Zachary Gold

and 9 more

DNA metabarcoding is an important tool for molecular ecology. However, its effectiveness hinges on the quality of reference sequence databases and classification parameters employed. Here we evaluate the performance of MiFish 12S taxonomic assignments using a case study of California Current Large Marine Ecosystem fishes to determine best practices for metabarcoding. Specifically, we use a taxonomy cross-validation by identity framework to compare classification performance between a global database comprised of all available sequences and a curated database that only includes sequences of fishes from the California Current Large Marine Ecosystem. We demonstrate that the curated, regional database provides higher assignment accuracy than the comprehensive global database. We also document a tradeoff between accuracy and misclassification across a range of taxonomic cutoff scores, highlighting the importance of parameter selection for taxonomic classification. Furthermore, we compared assignment accuracy with and without the inclusion of additionally generated reference sequences. To this end, we sequenced tissue from 605 species using the MiFish 12S primers, adding 253 species to GenBank’s existing 550 California Current Large Marine Ecosystem fish sequences. We then compared species and reads identified from seawater environmental DNA samples using global databases with and without our generated references, and the regional database. The addition of new references allowed for the identification of 16 native taxa and 17.0% of total reads from eDNA samples, including species with vast ecological and economic value. Together these results demonstrate the importance of comprehensive and curated reference databases for effective metabarcoding and the need for locus-specific validation efforts.

Ricardo Pereira

and 4 more

Reproductive isolation is often achieved when genes that are neutral or beneficial in their genomic background become functionally incompatible in a foreign genome, causing inviability, sterility or low fitness in hybrids. Recent studies suggest that mitonuclear interactions are among the initial incompatibilities to evolve at early stages of population divergence across taxa. Yet, it is unclear whether mitonuclear incompatibilities involve few or many regions in the nuclear genome. We employ an experimental evolution approach starting with unfit F2 interpopulation hybrids of the copepod Tigriopus californicus, in which compatible and incompatible nuclear alleles compete in a fixed mitochondrial background. After about nine generations, we observe a generalized increase in population size and in survivorship, suggesting efficiency of selection against maladaptive phenotypes. Whole genome sequencing of evolved populations showed some consistent allele frequency changes across the three replicates of each reciprocal cross, but markedly different patterns between mitochondrial background. In only a few regions (~6.5% of the genome), the same parental allele was overrepresented irrespective of the mitochondrial background. About 33% of the genome shows allele frequency changes consistent with divergent selection, with the location of these genomic regions strongly differing between mitochondrial backgrounds. The dominant allele matches the mitochondrial background in 87 and 89% of these genomic regions, consistent with mitonuclear coadaptation. These results suggest that mitonuclear incompatibilities have a complex polygenic architecture that differs between populations, potentially generating genome wide barriers to gene flow between closely related taxa.

Daniela Zarate

and 5 more

The Africanized honey bee (AHB) is a New World amalgamation of several subspecies of the western honey bee (Apis mellifera), a diverse taxon grouped into four major biogeographic lineages: A (African), M (western European), C (eastern European), and O (Middle Eastern). In 1956, accidental release of experimentally bred “Africanized” hybrids from a research apiary in Sao Paulo, Brazil initiated a hybrid species expansion that now extends from northern Argentina to northern California (U.S.A.). Here, we assess nuclear admixture and mitochondrial ancestry in 15 bees from each of four regions across this expansive range: the Isthmus of Panamá; Guanacaste, Costa Rica, Tapachula, Mexico; and San Diego, U.S.A to assess ancestry of AHB several decades following initial introduction and test the prediction that African ancestry decreases with increasing latitude. We find that AHB nuclear genomes from Central America and Mexico have majority African ancestry (Mexico, 79%; Costa Rica 90%; and Panamá 94%) with varying contributions from western and eastern European lineages. AHB from San Diego (CA) show markedly lower African ancestry (40%) with substantial genomic contributions from all four major honey bee lineages. The mitochondria of all bees sampled in Costa Rica and Panamá originated in Africa. The majority (11) of bees sampled in Mexico carried African mitochondria with the remainder carrying eastern European mitochondria. In the San Diego population, mitochondria from all four lineages are present. Genetic diversity measures from all New World populations are similar and exceed those of ancestral forms. The unique genetic makeup of the San Diego honey bee population makes it a rich source of genetic material for honey bee breeding.

Zachary Gold

and 7 more

DNA metabarcoding is an important tool for molecular ecology. However, metabarcoding effectiveness hinges on the quality of reference databases for taxa and loci of interest. This limitation is true for metabarcoding of marine fishes in the California Current Large Marine Ecosystem where there is a paucity of reference 12S barcodes. Here we present FishCARD, a California Current-specific fish 12S-specific reference barcode database. We barcoded 612 species using the MiFish metabarcoding primers; an addition of 258 species to the 459 California Current fish species with existing 12S barcodes from GenBank. The resulting FishCARD database covers 82.7% of California Current fishes, and it includes virtually all fishes sampled by large marine monitoring programs such as the Partnership for Interdisciplinary Studies of Coastal Oceans and California Cooperative Oceanic Fisheries Investigation. To demonstrate the importance of complete reference databases for eDNA metabarcoding, we compared species and reads identified from three 1L seawater samples collected off Santa Cruz Island, CA using GenBank sequences with and without our generated barcodes, as well as the FishCARD database curated here. The inclusion of our generated barcodes allowed the additional identification of 15 native taxa and 21.8% of total reads from eDNA samples. However, we found that half of all amplicon sequence variants (ASVs) generated by MiFish 12S primers were of non-vertebrate 16S origin, demonstrating a clear limitation of a widely employed fish metabarcoding primers. Despite these limitations, FishCARD provides an important genetic resource to enhance the effectiveness of marine metabarcoding efforts in the California Current Large Marine Ecosystem.