtained by the Quantile - Quantile plot (Q-Q plot) is also
advised in the evaluation of those models’ performance (D’Agostino|[1986)). The O-Q plot checks the validity of a distributional
assumption for a data set by computing the theoretically expected value for each data point based on the distribution in question.
Whenever the data indeed follow the assumed distribution, the points on the Q-Q plot will fall approximately on a straight line.
For determining the theoretical probability of non-exceedance of each data point, “plotting position” formulas are assigned and
used depending on the type of distribution being fitted. The commonly used unbiased plotting positions comprise the formulas
of Weibull, Blom, Cucane, Gringorten, Hazen, Chegodayev and Turkey (Naghettini & Pinto|2007} |Stedinger|1993)).

2.2.3 | Uncertainty and modeling approaches

Despite the wide practice of selecting a single best probability distribution (i.e. the model selection, M S) in the field of flood
frequency analysis, the technique itself does not take into account the inherent uncertainties (Okoli et al.[2018)). Moreover, any
model faces uncertainty and its quantification is crucial for ensuring data quality and usability (Beven|2006; Kiang et al. 2018
McMillan et al.|2018)). Besides the advances in the development of tools for quantitative uncertainty analyses, its quantification
is not yet a standard practice in water resources planning, design, and operation (Beven|2019; [Yen|[2002).

The uncertainty in flood frequency analysis, as in any other area, can be divided into two distinct categories: natural uncer-
tainty - irreducible uncertainty, and epistemic uncertainty - reducible uncertainty (Beven|2019; Huang, Kerenyi, & Shen|2018;
Leandro et al.|2019; |Yen|2002). While the first stems from variability of the underlying stochastic process, the second results
from incomplete knowledge about the process under study. In the present investigation, the natural uncertainty refers to the vari-
ability that exists in the amount of annual flow discharge in consecutive hydrological years. The epistemic uncertainty is related
to the ability of understanding and describing the system under analysis (Maity|2018a; Merz & Thieken|2005)), namely model
and parameter uncertainties.

In accordance with |Okoli et al| (2019), model uncertainty can be reduced by using all candidate probability distributions
for the design floods estimation, where the final estimate is a weighted average of all individual estimates. This procedure is
known as model averaging (Bumham & Anderson|2002; |[Hoge, Guthke, & Nowak|[2019). The model averaging technique can
be performed through two distinct ways: (i) by taking the arithmetic mean of the design flood estimates from the candidate
probabilistic distributions (i.e. the arithmetic model averaging, M M) or (ii) by attributing different weights to the design floods
of each candidate probability model (i.e. weighted model averaging, M A), depending on how best the probability function
fits the data under analysis (Hoeting et al.|[1999; |Yan & Moradkhani|2014). Bayesian inference is one of the possibilities to
estimate the weights assigned to a range of models considered for flood estimation purposes and 'Wood and Rodriguez-Iturbe
(1975) showed, for the first time, an example of application in flood frequency analysis. A review on theoretical backgrounds of
Bayesian model averaging (and selection) is provided in Hoge et al.|(2019).

In the present investigation, a modification of the M M approach (Okoli et al.[|2019), is introduced, which consists in solely
considering the distributions which ensure good performance on both goodness-of-fit tests and graphical methods. The compar-
ative analysis between the widely applied M .S approach and the modified M M approach presented herein will provide insights
and consequently explain the importance of considering more than a single probability distribution for the representation of the
time series data under analysis.

Parameter uncertainty, in turn, results from the inability to accurately quantify the model input parameters. The estimation
of a random variable (x;) for a particular return period (T'), for each probabilistic distribution, is inherently dependent on the
available sample size, which carries uncertainty to the system. In order to tackle such uncertainty, in the model selection approach
(M S), the computed flow rates should be estimated with 95% of confidence interval for the full range of design floods (i.e. with
lower and upper boundaries) as per best practice. This has been considered in the M .S approach presented herein.

2.3 | Hydrological risk

Frequency analysis is of great relevance in the interpretation and assessment of flood flows, as well as in the evaluation of the
flood occurrence risks for specific return periods. The hydrological risk is typically considered during the design process of any
hydraulic infrastructure (Ojha, Berndtsson, & Bhunya|2008)), such as a bridge or a dam, due to the aforementioned uncertainties
(Subsection [2.2.3).

