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Abstract8

Let R be a commutative local ring whose maximal ideal is generated by a9

nilpotent element, and Mat(n,R) be the multiplicative monoid of the square10

matrices of order n over R. In this article, we provide (1) the construction11

of the Green’s H-equivalence classes in Mat(n,R), and (2) the enumeration12

of the Green’s H-equivalence classes in Mat(n,Z/pdZ).13
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1 Introduction17

We firstly review the Green’s relations defined by J. A. Green in [1].18

Definition 1.1. Let M be a monoid, and a, b ∈ M . We write a ≤L b if there19

exists m ∈ M such that a = mb, and write a =L b if both a ≤L b and b ≤L a.20

Similarly, we write a ≤R b if there exists m ∈ M such that a = bm, and write21

a =R b if both a ≤R b and b ≤R a. And we write a ≤H b (resp., a =H b) if both22

a ≤L b and a ≤R b (resp., both a =L b and a =R b).23
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We can check that ≤L, ≤R and ≤H are partial orders onM , which are called the24

Green’s L-order, R-order and H-order, respectively. We can also see that =L, =R25

and =H are equivalence relations on M , which are called the Green’s L-relation,26

R-relation and H-relation, respectively.27

Remark 1.2. The notations aLb, aRb and aHb of the Green’s relations are more28

standard than a =L b, a =R b and a =H b, respectively. But this article mainly29

discusses the Green’s relations of matrices, and we denote matrices by capital30

letters according to tradition. Therefore the standard notations of the Green’s31

relations would look quite confused.32

Green’s relations not only play a significant role for understanding the structure33

of a monoid or a semi-group [2, 3, 4], but also have important applications in many34

fields [5, 6, 7]. In particular, lots of such applications involve only the H-relation.35

The notion of the inverse along an element, introduced by X. Mary in [8], is a36

classical example.37

Let R be a commutative local ring whose maximal ideal is generated by a38

nilpotent element. In this article, we mainly consider the H-equivalence classes39

(H-classes for short) in the monoid Mat(n,R) of square matrices of order n over40

R, Such kind of rings R include (1) Z/pdZ with d ≥ 2 (the integers module by41

a prime power) which can be regarded as the most typical case, (2) the quotient42

K[x]/⟨x2⟩ where K is a field, (3) the localization (Z/pdqZ)q̄ where p and q are43

distinct primes and d ≥ 2, and so on.44

After some preliminaries, we discuss the H-classes and its enumeration in45

Mat(n,K) for a field K in §2. This is a good comparison of our main theo-46

rem in §3 which describes the construction of the H-classes in Mat(n,R). In §4,47

we give a necessary and sufficient condition for the invertibility of the matrix over48

R, in term of the row or column vectors. As an application, we provide the size of49

each H-class in Mat(n,Z/(pdZ)) for prime p and positive integer d in §5.50

2 Preliminaries and notations51

Lemma 2.1. Let M be a monoid, and a, b, u, v ∈ M . We assume that u, v are52

invertible elements. Then we have53

(1) a ≤L b, a ≤R b and a ≤H b if and only if uav ≤L ubv, uav ≤R ubv and54

uav ≤H ubv, respectively;55

(2) a =L b, a =R b and a =H b if and only if uav =L ubv, uav =R ubv and56

uav =H ubv, respectively;57

(3) the map x 7→ uxv is a bijection from the L-class (resp., R-class, H-class) of58

a to the L-class (resp., R-class, H-class) of uav.59
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Proof. If a ≤L b, then by definition there exists m ∈ M such that a = mb.60

Thus we have uav = (umu−1)ubv, so uav ≤L ubv. The converse is obvious since61

a = u−1(uav)v−1 and b = u−1(ubv)v−1. The proofs for the R-order and H-order62

in (1) are similar. (2) and (3) simply follow from (1).63

Through the rest of this article, we use the following notations: Let R be a64

commutative local ring such that its maximal ideal is generated by a nilpotent65

element ξ. We denote by 0 and 1 the zero and identity of R, respectively. We66

write d for the nilpotent index of ξ, that is, d is the smallest positive integer such67

that ξd = 0. We also adopt the convention that r0 = 1 for any r ∈ R. Furthermore,68

we denote by En and On the identity matrix and the zero matrix of order n over69

R, respectively.70

Lemma 2.2. For the ring R, we have71

(1) every element r in R can be written in the form uξk for some unit u ∈ R and72

some k ∈ {0, 1, . . . , d}, and the k is uniquely determined by r;73

(2) writing r = uξk as in (1), we have ξd−1r = 0 implies k ≥ 1, and ξd−1r = ξd−1
74

implies k = 0 (namely r is a unit);75

(3) every ideal I of R can be generated by ξk for some k ∈ {0, 1, . . . , d}, so R is a76

principle ideal ring;77

(4) for any matrix A ∈ Mat(n,R), there exist invertible matrices P,Q ∈ Mat(n,R)78

such that PAQ is a diagonal matrix whose diagonal entries are 1, ξ, ξ2, . . . , ξd−1
79

or 0, i.e., a matrix with the following form80

D =



Er0

ξEr1

ξ2Er2
. . .

ξd−1Erd−1

Os


,81

where r0, r1, . . . , rd−1, s ≥ 0, r0 + r1 + · · ·+ rd−1 + s = n, and by ri = 0 (resp.,82

s = 0) we means that ξi (resp., 0) does not occur in the main diagonal;83

(5) using the notations of (4), the map X 7→ PXQ is a bijection from the H-class84

of A to the H-class of D.85

Proof. We have a chain 0 = ⟨ξd⟩ ( ⟨ξd−1⟩ ( · · · ⟨ξ⟩ ( ⟨ξ0⟩ = R of ideals in R.86

Take a nonzero r ∈ R, we have r ∈ ⟨ξk⟩ but r ̸∈ ⟨ξk+1⟩ for some k ∈ {0, . . . , d−1},87
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so r = uξk with u ∈ R. Since R is a local ring, if u was not a unit, then u would88

be contained in the maximal ideal ⟨ξ⟩, namely u = vξ and r = vξk+1 ∈ ⟨ξk+1⟩.89

This contradiction proves (1), and (2) follows from (1) immediately.90

For a non-zero ideal I, we see from (1) that {i ∈ {0, 1, . . . , d − 1} : ξi ∈ I} is91

not an empty set. By taking k to be the minimum number of this set, it is easy to92

check that I = ⟨ξk⟩, which proves (3). Since R is a principle ideal ring, (4) follows93

from [9, Theorem 4.1] and (1). Then (5) follows from Lemma 2.1 and (4).94

Definition 2.3. The matrix D in Lemma 2.2 is called the Smith normal form of95

A.96

To close this section, we consider the H-classes in the monoid Mat(n,K) of97

square matrices of order n over an arbitrary field K. This discussion is a little98

aside from the subject of this article. But the reader may find that the result and99

proof in the case of Mat(n,K) provide good inspirations for those in the case of100

Mat(n,R).101

For any matrixA ∈ Mat(n,K), there exist invertible matrices P,Q ∈ Mat(n,K)102

such that PAQ is a diagonal matrix whose diagonal entries are 1 or 0, i.e., a matrix103

with the form diag(Er, Os), where r, s ≥ 0 and r + s = n. By Lemma 2.1, the104

map X 7→ PXQ is a bijection from the Green class of A to the corresponding105

Green class of diag(Er, Os). Hence, it suffices to consider the Green classes of the106

matrices with the form diag(Er, Os).107

Theorem 2.4. Let A ∈ Mat(n,K). The following conditions are equivalent:108

(1) A =H diag(Er, Os);109

(2) A = diag(A11, Os) for some invertible matrix A11 over K of order r.110

When r = 0 and s = n, both diag(Er, Os) and diag(A11, Os) should be read as111

A = On.112

Proof. Firstly, assume that the condition (2) holds. Then it is obvious that113

diag(A11, Os) =diag(A11, Os) diag(Er, Os),

diag(Er, Os) =diag(A−1
11 , Os) diag(A11, Os).

114

Hence A =L diag(Er, Os) by definition. And we can show A =R diag(Er, Os) by a115

similar argument.116

Conversely, assume that the condition (1) holds. Then by definition there are117

W,Y ∈ Mat(n,R) such that A = diag(Er, Os)W and that diag(Er, Os) = Y A. We118

partition the matrices A,W, Y into 2× 2 blocks in the same way as diag(Er, Os).119

Then the equation A = diag(Er, Os)W reads120 (
A11 A12

A21 A22

)
= diag(Er, Os)

(
W11 W12

W21 W22

)
=

(
W11 W12

O Os

)
.121
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Thus A21 and A22 are both zero matrices. And the equation diag(Er, Os) = Y A122

reads123

diag(Er, Os) =

(
Y11 Y12

Y21 Y22

)(
A11 A12

O Os

)
=

(
Y11A11 Y11A12

Y21A11 Y21A12

)
.124

In particular, we have Y11A11 = Er, so both Y11 and A11 are invertible. Then we125

deduce from Y11A12 = O that A12 = Y −1
11 O = O.126

Corollary 2.5. Let K be a finite field of order q, and r be the rank of the matrix127

A ∈ Mat(n,K). Then the H-class of A in Mat(n,K) consists of
∏r−1

i=0 (q
r − qi)128

matrices. When r = 0, we adopt the convention that
∏0−1

i=0 (q
0 − qi) = 1.129

Proof. Combine Theorem 2.4 with the fact that there are exactly
∏r−1

i=0 (q
r − qi)130

inverse matrices of order r over a finite field of order q.131

3 The Green H-classes of matrices over R132

By Lemma 2.2, it suffices to consider the H-classes of the matrices of the form D =133

diag(Er0 , ξEr1 , . . . , ξ
d−1Erd−1

, Os) with r0, . . . , rd−1, s ≥ 0 and r0+· · ·+rd−1+s = n.134

The following theorem is our main result.135

Theorem 3.1. Let A ∈ Mat(n,R), and D = diag(Er0 , ξEr1 , . . . , ξ
d−1Erd−1

, Os).136

Then A =H D if and only if A can be partitioned in the following form:137 

B11 ξB12 ξ2B13 · · · ξd−1B1d O
ξB21 ξB22 ξ2B23 · · · ξd−1B2d O
ξ2B31 ξ2B32 ξ2B33 · · · ξd−1B3d O

...
...

...
. . .

...
...

ξd−1Bd1 ξd−1Bd2 ξd−1Bd3 · · · ξd−1Bdd O
O O O · · · O Os


,

i.e., the coefficient

of Bij is ξmax{i,j}−1,
(∗)138

where B11, B22, . . . , Bdd are invertible matrices of rank r0, r1, . . . , rd−1, respectively.139

If some ri−1 = 0, then the ith row partition and the ith column partition vanish,140

so we don’t consider whether such Bii is invertible.141

Lemma 3.2. Let A ∈ Mat(n,R), and En be the identity matrix of order n. If142

ξd−1A = ξd−1En, then A is invertible in Mat(n,R).143

Proof. The proof is by induction on n. It holds obviously for n = 1, and assuming144

it to hold for n− 1, we will prove it for n. Since ξd−1A = ξd−1En, we deduce from145

Lemma 2.2 that146

A =


c11 ξc12 · · · ξc1n
ξc21 c22 · · · ξc2n
...

...
...

ξcn1 ξcn2 · · · cnn

 ,147
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where c11, c22, . . . , cnn are unit in R. Applying the Laplace expansion along the 1st148

row of A, we obtain149

detA = c11 det(A11) +
n∑

i=2

(−1)i+1ξc1i det(A1i),150

where A1i is the submatrix formed by deleting the 1st row and ith column of A. By151

the inductive hypothesis A11 is invertible. Hence detA11 is a unit in R, and so is152

c11 det(A11). And the rest part of the Laplace expansion above is contained in the153

maximal ideal ⟨ξ⟩ of R, so detA is still a unit in R. Therefore A is invertible.154

Now we can give the proof of Theorem 3.1 as follows.155

Proof. For the necessity of Theorem 3.1, assume that A =H D for some A ∈156

Mat(n,R). Then there exist W,X, Y, Z ∈ Mat(n,R) such that A = DW = XD157

and D = AY = ZA. We partition these matrices into (d + 1)× (d + 1) blocks in158

the same way as D. For example,159

A =


A11 A12 · · · A1d A1,d+1

A21 A22 · · · A2d A2,d+1
...

...
...

...
Ad1 Ad2 · · · Add Ad,d+1

Ad+1,1 Ad+1,2 · · · Ad+1,d Ad+1,d+1

 .160

Calculating A = DW = XD in the form of the block matrices, we conclude that161

Aij = ξi−1Wij = ξj−1Xij for i, j ∈ {1, . . . , d}, and that Aij = O for i = d + 1 or162

j = d+ 1. Thus there exists ri−1 × rj−1 matrix Bij such that Aij = ξmax{i,j}−1Bij163

for i, j ∈ {1, . . . , d}, that is, A can be written in the form of (∗).164

It remains to show that all of B11, B22, . . . , Bdd are invertible over R. For this,165

we set ∆ = diag(ξd−1Er0 , ξ
d−2Er1 , . . . , Erd−1

, Os). Then ∆D = diag(ξd−1En−s, Os).166

Then we deduce from D = AY that167

diag(ξd−1En−s, Os) =



ξd−1B11 O O · · · O O
ξd−1B21 ξd−1B22 O · · · O O
ξd−1B31 ξd−1B32 ξd−1B33 · · · O O

...
...

...
. . .

...
...

ξd−1Bd1 ξd−1Bd2 ξd−1Bd3 · · · ξd−1Bdd O
O O O · · · O Os


Y.168

Denote by Y0 the submatrix of Y formed by deleting the last s rows and the last169
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s columns. Then we deduce from the equation above that170

ξd−1En−s = ξd−1


B11 O O · · · O
B21 B22 O · · · O
B31 B32 B33 · · · O
...

...
...

. . .
...

Bd1 Bd2 Bd3 · · · Bdd

Y0.171

Write B for the lower triangular matrix in the middle term of the right side of the172

equality above. By Lemma 3.2, the matrix BY0 is invertible, and so is B. Then all173

of the diagonal blocks B11, . . . , Bdd must be invertible, which completes the proof174

of the necessity for Theorem 3.1.175

For the sufficiency of Theorem 3.1, let A be the matrix given by (∗) in Theo-176

rem 3.1. Then the following equalities yield A ≤H D.177

A =D



A11 ξA12 ξ2A13 · · · ξd−1A1d O
A21 A22 ξA23 · · · ξd−2A2d O
A31 A32 A33 · · · ξd−3A3d O
...

...
...

. . .
...

...
Ad1 Ad2 Ad3 · · · Add O
O O O · · · O Os



=



A11 A12 A13 · · · A1d O
ξA21 A22 A23 · · · A2d O
ξ2A31 ξA32 A33 · · · A3d O

...
...

...
. . .

...
...

ξd−1Ad1 ξd−2Ad2 ξd−3Ad3 · · · Add O
O O O · · · O Os


D.

178

To show D = diag(Er0 , ξEr1 , . . . , ξ
d−1Erd−1

, Os) ≤H A, we only need to find matri-179

ces Y, Z ∈ Mat(n,R) such that D = AY = ZA. Review that the ri’s may be zero,180

and let k be the number of positive integers in {r0, r1, . . . , rd−1}. The proof is by181

induction on k. When k = 0, we have D = On, the conclusion holds obviously.182

Assume that k ≥ 1, and that the conclusion holds for k− 1, then we will prove183

it for k. Let δ = max{i : 1 ≤ i ≤ d, ri−1 ̸= 0}, and A0 be the submatrix of A184

formed by the first δ − 1 row partitions and first δ − 1 column partitions, which185

is a square matrix of order t := r1 + · · · + rδ−2 = n − s − rδ−1. Then A can be186

written in the following form187

A =

 A0 ξδ−1U O
ξδ−1V ξδ−1Bδδ O
O O Os

 ,188
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where189

U = (B1δ, B2δ, . . . , Bδ−1,δ)
T , V = (Bδ1, Bδ2, . . . , Bδ,δ−1).190

By the inductive hypothesis, we have A0 =H diag(Er0 , ξEr1 , . . . , ξ
δ−2Erδ−2

). LetD0191

denote the latter diagonal matrix. Then by definition there exist square matrices192

Y0 and Z0 of order t such that A0Y0 = Z0A0 = D0.193

Now let ∆0 be the diagonal matrix diag(ξδ−2Er0 , ξ
δ−3Er1 , . . . , Erδ−2

) of order t.194

Then we have ∆0D0 = D0∆0 = ξδ−2Et. Combining the arguments above, one can195

check that196

D =

 A0 ξδ−1U O
ξδ−1V ξδ−1Bδδ O
O O Os

Y0 + ξY0∆0UB−1
δδ V Y0 −ξY0∆0UB−1

δδ O
−B−1

δδ V Y0 B−1
δδ O

O O Os


=

Z0 + ξZ0UB−1
δδ V∆0Z0 −Z0UB−1

δδ O
−ξB−1

δδ V∆0Z0 B−1
δδ O

O O Os

 A0 ξδ−1U O
ξδ−1V ξδ−1Bδδ O
O O Os

 .

197

This shows D ≤H A and completes the proof of Theorem 3.1.198

Example 3.3. Let A ∈ Mat(n,Z/4Z). Then A =H diag(Er0 , 2Er1 , Os) if and only199

if A has the following partitioned form:200  A11 2A12 O
2A21 2A22 O
O O Os

 ,201

where A11 and A22 are invertible matrices over Z/4Z of order r0 and r1, respec-202

tively.203

Remark 3.4. In general, the H-class in Mat(n,R) is a proper subset of the L or204

R-class. For instance, we see from Example 3.3 that the H-class of diag(2, 0) in205

Mat(2,Z/4Z) only consists of itself. But we have206 (
1 0
1 0

)(
2 0
0 0

)
=

(
2 0
2 0

)
and

(
1 0
0 0

)(
2 0
2 0

)
=

(
2 0
0 0

)
.207

Hence, the L-class of diag(2, 0) contains

(
2 0
2 0

)
, and the R-class of diag(2, 0)208

contains

(
2 2
0 0

)
by taking the transpose in the equations above.209
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4 The construction of invertible matrices over R210

Let R◦ denote the subset of R consisting of 0 and all units, namely, R◦ = (R\⟨ξ⟩)∪211

{0}.212

Theorem 4.1. Let A = (aij) be a square matrix of order n over R. We denote213

by r1, . . . , rn and c1, . . . , cn the rows and columns of A, respectively. That is, ri =214

(ai1, . . . , ain) and ci = (a1i, . . . , ani)
T . Then the following conditions are equivalent:215

(1) A is invertible;216

(2) if there exist λ1, . . . , λn ∈ R◦ and an n-dimensional row vector r over R217

such that λ1r1 + · · ·+ λnrn = ξr, then λ1 = · · · = λn = 0;218

(3) if there exist λ1, . . . , λn ∈ R◦ and an n-dimensional column vector c over219

R such that λ1c1 + · · ·+ λncn = ξc, then λ1 = · · · = λn = 0.220

Proof. We give the proof for the equivalence of (1) and (2), the proof for that of221

(1) and (3) is similar.222

Firstly, suppose that the condition (2) does not hold. Then there exist coeffi-223

cients λ1, . . . , λn ∈ R◦, at least one of them is nonzero, and a row vector r such224

that λ1r1 + · · · + λnrn = ξr. We will show that detA is not a unit of R, and225

consequently A is not an invertible matrix. Since neither whether detA is unit226

nor whether the condition (2) holds is affected if interchanging the rows of A, we227

may assume that λ1 ̸= 0, i.e., λ1 is a unit of R. Let A1 be the matrix formed228

by replacing the 1st row r1 of A by r1 + λ−1
1 λ2r2 + · · · + λ−1

1 λnrn = ξλ−1
1 r. Then229

detA = detA1, and every entry in the 1st row ξλ−1
1 r of A1 has a factor ξ. Thus230

detA ∈ ⟨ξ⟩ and hence not a unit of R.231

Conversely, suppose that the condition (2) holds. We will prove detA is a232

unit in R by induction on n, and consequently A is an invertible matrix. For233

n = 1, it follows from Lemma 2.2 that detA is a unit. Then assume that detA234

is a unit for n − 1, and we will prove it for n. We can see that at least one of235

an1, . . . , ann is not contained in ⟨ξ⟩, for otherwise it would lead a contradiction by236

taking λ1 = · · · = λn−1 = 0 and λn = 1. Since neither whether detA is unit nor237

whether the condition (2) holds is affected if interchanging the columns of A, we238

may assume that ann is not contained in ⟨ξ⟩ and hence is a unit in R. Let A2 be239

the matrix formed by replacing the row ri of A by ri − a−1
nnainrn (1 ≤ i ≤ n− 1).240

Then the entries in the nth column of A2 are all 0 except ann. By the Laplace241

expansion, we obtain detA = detA2 = ann detA3, where A3 is the submatrix of242

A2 formed by deleting the last row and the last column.243

Since ann is a unit of R, it suffices to show that so is detA3. Let r
′
i be the ith244

row of A3 (1 ≤ i ≤ n − 1). Then we have (r′i, 0) = ri − a−1
nnainrn. Assume that245
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there exist λ1, . . . , λn−1 ∈ R◦ and an (n − 1)-dimensional row vector r′ such that246

λ1r
′
1 + · · ·+ λn−1r

′
n−1 = ξr′. Then we deduce that247

ξ
(
r′, 0

)
=
( n−1∑

i=1

λir
′
i, 0

)
=

n−1∑
i=1

λi

(
r′i, 0

)
=

n−1∑
i=1

λiri − a−1
nn

( n−1∑
i=1

λiain
)
rn

=
n∑

i=1

λiri, by setting λn = −a−1
nn

( n−1∑
i=1

λiain
)
.

248

Review that λ1, . . . , λn−1 ∈ R◦. In the case where λn ∈ R◦, we get λ1 = · · · =249

λn = 0 by the condition (2). And in the case where λn ̸∈ R◦, say λn = ξt, we250

have
∑n−1

i=1 λiri + 0 · rn = ξ
[
(r′, 0)− trn

]
, so λ1 = · · · = λn−1 = 0 by the condition251

(2) again. In either case, we can conclude from the inductive hypothesis that the252

matrix A3 is invertible, so detA3 is a unit in R, which completes the proof.253

Corollary 4.2. Use the notations of Theorem 4.1, and let k ∈ {0, 1, . . . , d − 1},254

where d is the nilpotent index of ξ defined in Section 2. We assume that all of the255

aij’s are contained in the ideal ⟨ξk⟩. Then the following conditions are equivalent:256

(1) there is a invertible matrix B such that A = ξkB;257

(2) if there exist λ1, . . . , λn ∈ R◦ and an n-dimensional row vector r over R258

such that λ1r1 + · · ·+ λnrn = ξk+1r, then λ1 = · · · = λn = 0;259

(3) if there exist λ1, . . . , λn ∈ R◦ and an n-dimensional column vector c over260

R such that λ1c1 + · · ·+ λncn = ξk+1c, then λ1 = · · · = λn = 0.261

Proof. We need only to consider the case where k ∈ {1, 2, . . . , d − 1}, since when262

k = 0, this is just Theorem 4.1. We give the proof for the equivalence of (1)263

and (2), the proof for that of (1) and (3) is similar. Firstly suppose that the264

condition (1) holds. Let si be the ith row of B, then ri = ξksi. Assume there are265

λ1, . . . , λn ∈ R◦ and a row vector r such that λ1r1 + · · ·+ λnrn = ξk+1r. Then we266

have ξk(λ1s1 + · · · + λnsn − ξr) = 0. Since 0 < k < d, there exists a row vector s267

such that λ1s1+ · · ·+λnsn−ξr = ξs. By Theorem 4.1, we have λ1 = · · · = λn = 0.268

Conversely, suppose that the condition (2) holds. Since aij ∈ ⟨ξk⟩ for any i and j,269

there is a matrix B = (bij) such that A = ξkB. We still denote by si the ith row270

of B, i.e., ri = ξksi. Assume there are λ1, . . . , λn ∈ R◦ and a row vector s such271

that λ1s1 + · · · + λnsn = ξs. Then λ1r1 + · · · + λnrn = ξk+1r. By the condition272

(2), we have λ1 = · · · = λn = 0. Hence B is invertible by Theorem 4.1.273

5 An application: enumeration over Z/pdZ274

In this section, we consider the typical case of R = Z/pdZ, where p is prime and275

d is positive integer, and provide the size of the each H-class in Mat(n,Z/pdZ).276
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Note that the conditions in the notations in §2 are satisfied only if d ≥ 2, while277

Z/pZ is a finite field and hence the discussions in §2 are applicable.278

Lemma 5.1. Let k ∈ {0, 1, . . . , d−1}, A be a square matrix of order n over Z/pdZ279

(d ≥ 1), and r1, . . . , rn be the rows of A.280

(1) There exists an invertible matrix B such that A = pkB if and only if all281

aij ∈ ⟨pk⟩ and for any λ1, . . . , λn ∈ {0, 1, . . . , p − 1} and any row vector r282

such that λ1r1 + · · ·+ λnrn = pk+1r, we must have λ1 = · · · = λn = 0.283

(2) Let m ∈ {1, 2, . . . , n}, λ1, . . . , λm, µ1, . . . , µm ∈ {0, 1, . . . , p − 1}, and r and284

s be row vectors. In the case where the condition of (1) holds, we have285

λ1r1+ · · ·+λmrm+ pk+1r = µ1r1+ · · ·+µrm+ pk+1s if and only if λ1 = µ1,286

· · · , λm = µm and pk+1r = pk+1s.287

Proof. When d = 1, this is well known. When d ≥ 2, the proof of (1) is based on288

Corollary 4.2 and the following observation. Any λi ∈ (Z/pdZ)◦ in the condition289

(2) of Corollary 4.2 can be written in the form λi = λ′
i+pµi with λ′

i ∈ {0, 1, . . . , p−290

1}. And since every entry of A is contained in ⟨pk⟩, every ri can be written in the291

form ri = pksi. Hence, the formula λ1r1 + · · ·+ λnrn = ξk+1r in the condition (2)292

of Corollary 4.2 read as293

λ′
1r1 + · · ·+ λ′

nrn = pk+1(r − µ1s1 − · · · − µnsn), λ′
1, . . . , λ

′
n ∈ {0, 1, . . . , p− 1},294

which is just what we need. And (2) is a simple consequence of (1) since λ1r1 +295

· · ·+λmrm+pk+1r = µ1r1+ · · ·+µrm+pk+1s can be reformulated as (λ1−µ1)r1+296

· · ·+ (λm − µm)rm = pk+1(s− r).297

Lemma 5.2. Let k ∈ {0, 1, . . . , d − 1}. The number of matrices over Z/pdZ298

(d ≥ 1) with the form of pkB where B is an invertible matrix of order n is equal299

to300
n−1∏
i=0

(
p(d−k)n − p(d−k−1)n+i

)
.301

Proof. The proof consists in the following construction of such matrix pkB using302

Lemma 5.1. Let ri = (ai1, . . . , ain) be the ith row of pkB with all aij ∈ ⟨pk⟩. And303

we know that the ideal ⟨pk⟩ consists of pd−k elements.304

Firstly, we construct r1. By (1) of Lemma 5.1, the only restriction for r1 is that305

r1 cannot be equal to p
k+1r for some row vector r. Thus there are p(d−k)n−p(d−k−1)n

306

choices for r1. Secondly, we construct r2. By (1) of Lemma 5.1, the restriction for307

r2 is that r2 cannot be equal to λ1r1 + pk+1r for some λ ∈ {0, 1, . . . , p − 1} and308

some row vector r. And by (2) of Lemma 5.1, for a fixed r1, there are p(d−k)n −309

p(d−k−1)n+1 choices for r2. Continuing this process, by (1) of Lemma 5.1, the310
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restriction for ri is that ri cannot be equal to λ1r1+ · · ·+λi−1ri−1+pk+1r for some311

λ1, . . . , λi−1 ∈ {0, 1, . . . , p − 1} and some row vector r; and by (2) of Lemma 5.1,312

for fixed r1, . . . , ri−1, there are p
(d−k)n− p(d−k−1)n+i−1 choices for ri. Therefore, the313

assertion follows from the rule of product of combinatorics.314

Corollary 5.3. Let A ∈ Mat(n,Z/pdZ), and diag(Er0 , pEr1 , . . . , p
d−1Erd−1

, Os)315

be its Smith normal form. The H-class of A consists of
∏d−1

i=1 M(i)
∏d−1

i=0 N(i)316

elements, where317

M(i) =

{
p2ri(r0+···+ri−1)(d−i) ri ̸= 0,

1 ri = 0,

N(i) =

{∏ri−1
j=0

(
p(d−i)ri − p(d−i−1)ri+j

)
ri ̸= 0,

1 ri = 0.

318

References319

[1] J. A. Green, On the structure of semigroups, Ann. Math., 54 (1951), 163–320

172.321

[2] S. Yang and R. Zhang, Green’s relations in the matrix semigroup Mn(S),322

Linear Algebra Appl., 222 (1995), 63–76.323

[3] M. V. Volkov, P. V. Silva and F. Soares, Local finiteness for Green’s324

relations in semigroup varieties, Comm. