References
Alam, M. K., Bell, R. W., Haque, M. E., Islam, M. A., & Kader, M. A. (2020). Soil nitrogen storage and availability to crops are increased by conservation agriculture practices in rice-based cropping systems in the Eastern Gangetic Plains. Field Crops Research, 250 , 107764.https://doi.org/10.1016/j.fcr.2020.107764
Amelung, W., Brodowski, S., Sandhage-Hofmann, A., & Bol, R. (2008). Chapter 6 Combining biomarker with dtable isotope analyses for assessing the transformation and turnover of soil organic matter. InAdvances in Agronomy (Vol. 100, pp. 155-250): Academic Press.
Bender, S. F., Wagg, C., & van der Heijden, M. G. A. (2016). An underground revolution: Biodiversity and soil ecological engineering for agricultural sustainability. Trends in Ecology & Evolution, 31 (6), 440-452.https://doi.org/10.1016/j.tree.2016.02.016
Blair, G., Lefroy, R., & Lisle, L. (1995). Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agricultural systems. Australian Journal of Agricultural Research, 46 (7), 1459-1466.https://doi.org/10.1071/AR9951459
Calderón, F., Haddix, M., Conant, R., Magrini-Bair, K., & Paul, E. (2013). Diffuse-reflectance fourier-transform mid-infrared spectroscopy as a method of characterizing changes in soil organic matter. Soil Science Society of America Journal, 77 (5), 1591-1600.https://doi.org/10.2136/sssaj2013.04.0131
Chen, J., Lü, S., Zhang, Z., Zhao, X., Li, X., Ning, P., & Liu, M. (2018). Environmentally friendly fertilizers: A review of materials used and their effects on the environment. Science of the Total Environment, 613-614 , 829-839.https://doi.org/10.1016/j.scitotenv.2017.09.186
Chen, L., Liu, M., Ali, A., Zhou, Q., Zhan, S., Chen, Y., . . . Zeng, Y. (2020). Effects of biochar on paddy soil fertility under different water management modes. Journal of Soil Science and Plant Nutrition, 20 (4), 1810-1818.https://doi.org/10.1007/s42729-020-00252-8
Churchman, G. J., Foster, R. C., D’Acqui, L. P., Janik, L. J., Skjemstad, J. O., Merry, R. H., & Weissmann, D. A. (2010). Effect of land-use history on the potential for carbon sequestration in an Alfisol. Soil and Tillage Research, 109 (1), 23-35.https://doi.org/10.1016/j.still.2010.03.012
Curtin, D., Peterson, M. E., Qiu, W., & Fraser, P. M. (2020). Predicting soil pH changes in response to application of urea and sheep urine. Journal of Environmental Quality, 49 (5), 1445-1452.https://doi.org/10.1002/jeq2.20130
D’Acunto, L., Andrade, J. F., Poggio, S. L., & Semmartin, M. (2018). Diversifying crop rotation increased metabolic soil diversity and activity of the microbial community. Agriculture, Ecosystems & Environment, 257 , 159-164.https://doi.org/10.1016/j.agee.2018.02.011
Du, C., Goyne, K. W., Miles, R. J., & Zhou, J. (2014). A 1915–2011 microscale record of soil organic matter under wheat cultivation using FTIR-PAS depth-profiling. Agronomy for Sustainable Development, 34 (4), 803-811.https://doi.org/10.1007/s13593-013-0201-6
Du, C., Linker, R., & Shaviv, A. (2007). Characterization of soils using photoacoustic mid-infrared spectroscopy. Applied Spectroscopy, 61 (10), 1063-1067.https://doi.org/10.1366/000370207782217743
Ellerbrock, R. H., & Gerke, H. H. (2004). Characterizing organic matter of soil aggregate coatings and biopores by Fourier transform infrared spectroscopy. European Journal of Soil Science, 55 (2), 219-228.https://doi.org/10.1046/j.1365-2389.2004.00593.x
