References
Alam, M. K., Bell, R. W., Haque, M. E., Islam, M. A., & Kader, M. A.
(2020). Soil nitrogen storage and availability to crops are increased by
conservation agriculture practices in rice-based cropping systems in the
Eastern Gangetic Plains. Field Crops Research, 250 , 107764.https://doi.org/10.1016/j.fcr.2020.107764
Amelung, W., Brodowski, S., Sandhage-Hofmann, A., & Bol, R. (2008).
Chapter 6 Combining biomarker with dtable isotope analyses for assessing
the transformation and turnover of soil organic matter. InAdvances in Agronomy (Vol. 100, pp. 155-250): Academic Press.
Bender, S. F., Wagg, C., & van der Heijden, M. G. A. (2016). An
underground revolution: Biodiversity and soil ecological engineering for
agricultural sustainability. Trends in Ecology & Evolution,
31 (6), 440-452.https://doi.org/10.1016/j.tree.2016.02.016
Blair, G., Lefroy, R., & Lisle, L. (1995). Soil carbon fractions based
on their degree of oxidation, and the development of a carbon management
index for agricultural systems. Australian Journal of Agricultural
Research, 46 (7), 1459-1466.https://doi.org/10.1071/AR9951459
Calderón, F., Haddix, M., Conant, R., Magrini-Bair, K., & Paul, E.
(2013). Diffuse-reflectance fourier-transform mid-infrared spectroscopy
as a method of characterizing changes in soil organic matter. Soil
Science Society of America Journal, 77 (5), 1591-1600.https://doi.org/10.2136/sssaj2013.04.0131
Chen, J., Lü, S., Zhang, Z., Zhao, X., Li, X., Ning, P., & Liu, M.
(2018). Environmentally friendly fertilizers: A review of materials used
and their effects on the environment. Science of the Total
Environment, 613-614 , 829-839.https://doi.org/10.1016/j.scitotenv.2017.09.186
Chen, L., Liu, M., Ali, A., Zhou, Q., Zhan, S., Chen, Y., . . . Zeng, Y.
(2020). Effects of biochar on paddy soil fertility under different water
management modes. Journal of Soil Science and Plant Nutrition,
20 (4), 1810-1818.https://doi.org/10.1007/s42729-020-00252-8
Churchman, G. J., Foster, R. C., D’Acqui, L. P., Janik, L. J.,
Skjemstad, J. O., Merry, R. H., & Weissmann, D. A. (2010). Effect of
land-use history on the potential for carbon sequestration in an
Alfisol. Soil and Tillage Research, 109 (1), 23-35.https://doi.org/10.1016/j.still.2010.03.012
Curtin, D., Peterson, M. E., Qiu, W., & Fraser, P. M. (2020).
Predicting soil pH changes in response to application of urea and sheep
urine. Journal of Environmental Quality, 49 (5), 1445-1452.https://doi.org/10.1002/jeq2.20130
D’Acunto, L., Andrade, J. F., Poggio, S. L., & Semmartin, M. (2018).
Diversifying crop rotation increased metabolic soil diversity and
activity of the microbial community. Agriculture, Ecosystems &
Environment, 257 , 159-164.https://doi.org/10.1016/j.agee.2018.02.011
Du, C., Goyne, K. W., Miles, R. J., & Zhou, J. (2014). A 1915–2011
microscale record of soil organic matter under wheat cultivation using
FTIR-PAS depth-profiling. Agronomy for Sustainable Development,
34 (4), 803-811.https://doi.org/10.1007/s13593-013-0201-6
Du, C., Linker, R., & Shaviv, A. (2007). Characterization of soils
using photoacoustic mid-infrared spectroscopy. Applied
Spectroscopy, 61 (10), 1063-1067.https://doi.org/10.1366/000370207782217743
Ellerbrock, R. H., & Gerke, H. H. (2004). Characterizing organic matter
of soil aggregate coatings and biopores by Fourier transform infrared
spectroscopy. European Journal of Soil Science, 55 (2), 219-228.https://doi.org/10.1046/j.1365-2389.2004.00593.x
Fu, H., Duan, Y., Zhu, P., Gao, H., & Xu, M. (2021).15N fate in maize cropping system in response to black
soil fertility improvement in China. Agronomy Journal, 113 (5),
4323-4333.https://doi.org/10.1002/agj2.20794
Gao, Y., Song, X., Liu, K., Li, T., Zheng, W., Wang, Y., . . . Miao, T.
(2021). Mixture of controlled-release and conventional urea fertilizer
application changed soil aggregate stability, humic acid molecular
composition, and maize nitrogen uptake. Science of the Total
Environment, 789 , 147778.https://doi.org/10.1016/j.scitotenv.2021.147778
German, R. N., Thompson, C. E., & Benton, T. G. (2017). Relationships
among multiple aspects of agriculture’s environmental impact and
productivity: a meta-analysis to guide sustainable agriculture.Biological Reviews, 92 (2), 716-738.https://doi.org/10.1111/brv.12251
Ghosh, P. K., Hazra, K. K., Venkatesh, M. S., Praharaj, C. S., Kumar,
N., Nath, C. P., . . . Singh, S. S. (2020). Grain legume inclusion in
cereal-cereal rotation increased base crop productivity in the long run.Experimental Agriculture, 56 (1), 142-158.https://doi.org/10.1017/S0014479719000243
Giacometti, C., Mazzon, M., Cavani, L., Triberti, L., Baldoni, G.,
Ciavatta, C., & Marzadori, C. (2021). Rotation and fertilization
effects on soil quality and yields in a long term field experiment.Agronomy, 11 (4), 636.https://doi.org/10.3390/agronomy11040636
Gong, Z., Lei, W. J., Chen, Z. C., Gao, Y. X., Zeng, S. G., Zhang, G.
L., . . . Li, S. G. (2001). Chinese soil taxonomy . Beijing:
Science Press.
Guo, C., Ren, T., Li, P., Wang, B., Zou, J., Hussain, S., . . . Li, X.
(2019). Producing more grain yield of rice with less ammonia
volatilization and greenhouse gases emission using
slow/controlled-release urea. Environmental Science and Pollution
Research, 26 (3), 2569-2579.https://doi.org/10.1007/s11356-018-3792-2
Hu, H., Ning, T., Li, Z., Han, H., Zhang, Z., Qin, S., & Zheng, Y.
(2013). Coupling effects of urea types and subsoiling on nitrogen-water
use and yield of different varieties of maize in northern China.Field Crops Research, 142 , 85-94.https://doi.org/10.1016/j.fcr.2012.12.001
Huang, X., Li, S., Li, S., Ye, G., Lu, L., Zhang, L., . . . Liu, J.
(2019). The effects of biochar and dredged sediments on soil structure
and fertility promote the growth, photosynthetic and rhizosphere
microbial diversity of Phragmites communis (Cav.) Trin. ex Steud .Science of the Total Environment, 697 , 134073.https://doi.org/10.1016/j.scitotenv.2019.134073
Jackson, M. L. (1958). Soil chemical analysis (Vol. 85). New
Delhi, India: Prentice Hall, Inc., Englewood Cliffs, NJ.
Janik, L. J., Skjemstad, J. O., Shepherd, K. D., & Spouncer, L. R.
(2007). The prediction of soil carbon fractions using
mid-infrared-partial least square analysis. Soil Research, 45 (2),
73-81.https://doi.org/10.1071/SR06083
Leifeld, J. (2006). Application of diffuse reflectance FT-IR
spectroscopy and partial least-squares regression to predict NMR
properties of soil organic matter. European Journal of Soil
Science, 57 (6), 846-857.https://doi.org/10.1111/j.1365-2389.2005.00776.x
Li, J., Liu, Y., & Yang, Y. (2018). Land use change and effect analysis
of tideland reclamation in Hangzhou Bay. Journal of Mountain
Science, 15 (2), 394-405.https://doi.org/10.1007/s11629-017-4542-5
Liu, D., Song, C., Fang, C., Xin, Z., Xi, J., & Lu, Y. (2021). A
recommended nitrogen application strategy for high crop yield and low
environmental pollution at a basin scale. Science of the Total
Environment, 792 , 148464.https://doi.org/10.1016/j.scitotenv.2021.148464
Lucas, S., & Weil, R. (2021). Can permanganate oxidizable carbon
predict soil function responses to soil organic matter management?Soil Science Society of America Journal, 85 (5), 1768-1784.https://doi.org/10.1002/saj2.20282
Lützow, M. v., Kögel-Knabner, I., Ekschmitt, K., Matzner, E.,
Guggenberger, G., Marschner, B., & Flessa, H. (2006). Stabilization of
organic matter in temperate soils: mechanisms and their relevance under
different soil conditions-a review. European Journal of Soil
Science, 57 (4), 426-445.https://doi.org/10.1111/j.1365-2389.2006.00809.x
Madejová, J. (2003). FTIR techniques in clay mineral studies.Vibrational Spectroscopy, 31 (1), 1-10.https://doi.org/10.1016/S0924-2031(02)00065-6
Malobane, M. E., Nciizah, A. D., Mudau, F. N., & Wakindiki, I. I. C.
(2020). Tillage, crop rotation and crop residue management effects on
nutrient availability in a sweet sorghum-based cropping system in
marginal soils of South Africa. Agronomy, 10 (6), 776.https://doi.org/10.3390/agronomy10060776
Movasaghi, Z., Rehman, S., & ur Rehman, D. I. (2008). Fourier transform
infrared (FTIR) dpectroscopy of biological tissues. Applied
Spectroscopy Reviews, 43 (2), 134-179.https://doi.org/10.1080/05704920701829043
Nayak, P. S., & Singh, B. K. (2007). Instrumental characterization of
clay by XRF, XRD and FTIR. Bulletin of Materials Science, 30 (3),
235-238.https://doi.org/10.1007/s12034-007-0042-5
Olsen, S. R. (1954). Estimation of available phosphorus in soils
by extraction with sodium bicarbonate. Paper presented at the USDA
Circular, Washington, DC, USA.
Osanai, Y., Knox, O., Nachimuthu, G., & Wilson, B. (2021). Contrasting
agricultural management effects on soil organic carbon dynamics between
topsoil and subsoil. Soil Research, 59 (1), 24-33.https://doi.org/10.1071/SR19379
Pampolino, M. F., Laureles, E. V., Gines, H. C., & Buresh, R. J.
(2008). Soil carbon and nitrogen changes in long-term continuous lowland
rice cropping. Soil Science Society of America Journal, 72 (3),
798-807.https://doi.org/10.2136/sssaj2006.0334
Pansu, M., & Gautheyrou, J. (2006). Organic and total C, N (H, O, S)
analysis. In Handbook of soil analysis: Mineralogical, organic and
inorganic methods (pp. 327-370). Berlin, Heidelberg: Springer Berlin
Heidelberg.
Pedersen, J. A., Simpson, M. A., Bockheim, J. G., & Kumar, K. (2011).
Characterization of soil organic carbon in drained thaw-lake basins of
Arctic Alaska using NMR and FTIR photoacoustic spectroscopy.Organic Geochemistry, 42 (8), 947-954.https://doi.org/10.1016/j.orggeochem.2011.04.003
Peltre, C., Bruun, S., Du, C., Thomsen, I. K., & Jensen, L. S. (2014).
Assessing soil constituents and labile soil organic carbon by
mid-infrared photoacoustic spectroscopy. Soil Biology and
Biochemistry, 77 , 41-50.https://doi.org/10.1016/j.soilbio.2014.06.022
Piao, S., Ciais, P., Huang, Y., Shen, Z., Peng, S., Li, J., . . . Fang,
J. (2010). The impacts of climate change on water resources and
agriculture in China. Nature, 467 (7311), 43-51.https://doi.org/10.1038/nature09364
R Development Core Team. (2018). R: a language and environment for
statistical computing. R Foundation for Statistical Computing.Retrieved fromhttps://www.R-project.org/.
Rossel, R. A. V., & Behrens, T. (2010). Using data mining to model and
interpret soil diffuse reflectance spectra. Geoderma, 158 (1),
46-54.https://doi.org/10.1016/j.geoderma.2009.12.025
Shen, Y., Du, C., Zhou, J., & Ma, F. (2017). Application of nano
Fe(III)-tannic scid complexes in modifying aqueous acrylic latex for
controlled-release coated urea. Journal of Agricultural and Food
Chemistry, 65 (5), 1030-1036.https://doi.org/10.1021/acs.jafc.6b05274
Sindelar, A. J., Schmer, M. R., Jin, V. L., Wienhold, B. J., & Varvel,
G. E. (2016). Crop rotation affects corn, grain sorghum, and soybean
yields and nitrogen recovery. Agronomy Journal, 108 (4),
1592-1602.https://doi.org/10.2134/agronj2016.01.0005
Skiba, U., & Wainwright, M. (1984). Urea hydrolysis and transformations
in coastal dune sands and soil. Plant and Soil, 82 (1), 117-123.https://doi.org/10.1007/BF02220775
Smidt, E., & Meissl, K. (2007). The applicability of Fourier transform
infrared (FT-IR) spectroscopy in waste management. Waste
Management, 27 (2), 268-276.https://doi.org/10.1016/j.wasman.2006.01.016
Soriano-Disla, J. M., Janik, L. J., Viscarra Rossel, R. A., Macdonald,
L. M., & McLaughlin, M. J. (2014). The performance of visible, near-,
and mid-infrared reflectance spectroscopy for prediction of soil
physical, chemical, and biological properties. Applied
Spectroscopy Reviews, 49 (2), 139-186.https://doi.org/10.1080/05704928.2013.811081
Stewart, Z. P., Pierzynski, G. M., Middendorf, B. J., & Prasad, P. V.
V. (2020). Approaches to improve soil fertility in sub-Saharan Africa.Journal of Experimental Botany, 71 (2), 632-641.https://doi.org/10.1093/jxb/erz446
Sun, Y., Guo, G., Shi, H., Liu, M., Keith, A., Li, H., & Jones, K. C.
(2020). Decadal shifts in soil pH and organic matter differ between land
uses in contrasting regions in China. Science of the Total
Environment, 740 , 139904.https://doi.org/10.1016/j.scitotenv.2020.139904
Thomas, G. W. (1996). Soil pH and soil acidity. In Methods of Soil
Analysis (pp. 475-490).
Tomaszewska, M., & Jarosiewicz, A. (2002). Use of polysulfone in
controlled-release NPK fertilizer formulations. Journal of
Agricultural and Food Chemistry, 50 , 4634-4639.https://doi.org/10.1021/jf0116808
Viscarra Rossel, R. A., & Behrens, T. (2010). Using data mining to
model and interpret soil diffuse reflectance spectra. Geoderma,
158 (1), 46-54.https://doi.org/10.1016/j.geoderma.2009.12.025
Walkley, A., & Black, I. A. (1934). An examination of Degtjare method
for determining soil organic matter, and a proposed modification of the
chromic acid titration method. Soil Science, 37 (1), 29-38.https://doi.org/10.1097/00010694-193401000-00003
Xing, Z., Tian, K., Du, C., Li, C., Zhou, J., & Chen, Z. (2019).
Agricultural soil characterization by FTIR spectroscopy at micrometer
scales: Depth profiling by photoacoustic spectroscopy. Geoderma,
335 , 94-103.https://doi.org/10.1016/j.geoderma.2018.08.003
Xu, X., Du, C., Ma, F., Shen, Y., & Zhou, J. (2020). Forensic soil
analysis using laser-induced breakdown spectroscopy (LIBS) and Fourier
transform infrared total attenuated reflectance spectroscopy (FTIR-ATR):
Principles and case studies. Forensic Science International, 310 ,
110222.https://doi.org/10.1016/j.forsciint.2020.110222
Yang, J., & Lin, Y. (2019). Spatiotemporal evolution and driving
factors of fertilizer reduction control in Zhejiang Province.Science of the Total Environment, 660 , 650-659.https://doi.org/10.1016/j.scitotenv.2018.12.420
Zeng, Z., Lu, Z. Y., Jiang, Y., Zhang, K., Yang, Y., & Zhao, P. Y.
(2016). Legume-cereal crop rotation systems in China. In B. L. Ma (Ed.),Crop rotations: farming practices, monitoring and environmental
benefits (pp. 51-70). New York: Nova Science Publishers, Inc.
Zhao, J., Yang, Y., Zhang, K., Jeong, J., Zeng, Z., & Zang, H. (2020).
Does crop rotation yield more in China? A meta-analysis. Field
Crops Research, 245 , 107659.https://doi.org/10.1016/j.fcr.2019.107659
Zhao, Y., Wang, M., Hu, S., Zhang, X., Ouyang, Z., Zhang, G., . . . Shi,
X. (2018). Economics- and policy-driven organic carbon input enhancement
dominates soil organic carbon accumulation in Chinese croplands.Proceedings of the National Academy of Sciences of the United
States of America, 115 (16), 4045-4050.https://doi.org/10.1073/pnas.1700292114
Table 1
Assignment of the absorption bands in FTIR-PAS and FTIR-ATR spectra.