The designer is generally concerned with the return period for which the infrastructure should be designed. Based on the
acceptable risk and on the design life (n) of an hydraulic infrastructure, the return period for which the structure should be
designed can be ascertained.
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Hydrological risk (R) is thus defined as the probability of occurrence of an event at least once [P(X > xT)] over a period of
n successive years (see Equation|[T).

R=P(X > x;)

(-3

3 | CASE STUDY AND DATABASE

3.1 | Case study framework

In Portugal, the persistence of discharge peaks exceeding 8,000 m?s~! in a three-months period have contributed to the collapse

of the 19" century Hintze Ribeiro bridge on the night of 4 March 2001, during the fifth flood event over the Douro river. This
tragic accident has caused the death of 59 people who were crossing the bridge, in a bus and three cars, when one of its piers
collapsed and the central sections plunged into the river.

The 19" century Hintze Ribeiro bridge was built in 1885 and linked Castelo de Paiva and Entre-os-Rios. Following the
disaster, preliminary studies were planned for the rehabilitation of the 19 Hintze Ribeiro bridge, considering the importance of
maintaining the crossing at the lower Douro level, particularly for those local populations. However, the underwater inspections
undertaken promptly excluded that hypothesis and in April 2001 the Portuguese government announced the tendering procedure
for the construction of the new bridge over the Douro river. The old bridge was, thus, replaced by the new Hintze Ribeiro bridge,
inaugurated in May 2002, 7.5 m upstream of the old bridge’s position (Figure/I)).

The severe socio-economical impact of the collapse of the 19" century Hintze Ribeiro bridge dictated its importance for the
purposes of the current study, providing data and highlighting the importance for reliable estimates of extreme discharge flows
and their occurrence probabilities at the new bridge’s approach section.

3.2 | Hydrographic region characterization

The Portuguese region of the Douro watershed, representing 19.07% of its total area (97,477.66 km?), is characterized by
embedded valleys, strong riverbed slopes and overly narrow floodplains (APA|2019). As a result, the extraordinary floods of the
Douro river are characterized by a strong water level rise, especially in the narrowest sections, with fast hydrological response
and for a short duration of about 2 to 3 days (APA|2016). The highest flood peaks took place in the years of 1727, 1739, 1779,
1788, 1823, 1843, 1850, 1855, 1860, 1877, 1888, 1909 and 1962 (Silva & Oliveiral|2002), all of which caused great damage
to farms, long-distance ships, coastal, fishing vessels and river traffic, and loss of human lives. Since 1989, there have been no
floods of a magnitude equal to or greater than 10,000 m3s~! (Rodrigues, Brandao, Costa, et al.|2003). The 1739 flood, with a
recorded a value of 18,000 m3s~!, was not exceeded until now. The historical flood data collection and compilation, although
mostly empirical, is an indispensable basis for establishing danger trends or flood-related disasters (Tato||1966; [Vieira & Costa
2017), as occurred with the collapse of the 19" century Hintze Ribeiro bridge in 2001.

The new Hintze Ribeiro bridge lies 500 m from the mouth of the Tamega river (at the confluence with the Douro river), a right
tributary of Douro river (Figure [2). The bridge section is located in the downstream reach of the Douro river, at the Crestuma-
Lever dam reservoir (at a distance of 25.5 km). Upstream of the bridge section are the Torrdo dam, on the Tamega river, at a
distance of 3.8 km, and the Carrapatelo dam, on the Douro river, at 16.7 km from the bridge. The Paiva river, a left tributary of
Douro river, also contributes to the flow rates that approach the new Hintze Ribeiro bridge, through the records of “Fragas da
Torre (EDP) (08H/02H)” gauging station (Figure [2).

3.3 | Hydrometric data collection

In the Douro river watershed, a real-time hydro-metereological network is operating since the beginning of the 20" century
(Tato||1966; |Vieira & Costal2017)). Since 2012, its management is under the responsibility of the “Portuguese Environment
Agency” (APA). The availability of streamflow data at gauging stations, located in the vicinity of the new Hintze Ribeiro bridge,
represent indeed an important tool towards the assessment of the design floods that approach such bridge section. Those gauging
stations are identified as follows:
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(i) “Crestuma Dam (EDP) (07G/01A)”;

(i) “Carrapatelo Dam (EDP) (071/01A)”;
(iii) “Torrdo Dam (EDP) (07H/01A)”;
(iv) “Fragas da Torre (EDP) (08H/02H)”.

The estimates of natural affluences to a reservoir, e.g. Crestuma-Lever reservoir, are subject to some uncertainties, mainly
related to the estimate of water volumes flowing into the reservoir, either from fluvial flows or from direct precipitation, as well
as the estimation of the effluent flows from the reservoir, corresponding to the supply, to evaporation losses, and other losses
(Portela & da Silvaj2014). In addition to such issues, the stream of the Douro river, which meanders along the 25.5 km separating
the case study bridge and the Crestuma-Lever dam, is highly dependent of the discharges from the dams situated upstream of
the bridge, Torrdo and Carrapatelo dams, and the flow from the Paiva river (from records of item (iv)). Therefore, streamflow
data from the “Crestuma Dam” (item (i)) gauging station was no longer considered.

Streamflow data, mean daily and instantaneous flow data, were taken from the “Water Resources Information System”
(SNIRH, Portugal) platform and were made accessible by “Energias de Portugal” (EDP, Portugal), the Portuguese entity respon-
sible for the management of the dams considered, respectively. Table |I| summarizes the data availability and the periods of
required extrapolation.

3.4 | Hydrological modeling hypothesis

The resulting flow discharge approaching the new Hintze Ribeiro bridge was herein considered by combining the contributions
of the three aforementioned gauging stations (items (ii) to (iv) mentioned in subsection[3.3)). In light of the hydrographic location
of the bridge, the resulting flow discharge approaching the new Hintze Ribeiro bridge was the direct sum of the flow discharges
from the three gauging stations.

Following individual analyses to the preponderance that each gauging station plays on the approach flow discharges at the
bridge section, the proposed direct sum hypothesis resulted in more conservative values. As such, this was selected as the
modeling hypothesis. This combination assumes the temporal coincidence of flood peaks between the three gauging stations’
records and simultaneously disregards the streamflow losses and gains between those stations and the bridge section. Figure
[ plots the maximum annual discharges from the mean daily values for the coincident recording years, i.e. from 1988/89 to
2018/19, comprising a total number of 31 hydrological years.

3.5 | Hydrological scenarios definition

By using the assumption of direct sum, four possible hydrological scenarios were considered to evaluate the maximum annual
flow discharge approaching the new Hintze Ribeiro bridge (Q ) - Table[2}

The total flow rate was determined through the sum of the aforesaid records: Qr = O + Or + Qpr, Where O, O and
O pr stand for the streamflows extracted from the gauging stations “Carrapatelo Dam (EDP) (071/01A)”, “Torrao Dam (EDP)
(07H/01A)” and “Fragas da Torre (EDP) (O08H/02H)”, respectively, either mean daily or instantaneous data. Table summarizes
how Q r was assessed, as well as the database under consideration.

Scenario 0 was promptly unconsidered due to the rejection of the hypothesis of homogeneity, since the hydrological time
series of streamflow data, from the three gauging stations, do not follow the same statistical distribution.

Despite the rich vein of information available in the online platform SNIRH, often neither instantaneous data nor reliable
records are available for along period of time. Scenario 2, even though not as conservative as Scenario 1, seems to be areasonable
approximation of the reality. Since no account are taken of the streamflow losses and gains between the gauging stations, Scenario
2 may underestimate the approach flow to the new Hintze Ribeiro bridge.

Scenario 3, in turn, represents undoubtedly the more conservative scenario since it considers all exceptional flow rates
occurred at the approach section of the new Hintze Ribeiro bridge.



4 | RESULTS AND DISCUSSION

4.1 | Data analysis and extrapolation

Some data gaps in the mean daily records from the three gauging stations were filled in order to guarantee data continuity (on
the mean daily series) for Scenario 2. Such task was performed through application of a linear regression function for either
one or two consecutive gap days. For three or more consecutive data gaps, a linear correlation was applied to the records of the
station under study with its neighboring station records.

After analyzing the historical time series with regard to record length and quality of data, only records from the period between
1988/89 to 2018/19 were considered for further analysis, namely flood frequency analysis (ensuring the minimum required
sample size of 30 years). As indicated in Table[I] from 1988/89 to 2008/09, the instantaneous streamflow data for “Carrapatelo
Dam (EDP) (071/01A)” and “Torrao Dam (EDP) (07H/01A)” were not available. For that period, an extrapolation of the missing
instantaneous discharge data was needed.

Hence, the extrapolation of the missing instantaneous discharge data was derived by factoring the corresponding mean dis-
charge in that year by a coefficient of proportionality (K). This coefficient was the result of averaging the yearly instantaneous
discharge to mean discharge ratio (Q,,yanrancous’ Cmean)» fOr the available 10 hydrological years). Coefficients of proportionality
of K- =1.322 + 0.138 (6 = 0.222) and K = 1.568 + 0.190 (¢ = 0.306) were obtained for the hydrological time series of O
and Qr, respectively. These coefficients were applied to the respective maximum annual mean daily discharges (Q,,,,,) to esti-
mate the associated instantaneous data. For these cases, the adoption of different discharge classes for the estimation of K did
not seem to influence the estimates. The limited size of the sample precludes its application, since what could be gained in dif-
ferentiation would be lost in increased sample error, and consequent uncertainty. In order to validate the developed approach of
estimating the instantaneous missing data, this technique was verified by two distinct methods (herein designated Method A and
Method B). For that purpose, the resultant value for K was considered; a similar procedure can be performed for the Q. case.

Method A - The magnitude of K; was compared with the one obtained from the records of a neighboring station of “Torrao
Dam”, namely the gauging station of “Fridao (R.E.) (061/03H)”, for which both mean and instantaneous streamflow data were
accessible.

Method B - The construction of the flow-duration curves, representative of the 10 years of available mean and instantaneous
data, allowed for another estimate of K.

Regarding the application of Method A, the approach herein developed resulted in an coefficient of K, = 1.511 + 0.095
(¢ =0.270) for the “Friddo (R.E.) (06I/03H)” gauging station. For this station, a total of 25 hydrological years of records was
considered for the ratio Q,,q;amancous’Cmean (Figure[d]- discharges were sorted in descending order based on the mean daily data).
Also for this case, no classes were considered for the estimation of that coefficient due to the limited data sample size for an
adequate statistical procedure. Besides the similar order of magnitude of the obtained proportional coefficients (K and Kp),
the different sample sizes explain the lower sample error obtained for the “Friddo (R.E.) (061/03H)” time series data.

In regard to Method B, the 10 years of available mean daily and instantaneous data for Q- (indicated in Table [I)) were used
in obtaining the correspondent flow-duration curves (Figure [3). The flow-duration curve of the mean daily data presents an
expected behavior. The same is not true for the instantaneous records, at least to some extent. If we revisit the function of these
curves, their construction for instantaneous flow regimes is not usual. Such curves indicate the number of days in which a given
flow discharge (Q,,00n OF Qinstantancons) has been exceeded or equalized in that 10-year period of records.

A minimum mean daily discharge of 242.21 m3s~! was registered in the 2011/12 hydrological year, whereas a minimum
instantaneous discharge of 322.66 m3s~! was attained in 1998/99. In order to cope with the strange behavior of the instanta-
neous flow-duration curve, the coefficient of proportionality (K ) was considered for two separated instances: (i) the minimum
mean daily discharge, and (ii) minimum instantaneous discharge. The former was reached and exceeded for 25 days, while the
second was exceeded in 35 days of the year. Following these thresholds, the resultant coefficients of proportionality from the
“Torrdo Dam” gauging station data were: (i) Ky = 1.474 + 0.018 (¢ = 0.045), and (ii) K; = 1.481 + 0.013 (¢ = 0.040). The
flow-duration curves for the second limit (ii) are plotted in Figure [6] These curves do not represent annual duration. Rather,
they correspond to 35 annual days from the 10 representative years, and present a sufficiently acceptable behavior to trust the
estimated proportionality coefficients (very similar estimates for (i) and (ii)).

Another way to establish these limits is to impose the base flow for this watercourse, the Tamega river. However, such infor-
mation was not available on SNIRH’s online platform. It is known that the base flow of Douro river is about 500 m3s~!, and
that the affluence of TAmega river represents 14.5% of the Douro river discharge in the bridge area. Therefore, it is reasonable
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to conclude that the base flow of Tamega river is much lower, possibly in the order of the minimum mean daily discharge, as
previously referred.

An additional verification was undertaken. The availability of mean daily and instantaneous Q py records for the same 10-
year time period (from 2009/10 to 2018/19) allowed the quantification of the associated discrepancy, through the comparison
of estimated and recorded instantaneous streamflow data. For that purpose, the coefficient of proportionality was estimated
for the “Fragas da Torre” gauging station data, using the available sample of 66 hydrological years (Table [I). A value of
Kpp =1.621 +0.075 (6 = 0.316) was obtained for Q - data. By imposing that coefficient to the mean daily data for the afore-
mentioned 10-year period, new instantaneous discharge values were estimated, showing an average over-prediction of 7.2% when
compared with the recorded data (Figure[7). Therefore, for the purposes of the current investigation, the estimated coefficients
of proportionality for the O, and Q. data were deemed to be conservative estimates of reasonable order of magnitude.

4.2 | Reliability analysis and scenario selection

Regarding the data reliability analysis, the verification of consistency and the hypothesis of randomness of the three hydrological
time series were performed. The verification of consistency was not an issue, since there were neither changes in the location of
the gauging stations nor the creation of obstacles nearby. The hypothesis of randomness was analyzed through the tests referred
in subsection[2.T} following the procedures outlined in[Hipdlito and Vaz|(2011)). The hypothesis of randomness was thus satisfied
for all the three scenarios, since the assumptions of independence and homogeneity were confirmed.

The hydrological scenarios, considered to evaluate the maximum annual flow discharge approaching the new Hintze Ribeiro
bridge (Qy; ). are depicted in Figure [8]in the form of box-plots graphs, which include the median, and the lower and upper
quantiles (defined as the 25" and 75" percentiles) for each of the scenarios. The long upper tails show the lack of symmetry in
the data values for all of the scenarios. The red plus signs are outliers that should be investigated carefully. In the current study,
they are all mild outliers and contain trustful information; for Scenario 3, for instance, the higher outlier corresponds to the 1989
flood, referenced in subsection with a magnitude of 14,597.05 m3s~!.

It is relevant to note that, when compared with the Scenario 1, Scenario 2 leads to lower resultant discharge values (Q g ).
In practice this behavior have led us to the conclusion that flood peaks do not coincide in all rivers, namely Douro, Tamega and
Paiva rivers. Scenario 1 is more conservative, but less realistic. However, this difference is not significant, representing solely
an over-prediction of 6.3% of the mean value (as indicated in Table[3). As expected and previously mentioned (Subsection 3.5)),
Scenario 3 is clearly the one which contains the higher discharge values. It over-predicts the Scenario 1 mean discharge value
in a percentage of 26.8%. Further statistics for each scenario are given in Table 3]

Bearing in mind the main objective of the current study, providing a reliable estimate of extreme flow discharges at the bridge’s
approach section, the scenario that led to higher floods was desired and Scenario 3 was thus the one selected for the following
analyses.

4.3 | Probabilistic models’ performance

The frequency of flood events, considering the peak discharge and return period, was statistically analyzed by individually
employing the seven parametric distributions referred in subsection [2.2.1] Seven different return periods were considered:
T =2,5,10,20, 50, 100, 500 and 1000 years. The methods of moments and the L-moments were used to estimate the param-
eters of the aforementioned distributions. The performance of these probabilistic models was assessed by the goodness-of-fit
tests (K.S, y?, Fi and AD), as well as by the corresponding Q-Q plots.

The models with potential for the design floods estimation were the two- and three-parameter LogNormal distributions, the
Gumbel distribution, and the Gamma distribution. The estimated design floods, computed with the free Matlab code developed
by [Benkaci| (2019), are presented in Table 4| From the goodness-of-fit tests, only the qualitative 2 test did not give satisfying
results for the Log-Normal (3p) distribution and the Gumbel distribution; however, these two were also accepted as potential
representatives of the data time series under analysis (Scenario 3), since the remaining tests did not reject them. The graphical
adjustments of those four probabilistic distributions of the maximum annual flow discharge approaching the new Hintze Ribeiro
bridge (given by Q-Q plots) are shown in Figure[9] It should be noted that the design floods (Table[d) were estimated at a 95%
confidence level, in which the upper and the lower boundaries are represented by dashed borderlines in Figure 0]

The Q-0 plots were built by using the empirical Weibull plotting position for all the distribution models, except for the
Gumbel distribution, in which the Gringorten formula was selected. Figure [9] shows that the aforementioned four parametric
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distributions may produce satisfying results for Scenario 3 and that the Gamma distribution is the best fit for the available data
(model selection, M S). The Gamma distribution not only passed the four goodness-of-fit tests, but also returned the highest
correlation coefficient (R = 0.979). Despite the good performance of the Gamma distribution, the current study also considered
an arithmetic average of the considered candidate models in order to reduce the model uncertainty, especially due to the available
record length of only 31 hydrological years.

4.4 | Uncertainty and modeling approaches

In order to take model uncertainties into account and thus reduce some of the epistemic uncertainties (reducible uncertainty), the
weighted averaging technique was also considered in the present study. For the purposes of this investigation, only the arithmetic
model averaging (M M) approach was considered.

The design floods estimated by both approaches are given in Table The M S design floods ranged from 3,986 m3s~! for
T = 2 years of return period to 27,247 m*s~! for T = 1,000 years, whilst for the M M approach, the flood events varied between
3,925 m3s~! and 36,616 m3s~! for the same return periods, respectively. In spite of the record length of only 31 historical records,
the obtained flood designs included the major floods registered in the Douro valley. The 1739 flood corresponded roughly to
the design flood reached for T = 50 years in the M M approach. The first hydraulic infrastructure situated downstream of the
case study bridge (Crestuma-Lever dam) was designed to withstand a discharge flow of 26,000 m3s~! for a correspondent return
period of T' = 1,000 years, in close proximity to M.S estimate.

A “relative difference” between the M M and M S approaches was computed and it is indicated in Table 5] For return peri-
ods ranging from 20 to 1,000 years, the “relative difference” varied between 3.1% and 25.6%. For T = 2 to 10 years, the
M M approach slightly underestimated the flood designs in comparison to the M S approach. Higher differences between the
approaches, M'.S' and M M, are expected for increasing return periods.

In other to get further insight the accuracy of the modeling approaches herein considered, both parametric representations
(M S and M M), a non-parametric approach was also applied. A Kernel density estimate (K DE) is a non-parametric way of
estimating the probability density function of a random variable (Apipattanavis, Rajagopalan, & Lall|2005; [Lall, Moon, &
Bosworth|[1993)), in this case, the maximum annual discharges that approach the new Hintze Ribeiro bridge. It constitutes a
fundamental data smoothing problem where inferences about the hydrological series are made, based on a finite data sample
size. Such estimates are closely related to histograms; the histogram of the Scenario 3 data time series is presented in Figure[T0]

Figure[I0|gives thus an idea of the frequency of the flood events, as well as their magnitudes, occurred at the bridge approach
section along the 31 hydrological years (from 1988/89 to 2018/19). Regarding the standard deviation (¢) and the record length
of the data series (n,), estimates for the suitable Kernel bandwidth (#) can be computed through the rule-of-thumb formula
(Silverman| (1986), Equation E]), as well as by a variant in order to better fit tailed and skewed distributions of data (Equation E])
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Kernel bandwidths of 0.14 and 0.15 were obtained by equations[2]and 3] respectively, so a value of 0.15 was assumed for the
Kernel optimal bandwidth, represented in Figure [T} The empirical cumulative distribution function (CDF) of the data series
is also shown in Figure The long stair-step, in Figure ranging from the flow rate of 7,592 m3s~! to 11,559 m3s~! was
due to the nonexistence of records within that interval. This situation is corroborated with the histogram of the Scenario 3 data
time series, shown in Figure[I0}

Figure |12| displays the cumulative density functions of the Scenario 3 data time series obtained by the parametric and non-
parametric models from 2 to 1,000 years of return period. It is noticeable a general over-prediction of the parametric probabilistic
models in relation to the Kernel density estimate, specially for the period ranging from T' =5 years to T = 10 years. The design
flood values estimated by the parametric approaches, M .S and M M, were compared with the correspondent values retrieved by
the non-parametric approximation of Kernel density estimate (as previously performed in Table[5)) and those relative differences
are displayed in Figure[I3]in the form of bar-graphs.

Figure |13| comprises a shorter range of return periods due to the available Kernel estimates (maximum return period of 23
years). Nevertheless, it can be concluded that all four probabilistic distributions exhibited a very similar design flood for T = 10
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years, over-predicting the non-parametric approach at about 15.5%. For T' = 2 years, the Gumbel distribution showed the highest
percentage of relative difference (circa 26.5%). By neglecting the relative differences encountered for a return period of 10 years
(which roughly corresponds to the magnitudes range with no records), the resulting M M approach prediction is -2.24%. This
represents a reduction of 18.5% when compared to the M .S approach prediction of -2.75%. The conclusion that can be drawn
from the above information (Figures[T2]and [I3)) is that for the range analyzed (until roughly 7" = 20 years of return period), the
behaviors of the parametric approaches (individual and averaging models) were very similar and followed the non-parametric
trend, justifying, this way, the validity of all four models in fitting the given data, i.e., through the M M approach. The exception
arose for the aforementioned range, in which there were no records of flood events within the 31-hydrological years considered
in this study. Nonetheless, all the parametric functions predicted the correspondent design floods on the safety side.

By assuming the typical 50 years for the expected design life of the new Hintze Ribeiro bridge, different return periods could
be plausibly used, depending on the acceptance risks, through the application of Equation[I} Whereas a 100-year return period
of the design flood event corresponds to a risk of 40%, the flood associated to 1000 years of return period presents a hydrological
risk of 5%. It should be noted that the adopted return period as a design criterion, and associated design flood, also plays a
significant role on the assessment of admissible scour risk (i.e., maximum scour depths at the bridge foundations level) for the
bridge structural stability.

S | CONCLUSIONS

A hydrological modeling methodology is herein presented that uses the flood frequency analysis technique allied to parametric
and non-parametric approaches for providing reliable estimates of design floods that approach hydraulic infrastructures. The
new Hintze Ribeiro bridge, over the Douro river, in Portugal, was selected as case study. The frequency analysis is also relevant
for the assessment of the hydrological risk considered, or to be adopted, as a design criterion of those infrastructures.

The extrapolation of the missing instantaneous discharge data was herein derived by factoring the corresponding mean dis-
charge in that year by a coefficient of proportionality (K). This procedure was key to satisfy the minimum required sample size
for the application of the flood frequency analysis technique on hydrological time series data. Such extrapolation was performed
to obtain the “Carrapatelo Dam” and “Torrdo Dam” instantaneous data. Two validation methods verified the output, including
the associated sample errors, and consequent uncertainties of their estimations. The associated discrepancy between estimated
and recorded instantaneous data is an over-prediction of 7.2%. Thus, the estimated coefficients of proportionality for the Q; and
QO data were deemed to be conservative estimates of reasonable order of magnitude.

A variety of probabilistic models were considered in the assessment of the maximum annual flow discharges at the bridge
approach section, and the models’ performance verified by the goodness-of-fit tests and graphical methods (by the O-Q plots).
Besides the widely applied model selection approach (M.S, Gamma distribution), in the present work, a modified approach of
the arithmetic model averaging (M M) was also performed. In order to take into account the parameter uncertainties, all design
floods were estimated at a 95% confidence interval. Contrarily to what performed by |Okoli et al.| (2019), herein the modified
M M approach considered solely the contribution of the probability distributions that fitted well the Scenario 3 data, attributing
equal contribution of the candidate probabilistic models on the estimation of the design flood events (four of the distribution
models analyzed).

While slight differences were observed between the two approaches for lower return periods, for return periods higher than 20
years, the approaches become increasingly different. The proposed arithmetic model averaging (M M) approach was therefore
entirely justified to cope with the model uncertainties. An additional analysis was performed by comparing both of the parametric
representations (M .S and M M) with a non-parametric approach, the Kernel density estimate (K DE). Unlike its parametric
counterparts, no prior assumption of the underlying distribution was required, which makes it suitable for the assessment of the
parametric approaches’ accuracy. Despite the shorter range of validity of the Kernel estimates (maximum return period of 23
years), the behaviors of the parametric approaches (individual and averaging models) were very similar and followed the non-
parametric trend, justifying the contribution of the all four models in fitting the data under study, through the M M approach.
The relative difference between the non-parametric and the M .S approach is reduced in 18.5% if the latter is replaced by M M
approach results.

Based on the acceptable risk of flood occurrence in specific return periods (hydrological risk), and on the design life of a
hydraulic infrastructure, the return period for which a structure should be designed can be ascertained. The selected return period
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and correspondent design flood also play a significant role on the assessment of admissible scour risk for any bridge structural
stability, as for the new Hintze Ribeiro bridge.
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FIGURE 1 Photograph of the new Hintze Ribeiro bridge (upstream view).
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FIGURE 2 Map of the vicinity of the new Hintze Ribeiro bridge, over the Douro river (IGoogle Earth"n.d.[).
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FIGURE 3 Maximum annual flow discharges from the mean daily values for the three gauging stations.



——Q mean ——Q instantaneous

600

Flow discharge (m3st)
[0}
3

400

200

15 20 25
t (years)

FIGURE 4 Maximum annual mean daily and instantaneous discharges of “Friddo (R.E.) (06I/03H)” gauging station.



19

1400

1200 ——Q_mean ——Q_instantaneous
o
= 1000
S 800
@
<
3 600
©
3 400
LL

0 L

0 50 100 150 200 250 300 350
t (days)
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FIGURE 7 Correlation between observed and estimated instantaneous discharge values for Fragas da Torre gauging station.
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FIGURE 9 Graphical adjustments (Q-Q plots) of the four probabilistic distributions to the Scenario 3 data time series.
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FIGURE 10 Histogram of the Scenario 3 data time series.
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TABLE 1 Time series and database available. Periods that require extrapolation of streamflow data.

Gauging stations

Mean daily data

N.° of annual

Records period

Instantaneous data

N.° of annual

Records period

records records
Carrapatelo Dam (EDP) (071/01A) 47 1972/73 to 2018/19 10 2009/10 to 2018/19
Torrdo Dam (EDP) (07H/01A) 31 1988/89 to 2018/19 10 2009/10 to 2018/19
Fragas da Torre (EDP) (08H/02H) 68 1946/47 to 2018/19 66 1948/49 to 2018/19
Periods of required extrapolation
Carrapatelo Dam (EDP) (071/01A) - - 21 1988/89 to 2008/09
- - 21 1988/89 to 2008/09

Torrdo Dam (EDP) (07H/01A)
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TABLE 2 Hydrological scenarios considered for O » estimation.

Database Description Scenarios
Sum of the design floods obtained independently for each 0
gauging station

Sum of the maximum annual discharges of the three gauging
Mean daily stations 1
Sum of the discharges from the three gauging stations and )

calculation of the maximum annual values

Sum of the maximum annual discharges of the three gauging

Instantaneous 3

stations
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TABLE 3 Statistics of Q,  for the hydrological scenarios under consideration (m*s~1).

Variables Scenario 1  Scenario2  Scenario 3
Mean 3,691.80 3,460.40 5,045.60
Minimum 776.80 589.10 1,096.00
Median 2,173.40 2,101.10 3,137.00
Maximum 10,862.00 10,839.00 14,597.10
Standard Deviation  3,095.30 2,976.90 4,105.30
Coef. of Skewness 0.13 1.16 1.21
Coef. of Kurtosis 0.14 0.32 041

Coef. of Variation 0.84 0.86 0.81




TABLE 4 Design floods of Scenario 3 estimated by the four probabilistic models (m3s~1).

T (years) LogNormal (2p) LogNormal (3p) Gumbel Gamma

2 3,706 3,635 4,371 3,986

5 7,302 7,286 7,999 7,801

10 10,410 10,545 10,401 10,496
20 13,950 14,338 12,705 13,113
50 19,395 20,296 15,688 16,497
100 24,160 25,604 17,923 19,018
500 37,689 41,029 23,087 24,788

1,000 44,713 49,196 25,307 27,247
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TABLE 5 Design floods of the flow approaching the new Hintze Ribeiro bridge (Q g g)-

T (years) Oy (ms™h relative difference (%)
y MS MM (MM - MS)/MM

2 3,986 3,925 -1.6
5 7,801 7,597 -2.7
10 10,496 10,463 -0.3
20 13,113 13,527 3.1
50 16,497 17,969 8.2
100 19,018 21,676 12.3
500 24,788 31,648 21.7
1,000 27,247 36,616 25.6
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