Fu, H., Duan, Y., Zhu, P., Gao, H., & Xu, M. (2021).15N fate in maize cropping system in response to black soil fertility improvement in China. Agronomy Journal, 113 (5), 4323-4333.https://doi.org/10.1002/agj2.20794
Gao, Y., Song, X., Liu, K., Li, T., Zheng, W., Wang, Y., . . . Miao, T. (2021). Mixture of controlled-release and conventional urea fertilizer application changed soil aggregate stability, humic acid molecular composition, and maize nitrogen uptake. Science of the Total Environment, 789 , 147778.https://doi.org/10.1016/j.scitotenv.2021.147778
German, R. N., Thompson, C. E., & Benton, T. G. (2017). Relationships among multiple aspects of agriculture’s environmental impact and productivity: a meta-analysis to guide sustainable agriculture.Biological Reviews, 92 (2), 716-738.https://doi.org/10.1111/brv.12251
Ghosh, P. K., Hazra, K. K., Venkatesh, M. S., Praharaj, C. S., Kumar, N., Nath, C. P., . . . Singh, S. S. (2020). Grain legume inclusion in cereal-cereal rotation increased base crop productivity in the long run.Experimental Agriculture, 56 (1), 142-158.https://doi.org/10.1017/S0014479719000243
Giacometti, C., Mazzon, M., Cavani, L., Triberti, L., Baldoni, G., Ciavatta, C., & Marzadori, C. (2021). Rotation and fertilization effects on soil quality and yields in a long term field experiment.Agronomy, 11 (4), 636.https://doi.org/10.3390/agronomy11040636
Gong, Z., Lei, W. J., Chen, Z. C., Gao, Y. X., Zeng, S. G., Zhang, G. L., . . . Li, S. G. (2001). Chinese soil taxonomy . Beijing: Science Press.
Guo, C., Ren, T., Li, P., Wang, B., Zou, J., Hussain, S., . . . Li, X. (2019). Producing more grain yield of rice with less ammonia volatilization and greenhouse gases emission using slow/controlled-release urea. Environmental Science and Pollution Research, 26 (3), 2569-2579.https://doi.org/10.1007/s11356-018-3792-2
Hu, H., Ning, T., Li, Z., Han, H., Zhang, Z., Qin, S., & Zheng, Y. (2013). Coupling effects of urea types and subsoiling on nitrogen-water use and yield of different varieties of maize in northern China.Field Crops Research, 142 , 85-94.https://doi.org/10.1016/j.fcr.2012.12.001
Huang, X., Li, S., Li, S., Ye, G., Lu, L., Zhang, L., . . . Liu, J. (2019). The effects of biochar and dredged sediments on soil structure and fertility promote the growth, photosynthetic and rhizosphere microbial diversity of Phragmites communis (Cav.) Trin. ex Steud .Science of the Total Environment, 697 , 134073.https://doi.org/10.1016/j.scitotenv.2019.134073
Jackson, M. L. (1958). Soil chemical analysis (Vol. 85). New Delhi, India: Prentice Hall, Inc., Englewood Cliffs, NJ.
Janik, L. J., Skjemstad, J. O., Shepherd, K. D., & Spouncer, L. R. (2007). The prediction of soil carbon fractions using mid-infrared-partial least square analysis. Soil Research, 45 (2), 73-81.https://doi.org/10.1071/SR06083
Leifeld, J. (2006). Application of diffuse reflectance FT-IR spectroscopy and partial least-squares regression to predict NMR properties of soil organic matter. European Journal of Soil Science, 57 (6), 846-857.https://doi.org/10.1111/j.1365-2389.2005.00776.x
Li, J., Liu, Y., & Yang, Y. (2018). Land use change and effect analysis of tideland reclamation in Hangzhou Bay. Journal of Mountain Science, 15 (2), 394-405.https://doi.org/10.1007/s11629-017-4542-5
Liu, D., Song, C., Fang, C., Xin, Z., Xi, J., & Lu, Y. (2021). A recommended nitrogen application strategy for high crop yield and low environmental pollution at a basin scale. Science of the Total Environment, 792 , 148464.https://doi.org/10.1016/j.scitotenv.2021.148464
Lucas, S., & Weil, R. (2021). Can permanganate oxidizable carbon predict soil function responses to soil organic matter management?Soil Science Society of America Journal, 85 (5), 1768-1784.https://doi.org/10.1002/saj2.20282
Lützow, M. v., Kögel-Knabner, I., Ekschmitt, K., Matzner, E., Guggenberger, G., Marschner, B., & Flessa, H. (2006). Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions-a review. European Journal of Soil Science, 57 (4), 426-445.https://doi.org/10.1111/j.1365-2389.2006.00809.x
Madejová, J. (2003). FTIR techniques in clay mineral studies.Vibrational Spectroscopy, 31 (1), 1-10.https://doi.org/10.1016/S0924-2031(02)00065-6
Malobane, M. E., Nciizah, A. D., Mudau, F. N., & Wakindiki, I. I. C. (2020). Tillage, crop rotation and crop residue management effects on nutrient availability in a sweet sorghum-based cropping system in marginal soils of South Africa. Agronomy, 10 (6), 776.https://doi.org/10.3390/agronomy10060776
Movasaghi, Z., Rehman, S., & ur Rehman, D. I. (2008). Fourier transform infrared (FTIR) dpectroscopy of biological tissues. Applied Spectroscopy Reviews, 43 (2), 134-179.https://doi.org/10.1080/05704920701829043
Nayak, P. S., & Singh, B. K. (2007). Instrumental characterization of clay by XRF, XRD and FTIR. Bulletin of Materials Science, 30 (3), 235-238.https://doi.org/10.1007/s12034-007-0042-5
Olsen, S. R. (1954). Estimation of available phosphorus in soils by extraction with sodium bicarbonate. Paper presented at the USDA Circular, Washington, DC, USA.
Osanai, Y., Knox, O., Nachimuthu, G., & Wilson, B. (2021). Contrasting agricultural management effects on soil organic carbon dynamics between topsoil and subsoil. Soil Research, 59 (1), 24-33.https://doi.org/10.1071/SR19379
Pampolino, M. F., Laureles, E. V., Gines, H. C., & Buresh, R. J. (2008). Soil carbon and nitrogen changes in long-term continuous lowland rice cropping. Soil Science Society of America Journal, 72 (3), 798-807.https://doi.org/10.2136/sssaj2006.0334
Pansu, M., & Gautheyrou, J. (2006). Organic and total C, N (H, O, S) analysis. In Handbook of soil analysis: Mineralogical, organic and inorganic methods (pp. 327-370). Berlin, Heidelberg: Springer Berlin Heidelberg.
Pedersen, J. A., Simpson, M. A., Bockheim, J. G., & Kumar, K. (2011). Characterization of soil organic carbon in drained thaw-lake basins of Arctic Alaska using NMR and FTIR photoacoustic spectroscopy.Organic Geochemistry, 42 (8), 947-954.https://doi.org/10.1016/j.orggeochem.2011.04.003
Peltre, C., Bruun, S., Du, C., Thomsen, I. K., & Jensen, L. S. (2014). Assessing soil constituents and labile soil organic carbon by mid-infrared photoacoustic spectroscopy. Soil Biology and Biochemistry, 77 , 41-50.https://doi.org/10.1016/j.soilbio.2014.06.022
Piao, S., Ciais, P., Huang, Y., Shen, Z., Peng, S., Li, J., . . . Fang, J. (2010). The impacts of climate change on water resources and agriculture in China. Nature, 467 (7311), 43-51.https://doi.org/10.1038/nature09364
R Development Core Team. (2018). R: a language and environment for statistical computing. R Foundation for Statistical Computing.Retrieved fromhttps://www.R-project.org/.
Rossel, R. A. V., & Behrens, T. (2010). Using data mining to model and interpret soil diffuse reflectance spectra. Geoderma, 158 (1), 46-54.https://doi.org/10.1016/j.geoderma.2009.12.025
Shen, Y., Du, C., Zhou, J., & Ma, F. (2017). Application of nano Fe(III)-tannic scid complexes in modifying aqueous acrylic latex for controlled-release coated urea. Journal of Agricultural and Food Chemistry, 65 (5), 1030-1036.https://doi.org/10.1021/acs.jafc.6b05274
Sindelar, A. J., Schmer, M. R., Jin, V. L., Wienhold, B. J., & Varvel, G. E. (2016). Crop rotation affects corn, grain sorghum, and soybean yields and nitrogen recovery. Agronomy Journal, 108 (4), 1592-1602.https://doi.org/10.2134/agronj2016.01.0005
Skiba, U., & Wainwright, M. (1984). Urea hydrolysis and transformations in coastal dune sands and soil. Plant and Soil, 82 (1), 117-123.https://doi.org/10.1007/BF02220775
Smidt, E., & Meissl, K. (2007). The applicability of Fourier transform infrared (FT-IR) spectroscopy in waste management. Waste Management, 27 (2), 268-276.https://doi.org/10.1016/j.wasman.2006.01.016
Soriano-Disla, J. M., Janik, L. J., Viscarra Rossel, R. A., Macdonald, L. M., & McLaughlin, M. J. (2014). The performance of visible, near-, and mid-infrared reflectance spectroscopy for prediction of soil physical, chemical, and biological properties. Applied Spectroscopy Reviews, 49 (2), 139-186.https://doi.org/10.1080/05704928.2013.811081
Stewart, Z. P., Pierzynski, G. M., Middendorf, B. J., & Prasad, P. V. V. (2020). Approaches to improve soil fertility in sub-Saharan Africa.Journal of Experimental Botany, 71 (2), 632-641.https://doi.org/10.1093/jxb/erz446
Sun, Y., Guo, G., Shi, H., Liu, M., Keith, A., Li, H., & Jones, K. C. (2020). Decadal shifts in soil pH and organic matter differ between land uses in contrasting regions in China. Science of the Total Environment, 740 , 139904.https://doi.org/10.1016/j.scitotenv.2020.139904
Thomas, G. W. (1996). Soil pH and soil acidity. In Methods of Soil Analysis (pp. 475-490).
Tomaszewska, M., & Jarosiewicz, A. (2002). Use of polysulfone in controlled-release NPK fertilizer formulations. Journal of Agricultural and Food Chemistry, 50 , 4634-4639.https://doi.org/10.1021/jf0116808
Viscarra Rossel, R. A., & Behrens, T. (2010). Using data mining to model and interpret soil diffuse reflectance spectra. Geoderma, 158 (1), 46-54.https://doi.org/10.1016/j.geoderma.2009.12.025
Walkley, A., & Black, I. A. (1934). An examination of Degtjare method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science, 37 (1), 29-38.https://doi.org/10.1097/00010694-193401000-00003
Xing, Z., Tian, K., Du, C., Li, C., Zhou, J., & Chen, Z. (2019). Agricultural soil characterization by FTIR spectroscopy at micrometer scales: Depth profiling by photoacoustic spectroscopy. Geoderma, 335 , 94-103.https://doi.org/10.1016/j.geoderma.2018.08.003
Xu, X., Du, C., Ma, F., Shen, Y., & Zhou, J. (2020). Forensic soil analysis using laser-induced breakdown spectroscopy (LIBS) and Fourier transform infrared total attenuated reflectance spectroscopy (FTIR-ATR): Principles and case studies. Forensic Science International, 310 , 110222.https://doi.org/10.1016/j.forsciint.2020.110222
Yang, J., & Lin, Y. (2019). Spatiotemporal evolution and driving factors of fertilizer reduction control in Zhejiang Province.Science of the Total Environment, 660 , 650-659.https://doi.org/10.1016/j.scitotenv.2018.12.420
Zeng, Z., Lu, Z. Y., Jiang, Y., Zhang, K., Yang, Y., & Zhao, P. Y. (2016). Legume-cereal crop rotation systems in China. In B. L. Ma (Ed.),Crop rotations: farming practices, monitoring and environmental benefits (pp. 51-70). New York: Nova Science Publishers, Inc.
Zhao, J., Yang, Y., Zhang, K., Jeong, J., Zeng, Z., & Zang, H. (2020). Does crop rotation yield more in China? A meta-analysis. Field Crops Research, 245 , 107659.https://doi.org/10.1016/j.fcr.2019.107659
Zhao, Y., Wang, M., Hu, S., Zhang, X., Ouyang, Z., Zhang, G., . . . Shi, X. (2018). Economics- and policy-driven organic carbon input enhancement dominates soil organic carbon accumulation in Chinese croplands.Proceedings of the National Academy of Sciences of the United States of America, 115 (16), 4045-4050.https://doi.org/10.1073/pnas.1700292114
Table 1
Assignment of the absorption bands in FTIR-PAS and FTIR-ATR spectra.