References
1.
Brannelly, L.A., McMahon, T.A., Hinton, M., Lenger, D. & Richards-Zawacki, C.L. (2015). Batrachochytrium dendrobatidis in natural and farmed Louisiana crayfish populations: prevalence and implications. Diseases of Aquatic Organisms , 112, 229-235.
2.
Cohen, L.M., Neimark, H.L. & Everland, L.K. (1980). Schistosoma mansoni : Response to cercariae to a thermal gradient. Journal of Parasitology , 66, 362-364.
3.
Development Core Team, R. (2013). R: A language and environment for statiscical computing R Foundation for Statistical Computing , Version 3.1.3.
4.
Dunlop, R., Millsopp, S. & Laming, P. (2006). Avoidance learning in goldfish (Carassius auratus ) and trout (Oncorhynchus mykiss ) and implications for pain perception. Applied Animal Behavior , 97, 255-271.
5.
Hillyard, S.D. & Willumsen, N.J. (2011). Chemosensory function of amphibian skin: integrating epithelial transport, capillary blood flow and behaviour. Acta Physiologica , 202, 533-548.
6.
Kiesecker, J., Skelly, D.K., Beard, K.H. & Preisser, E. (1999). Behavioral reduction of infection risk. Proceedings of the National Academy of Science , 96, 9165-9168.
7.
Lawler, J.J., Aukema, J.E., Grant, J.B., Halpern, B.S., Kareiva, P., Nelson, C.R. et al. (2006). Conservation science: a 20-year report card. Frontiers in Ecology and the Environment , 4, 473-480.
8.
McMahon, T.A., Brannelly, L.A., Chatfield, M.W.H., Johnson, P.T.J., Joseph, M.B., McKenzie, V.J. et al. (2013). The chytrid fungus,Batrachochytrium dendrobatidis , has non-amphibian hosts and releases chemicals that cause pathology in the absence of infection.Proceedings of the National Academy of Science , 110, 210-215.
9.
McMahon, T.A., Laggan, N.A. & HIll, M.N. (2019). Metabolites produced by Batrachochytrium dendrobatidis alter development in tadpoles, but not growth or mortality. Diseases of Aquatic Organisms .
10.
McMahon, T.A., Sears, B.F., Venesky, M.D., Bessler, S., Brown, J., Deutsch, K. et al. (2014). Amphibians acquire resistance to live and dead fungus overcoming fungal immunosuppression. Nature , 511, 224-227.
11.
Moss, A.S., Carty, N. & Francisco, M.J.S. (2010). Identification and partial characterization of an elastolytic protease in the amphibian pathogen Batrachochytrium dendrobatidis . Diseases of Aquatic Organisms , 92, 149-158.
12.
Newman, R.A. (1988). Adaptive plasticity in development ofScaphiopus couchii tadpoles in desert ponds. Evolution , 42, 774-783.
13.
Ouellet, M., Mikaelian, I., Pauli, B.D., Rodrigue, J. & Green, D.M. (2005). Historical evidence of widespread chytrid infectionin North American amphibian populations. Conservation Biology , 19, 1431-1440.
14.
Padgett-Flohr, G.E. & Hopkins, R.L. (2009). Batrachochytrium dendrobatidis , a novel pathogen approaching endemism in central California. Diseases of Aquatic Organisms , 83, 1-9.
15.
Rohr, J.R., Elskus, A.A., Shepherd, B.S., Crowley, P.H., McCarthy, T.M., Niedzwiecki, J.H. et al. (2004). Multiple stressors and salamanders: Effects of an herbicide, food limitation, and hydroperiod.Ecological Applications , 14, 1028-1040.
16.
Rollins-Smith, L.A., Fites, S., Reinert, L.K., Shiakolas, A.R., Umile, T.P. & Minbiole, K.P.C. (2015). Immunomodulatory metabolites released by the frog-killing fungus Batrachochytrium dendrobatidis .Infeciton and Immunity , 83.
17.
Rollins-Smith, L.A., Ruzzini, A.C., Fites, J.S., Reinert, L.K., Hall, E.M., Joosse, B.A. et al. (2019). Metabolites involved in immune evasion by Batrachochytrium dendrobatidis include the polyamine spermidine. Infection and Immunity , IAI.00035-00019.
18.
Romansic, J.M., Johnson, P.T.J., Searle, C.L., Johnson, J.E., Tunstall, T.S., Han, B.A. et al. (2011). Individual and combined effects of multiple pathogens on Pacific treefrogs. Oecologia , 166, 1029-1041.
19.
Scheele, B.C., Pasmans, F., Skerratt, L.F., Berger, L., Martel, A., Beukema, W. et al. (2019). Amphibian fungal panzootic causes catastrophic and ongoing loss of biodiversity. Science , 363, 1459-1463.
20.
Sears, B.F., Snyder, P.W. & Rohr, J.R. (2015). Host life history and host–parasite syntopy predict behavioural resistance and tolerance of parasites. Journal of Animal Ecology , 84, 625-636.
21.
Stuart, S.N., Chanson, J.S., Cox, N.A., Young, B.E., Rodrigues, A.S.L., Fischman, D.L. et al. (2004). Status and trends of amphibian declines and extinctions worldwide. Science , 306, 1783-1786.
22.
Symonds, E.P., Trott, D.J., Bird, P.S. & Mills, P. (2008). Growth characteristics and enzyme activity in Batrachochytrium dendrobatidis isolates. Mycopathologia , 166, 143-147.
23.
Tallley, B.L., Muletz, C.R., Vredenburg, V.T., Fleischer, R.C. & Lips, K.R. (2015). A century of Batrachochytrium dendrobatidis in Illinois amphibians (1888-1889). Biological Conservation , 182, 254-261.
24.
Venesky, M.D., Mendelson, J.R., Sears, B.F., Stiling, P. & Rohr, J.R. (2012). Selecting for tolerance against pathogens and herbivores to enhance success of reintroduction and translocation. Conservation Biology , 26, 586-592.
25.
Venesky, M.D., Raffel, T.R., McMahon, T.A. & Rohr, J.R. (2013). Confronting inconsistencies in the amphibian-chytridiomycosis system: implications for disease management. Biological Reviews , 89, 477-483.