Global sensitivity analysis to identify influential model input on thermal risk parameters: to cottonseed oil epoxidation
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Highlights:

· Thermal risk assessment using global sensitivity analysis: Sobol’ method.

· A methodology to determine the most influential model inputs on thermal risk parameters
· Most influential inputs on thermal risk parameters for the exothermic reaction of vegetable oil epoxidation.
















Abstract. 

The influence of the inputs on thermal risk parameters in a chemical reactor is important to know. This knowledge can establish adequate safety barriers. The following thermal risk parameters were studied: the maximum reaction temperature, the temperature rise and the time to reach this reaction maximum temperature. Global sensitivity analysis was proposed as a new perspective to evaluate the influence and the interaction of the inputs on thermal risk parameters. This method was applied to the exothermic system: epoxidation of cottonseed oil by performic acid in semibatch mode under isoperibolic conditions.
Process systems engineering
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1. Introduction
Thermal risk assessment is an important part of risk assessment for chemical industries. The risk of thermal runaway can lead to severe consequences such as the explosion of a chemical reactor. The operating conditions (temperature, pressure, concentrations, stirring…) govern the evolution of reaction kinetics, product distribution but also reaction temperature and heat-flow rate released by the reactions. Hence, thermal risk assessment must take into the inputs and their interactions. For example, in the case of a cooling failure for a chemical reactor in the presence of exothermic reactions, the reaction temperature rise can lead to a thermal runaway situation [1,2]. The temperature increase can trigger secondary reactions, which could cause overpressure in the reactor.
Several authors showed that thermal runaway is the main critical scenario in chemical industry accidents. For instance, the study of Balasubramanian and Louvar (2002) highlighted this fact for US chemical industry between 1990 and 2000, where ca. 26% of US major accidents were due to thermal runaway. One can also cite the study of Dakkoune et al. (2018) concerning the risk analysis of French chemical industry, where they found that thermal runaway ranked first cause of accident in this sector with 25% of the case study from 1974 to 2014. Dakkoune et al. (2018) showed that operator error is the main initial cause of events in chemical industries (about 40% of the events). 
During a chemical process, operators are involved in many situations such as preparation of reagents and/or setting up the operating conditions like the temperatures of the system, feed rate and time of addition... For this reason, it is important to know how an error in these inputs can cause a loss of temperature control. In these circumstances, a thermal risk study of chemical reactions is essential. For this, it is required to determine the risk parameters of the process, that can be represented by: the maximum reaction temperature (Trmax) representing the severity of the risk, and the time to reach the maximum reaction temperature (tTrmax), representing the probability of the risk [1,5].
Furthermore, the temperature rise is commonly used as a risk parameter on thermal risk assessment. When a reactive system cannot exchange energy with its surroundings, i.e., adiabatic conditions, the whole energy released by the reaction is accumulated. Thus, the temperature rise (ΔT) is proportional to the energy released and the final temperature can be expressed as T0 + ΔT. The use of the temperature rise as a severity parameter provides valuable information on the presence of secondary reactions [1]. 
The evaluation of the influence of the inputs on thermal risk is challenging. One should take into account the reactor characteristics (geometry, nature of the heat carrier, impeller…), operating conditions applied to the reactor (pressure, temperature…), the kinetics and thermodynamics of the chemical reaction system. Thus, one needs to find a mathematical method to evaluate the influence of these inputs and their interaction.
 The risk of thermal runaway is high for batch and semibatch processes handling exothermic reactions, due to the heat accumulation. There are several studies concerning the evaluation of the thermal risk in these reactors but none of them have used a global sensitivity analysis (GSA) method for instance [6–8]. The other traditional approach to perform a thermal risk assessment is to use an adiabatic calorimeter [1] to measure the time to maximum rate and the temperature rise under adiabatic conditions. This approach gives the thermal risk parameters under the worst-case scenario: adiabatic and batch conditions. It can be difficult to extrapolate these data to find the most influential inputs on the reaction temperature under non-adiabatic conditions.   To make an insightful thermal risk assessment of a chemical reactor, one needs to have an advanced mathematical model considering kinetic, thermodynamic and heat transfer phenomena. Nevertheless, these models do not allow obtaining explicit and simple relations between the safety parameters (Trmax, ΔT and tTrmax) and the operating conditions. This makes difficult to determine the safe operating conditions, and which model inputs influence the most these risk parameters. To overcome this issue, sensitivity analysis can be the appropriate method.
Sensitivity analysis (SA) has been developed for optimization and chemical engineering design as an informative method to find the optimum operating conditions with minimum experimental effort based on mathematical model [9–14]. Sensitivity analysis evaluates how the impact of model input uncertainties of the mathematical model can be apportioned, qualitatively or quantitatively, to the different model output uncertainties [15]. SA will allow identifying the influence of the operating conditions on the model outputs, which are the thermal risk parameters in this study.
Sensitivity analysis approaches are classified into local sensitivity analysis (LSA) and global sensitivity analysis. LSA studies the changes in the model output, in relation to variations of one single model input. There are several studies concerning the evaluation of the thermal risk by LSA based on experimental results [16,17]. Global sensitivity analysis (GSA) is based on the exploration of the whole range of model inputs variation. GSA aims to quantify the relative importance of model inputs by determining the value of model outputs, taking into account their overall influence. Besides that, GSA provides more reliable results despite of the higher computational cost, they can quantify the interactions between model inputs [15,18]. 
Among the different GSA methods, the Sobol's one can quantify the contribution of each model input and their interactions to the overall output variance of the model. 
Sobol’s method has proven to be valuable in different areas of chemical engineering (Table 1) with the objective of determining the most influential model inputs on selected model outputs. To the best of our knowledge, there is not a mathematical methodology that has been applied to select the most significant model inputs for the study of thermal risk.
In this paper, GSA is applied in order to evaluate the influence of model inputs on thermal risk parameters (Trmax, ΔT, tTrmax) by using Sobol’ method. GSA is used as a mathematical tool to determine the most influential model inputs on thermal runaway.
 The model of cottonseed oil epoxidation by in situ generated performic acid performed in semibatch reactor under non-isothermal conditions was used [19]. Indeed, this reaction system is exothermic with several parallel and consecutive reaction steps making its thermal risk analysis complex. 
[bookmark: _Ref4679746]











Table 1
Recent GSA – Sobol’ method studies in Chemical Engineering
	Process studied
	Number of model inputs 
	Outputs model 
	References

	Biodiesel production from crude palm oil
	7
	Life cycle cost & unit cost
	[20]

	Bioreactor networks for bioethanol production
	18
	Substrate concentration
Conversion
Biomass concentration
Product concentration
	[21]


	CO2 storage operations
Case Study: industrial-scale CO2 injection
	5
	Over- pressure
	[22]

	Combustion kinetic studies
	55
	Kinetic rate constant
Ignition delay time
	[23]


	Co-pyrolysis of rape straw and waste tire
	3
	Mass loss
Reaction heat
	[24]

	Design of parabolic-through direct steam generation plants for process heat applications
	16

	Energy and economic parameters 

	[13]

	Fermentation process of an engineered Geobacillus thermoglucosidasius strain for bioethanol production with gas stripping
	11
	Acetate, cellobiose,
Ethanol, succinate, biomass concentration
	[25]

	Gaseous autocatalytic ethane pyrolysis
	30
	Calculated concentration of a substance
	[26]

	Kinetic of solid thermal degradation during thermal exposure
	4
	Mass loss rate
	[27]

	Mineral concentration circuit and RO desalination plant designs
	Case I: 65
Case II: 6
	arsenic grade in the concentrate
salt concentration in clear water
	[28]

	Optimization of Batch Processes, Case Study: Fed-Batch Fermentation of Penicillin G
	11
	Kinetic Model Parameters
	[11]

	Reduction of greenhouse gas emissions from wastewater treatment

	6
	Effluent quality index 
Operational cost index
Greenhouse gas emissions
	[29]

	Stochastic optimization of renewable energy businesses: multiproduct lignocellulosic biorefinery
	86
	Succinic acid production, bioethanol
Production
	[30]


2. 
Methodology
In this section, the mathematical model describing the kinetic model of epoxidation and the GSA are explained.
2.1.  Mathematical model
Zheng et al. [19] have developed a kinetic model for the epoxidation of cottonseed oil by in situ generated performic acid, also known as Prileschajew oxidation, in a semibatch reactor under isoperibolic conditions. It is a liquid-liquid reaction system with different exothermic reaction and side-reaction steps. 
Fig. 1 illustrates the reaction mechanism of the system. 
[image: ]
[bookmark: _Ref6322401]Fig. 1- Simplified mechanism of the Prileschajew oxidation of vegetable oil.
The kinetics of mass transfer was assumed to be faster than the ones of chemical reactions. Vegetable oil and their derivatives were supposed to be non-soluble in the aqueous phase. According to the mass and the energy balances, the mathematical model for the reaction system is as follow:
Material balance
· Organic phase

· Aqueous phase


Energy balance
[bookmark: _GoBack][image: ]
where, 
· The subscripts i and j stand for each compound and each reaction, respectively.
· aq and org refer to aqueous and organic phase, respectively. 
· Vaq is the aqueous volume and VTot is the total volume, 
· α is the ratio of aqueous volume phase on total phase volume, Vaq/VTot, 
· Ki is the equilibrium molar ratio of compound i between the organic and aqueous phase,
· νij is the stoichiometric coefficient of compound i for j reaction,
· raq,j or rorg,j represents the reaction rate of the j reaction in the aqueous or organic phase, 
· Ci is the concentration of compound i,
· The subscripts Epo, Perh, RO, ROFA and ROPFA represent the following reactions: Epoxidation, Perhydrolysis, Ring-opening, Ring-opening by formic acid, Ring-opening by performic acid and Ring-opening by water.
· qacc represents the accumulated heat-flow rate, 
· qdosing	is the sensible heat-flow rate, 
· qexchange to heat carrier flow	is the heat exchange to the heat carrier, 
· qloss represents the heat losses, 
· qreaction	is the heat-flow rate due to the reactions,
· A is the heat-transfer area,
· CP is the molar heat capacity,
· ĈP is the specific heat capacity, 
· mR is the reaction mass, 
· ΔHR is defined as the reaction enthalpy, 
· Tfeed is the inlet flow temperature,
· Tj is the jacket temperature,
· Tr is the reaction temperature,
· Q represents the volumetric flow rate, 
· U is the overall heat-transfer coefficient, 

Based on the mathematical model developed and validated by Zheng et al., (2016) the following model inputs were varied: feed rate, addition time, feed temperature, hydrogen peroxide concentration and jacket temperature. The following risk parameters were recorded as outputs model: 
· Maximum reaction temperature (Trmax), representing the severity of the risk
· The Temperature rise (ΔT), representing the severity of the risk 
· Time to reach the maximum reaction temperature (tTrmax), representing the probability of the risk.
The influence of the model inputs on the output was evaluated by Sobol´ method.
2.2. Global Sensitivity Analysis

In this work, Sobol’s method [31] was used to compute sensitivity indices. The aim of using this method was to study the influence of different model inputs x (flow rate, addition time, temperature, hydrogen peroxide concentration and temperature of the jacket) on the outputs model y (maximum reaction temperature, temperature rise and time to reach the maximum reaction temperature). 
Consider,


And, 



If the function, i.e. the mathematical model, can be integrated in the [0, 1] k, then it can be decomposed into terms of increasing  dimensions [32] as follow: 


where, each term is also square integrable and is a function of the factors in its index. Sobol’ proved that if each term of the expansion, called High Dimensional Model Representation (HDMR), has zero mean then all the terms of the decomposition are orthogonal in pairs. In that case, all the terms in Eq. (4) can be uniquely estimated by the conditional expectations of the variable y,




Eq. (5) represents the definition of the expected value of a variable y that is function of uncertain variables, and Eq. (6) defines the conditional expected value of a variable y when xi is known. These expressions are obtained by integrating Eq. (4) over all variables except xi.
By square integrating each term of Eq. (4)





V(y) is the unconditional variance and  represents the conditional variance. By deriving the so-called ANOVA-HDMR decomposition:



Dividing Eq. 9 by V(y) the index decomposition is obtained:



where Si and SiTOT can be defined as:




where, 

·  are the first and total-order sensitivity indices, respectively.
·  and  are the second and third-order sensitivity indices, respectively.
· computes the variance (over all possible realizations of parameter xi) of the conditional expected value of the variable y under all parameter’s variation, excluding xi.
·  is the average output variable variance if all variables excluding xi may be fixed.
These indices measure the effect of the variation of the parameters on the model variables. 
An additional index, Siint, is introduced and considers the effects of all interactions among model parameters and it can be determined as: 
       
For an extensive description of the Sobol’s method, the reader should refer to the works of Sobol’ [31,32].
Quasi-Monte Carlo Sobol sequence fills space in a highly uniform manner and was used as sampling method which gives satisfactory results between the filling of the space and the computing time.
In this work, the methodology was used following Saltelli et al. [33]  to compute the indices, as defined by Eqs. (14) - (16).



where N is the number of simulations; A, B and AB are matrices of N quasi-random values for the k uncertain model inputs and f(A), f(B), and f(AB), are vectors of N outputs model values obtained when model parameters are evaluated in matrices A,B and AB, respectively. The main steps are described in Table 2.

[bookmark: _Ref9245570]Table 2 
Steps for computing sensitivity indices
	 Step 
	Calculations

	1.
	Generate two quasi-random point set of model parameters from the Sobol' sequence, A and B matrices

	
	· Matrices dimension : N x k

	
	· N, Sample size

	
	· k, Number of parameters

	
	

	2.
	 Define a new matrix Ci = AB(i) = (N,k)

	
	· Matrix formed by the ith column of matrix B and all other k −1 column come from matrix A  

	
	

	3. 
	Calculation of outputs model for all parameter values in the sample matrices of Steps 1 and 2

	
	· Three vectors (N x 1) of output model are obtained, ya = f(A), yb = f(B), yci = f(AB(i))

	
	

	4. 
	Calculation of variance and conditional variances for outputs model 

	
	

	5. 
	Calculation of sensitivity indices 



The value of indices (Si, Siint and SiTOT) represents the percentage of variation on the output model due to the model input i. 
For a better understanding of the results of sensitivity indices; Table 3 gives general information on the influence of parameter xi based on the value of its indices.
[bookmark: _Ref9255127]Table 3 
Condition for parameter xi based on its indices values
	Indices
	Comparative Value
	Condition of parameter xi

	Si
	High 
	Influential

	Si and SiTOT
	Small 
	Non-influential

	Siint 
	High
	Important interaction

	Siint
	Small
	Little or non-interaction


Si, Siint and SiTOT represent the first order, interactional and total sensitivity index for parameter i. 

















3. Results and discussion
A global sensitivity analysis was applied to the kinetic and thermal model comprising ordinary differential equations (ODEs). The ODEs for the mass and energy balances were solved out by using the solver ode23s that is based on a modified Rosenbrock method restricted to order 2 and used for the solution of stiff problem [34]. Sobol’ sensitivity calculation steps were performed using Parallel Computing Toolbox™, (R2017b) [35] in MATLAB®.
GSA-Sobol’s method was carried out over different model inputs, which are shown in Table 4 with their range of values. These ranges were chosen following the values used in Zheng et al. [19] . 
[bookmark: _Ref5281625]Table 4 
Ranges of variation of each model input
	Notation
	Definition
	Units
	Range

	
	
	
	Low
	High

	Q
	Feed rate
	L/s
	0.0001
	0.0002

	tadd
	Addition time
	s
	1500
	3000

	Tfeed
	Feed temperature
	K
	288.15
	308.15

	Tj
	Temperature of the jacket
	K
	313.15
	333.15

	[HP]0
	Initial concentration of hydrogen peroxide
	mol/L
	3.5
	7



In this study, the model inputs were assumed to be independent of each other. Sobol sequence Quasi-random points have been generated for all the model inputs listed in Table 4, according to the sampling method, with sample size of N= 100 000 scenarios.
Table 5 shows the influence of model inputs (feed rate, addition time, feed temperature, hydrogen peroxide concentration and jacket temperature) on three outputs model: Trmax, ΔT and tTrmax by using GSA method.
Table 5
Estimated Sobol’ sensitivity indices for thermal risk parameters
	Sobol' indices

	
	
	
	
	
	
	
	
	
	
	

	                          Model inputs
Model outputs
	
	Q
	
	ta dd
	
	Tfeed
	
	Tj
	
	[HP]0

	
	
	  First-Order (Si)

	Trmax
	
	0.00
	
	0.00
	
	0.00
	
	0.81
	
	0.15

	tTrmax
	
	0.00
	
	0.01
	
	0.00
	
	0.96
	
	0.01

	∆T
	
	0.00
	
	0.00
	
	0.00
	
	0.63
	
	0.28

	
	
	 Total-Order (SiTOT)

	Trmax
	
	0.00
	
	0.00
	
	0.00
	
	0.88
	
	0.21

	tTrmax
	
	0.00
	
	0.05
	
	0.00
	
	1.01
	
	0.04

	∆T
	
	0.00
	
	0.00
	
	0.00
	
	0.73
	
	0.38



In the following discussion, risk parameters (Trmax, ΔT and tTrmax) and global sensitivity analysis was addressed with respect to model inputs.
3.1. [bookmark: _Ref8981015]Effect on the maximum reaction temperature
Fig. 2 shows the Sobol’ first-order and total indices. First-order indices estimate the single parameter contributions to the variance of the maximum reaction temperature (Trmax). The total-order indices indicate the contributions of the single parameters and their interaction effect to the variance of this temperature. The difference between the two bars represent the total interactive contribution of one parameter with all the other parameters.

[bookmark: _Ref6314167]Fig. 2 - Total- and first-order indices using Sobol’ variance decomposition for Trmax
As indicated in Fig. 2 and Table 5, the maximum reaction temperature is mainly influenced by the initial hydrogen peroxide concentration ([HP]0) and the jacket temperature (Tj). One can notice that if we calculate the interactional index (Siint = SiTOT - Si), there is an interaction between ([HP]0) and (Tj) (Siint = 0.06 and 0.07, respectively).  

The concentration of hydrogen peroxide has an important influence on Trmax, because it is the oxidizing agent, more hydrogen peroxide in the reaction system and higher will be the maximum reaction temperature. The parameter Tj has also a strong influence on Trmax. As expressed in Eq.(17), under isoperibolic conditions, the reactants are heated to reaction temperature by the heating/cooling system (Tj) and the values of maximum reaction temperature strongly depends on the choice of Tj.





3.2. Effect on the temperature rise

Fig. 3 and Table 5 show the results of sensitivity indices for the temperature rise as model output. One can notice from Fig. 3 that the initial hydrogen peroxide concentration ([HP]0) and the jacket temperature (Tj), are also the two most influent model inputs. For ΔT there is also an interactional index of 11% for both model inputs.

[bookmark: _Ref9845423]Fig. 3 - Total- and first-order indices using Sobol’ variance decomposition for ΔT
Making a comparison between the sensitivity indices for Trmax and ΔT, one can observe that Tj has more influence on Trmax that on ΔT per se, as we explained in the previous section, the variation of the maximum reaction temperature depends on the choice of Tj. This is due to the fact that ΔT is the difference between Trmax and Tj.



3.3. Effect on the time to reach the maximum reaction temperature

Fig. 4 shows the first and total-order indices for the time to reach the maximum reaction temperature.


Fig. 4- Total- and first-order indices using Sobol’ variance decomposition for tTrmax

The first-order Sobol’ indices indicate that the variance of the time to reach the maximum reaction temperature is almost all attributed to the jacket temperature explaining 96% of the total variance (Table 5).
This statement makes sense with the previous results. The time to reach the maximum reaction temperature is strongly linked to the kinetics of the system. The kinetics of any chemical systems very exponentially with the reaction temperature. 
3.4. [bookmark: _Ref8981077]Effect of the global heat transfer coefficient 
The global heat transfer coefficient UA is an important parameter insofar as it conditions the efficiency of heat transfer between the reaction mixture and the heat carrier. The value of UA depends on reactor geometry, nature of heat carrier, reaction mixture….[1,36,37]. For these reasons, the influence of this parameter was tested.  The input UA can have different values depending on the nature of the coolant liquid and/or the reactor materials.
The influence of model inputs on the thermal risk parameters has been tested by varying the overall heat transfer coefficient (UA) of the kinetic model (Table 6). The range of this variation was from 4 to 6 W/K.
Table 6
Estimated First-order Sobol' sensitivity indices in function of UA for thermal risk parameters
	First-Order Sobol' indices (Si)

	
	
	
	
	
	
	
	
	
	
	

	                          Model inputs
Model outputs
	
	Q
	
	tadd
	
	Tfeed
	
	Tj
	
	[HP]0

	
	
	UA=4 W/K

	Trmax
	
	0.00
	
	0.00
	
	0.00
	
	0.61
	
	0.31

	tTrmax
	
	0.00
	
	0.01
	
	0.00
	
	0.96
	
	0.01

	∆T
	
	0.00
	
	0.00
	
	0.00
	
	0.49
	
	0.46

	
	
	UA=5 W/K

	Trmax
	
	0.00
	
	0.00
	
	0.00
	
	0.73
	
	0.21

	tTrmax
	
	0.00
	
	0.01
	
	0.00
	
	0.96
	
	0.01

	∆T
	
	0.00
	
	0.00
	
	0.00
	
	0.57
	
	0.34

	
	
	UA=6W/K

	Trmax
	
	0.00
	
	0.00
	
	0.00
	
	0.81
	
	0.15

	tTrmax
	
	0.00
	
	0.01
	
	0.00
	
	0.96
	
	0.01

	∆T
	
	0.00
	
	0.00
	
	0.00
	
	0.63
	
	0.28



As shown in Table 6 the maximum reaction temperature is affected by the same two parameters, [HP]0 and Tj, when varying the value of UA.
The influence of Tj on Trmax increases with the value of UA. Higher is the value of UA and higher will be the heat transfer between the reaction mixture and the heat carrier, allowing Tj to have a high influence on the reaction system and the maximum reaction temperature.
As one can see from Table 6, the maximum reaction temperature and temperature rise are always affected by [HP]0 and Tj, having the same behavior with respect to the value UA.  
The time to reach the maximum reaction temperature is also sensitive to the same parameter, the jacket temperature. 
Based on these results, the method is valid for different values of UA by keeping the same range of variation for the model inputs. 
For the maximum reaction temperature and temperature rise, the variation of the value of UA just affects how much these parameters contribute to the variance of these outputs model.











4. Conclusions
The global sensitivity analysis method of Sobol’ was used in order to quantify the contribution of each model input and their interactions to the overall output variance of the model.
The kinetic model of the epoxidation of cottonseed oil by performic acid generated in situ carried out in semibatch reactor under isoperibolic conditions was chosen, because it is complex reaction system comprising several consecutive and parallel exothermic reactions and it can pose thermal safety issues. The three model outputs, safety parameters, were the maximum reaction temperature (Trmax), the temperature rise (ΔT) and the time to reach the maximum reaction temperature (tTrmax).  
First and total Sobol’ sensitivity indices have been calculated based on the mathematical model coupling material and energy balances. By analyzing sensitivity indices, two inputs were identified as the most influential ones on maximum reaction temperature and the temperature rise: the initial concentration of hydrogen peroxide and temperature of the jacket.
At the same time, sensitivity indices have allowed the determination of the jacket temperature as the most influential input on the time to reach the maximum reaction temperature.
The overall heat transfer coefficient was varied to study the influence of the same model inputs on the thermal risk parameters. The results show that thermal risk parameters are affected by the same inputs.
Since the maximum reaction temperature represents the gravity, and the time required to reach this value represents the probability of the risk, this study makes it possible to determine the model input responsible for the thermal risk assessment of this reaction, for operating conditions within the defined ranges. 
GSA can be used to find the most influential inputs for the thermal risk assessment of complex chemical system. This method allows defining the model inputs to be monitored in order to ensure safe operation.
In this study, showed was demonstrated that: the cooling temperature and the concentration of hydrogen peroxide are main inputs influencing the severity parameters (Trmax, T) and the probability parameter (tTmax) of the thermal risk. Hence, the safety barriers for this system must prevent any faults on these two inputs to avoid a thermal runaway. This methodology proposes a better thermal risk assessment of a chemical reactor and on where the safety barriers must be placed.
















Notation
	
	Capacity per mol, J/mol K

	Ci
	Concentration of compound i

	ĈP
	Capacity per mass, J/g K

	Ki
	Equilibrium molar ratio of compound i

	mR
	Mass, kg

	Q
	Volumetric flow rate, L/s

	qacc
	Accumulating heat-flow rate, J/s

	qdosing
	sensible heat-flow rate, J/s

	qexchange to heat carrier flow
	Heat Exchange to the Heat Carrier, J/s

	qloss
	Heat losses, J/s

	qreaction
	Reactions heat-flow rate, J/s

	ri
	Reaction rate, mol/L s

	t
	Time, s

	Tj
	Jacket temperature, K

	Tr
	Reaction temperature, K

	UA
	Overall heat-transfer coefficient, W/ K

	V
	Volume, L

	ΔHR
	Reaction enthalpy, J/mol


	Greek letters

	

	α
	Vaq/VTot

	νij
	Stoichiometry coefficients

	τ
	residence time, s


	Subscripts

	

	aq
	Aqueous phase

	Epo
	Epoxidation

	FA
	Formic acid

	feed
	Feed

	i
	Component i

	j
	Reaction

	org
	Organic phase

	Perh
	Perhydrolysis

	RO
	Ring-opening reactions

	ROFA
	Ring-opening by formic acid

	ROPFA
	Ring-opening by performic acid

	ROW
	Ring-opening by water
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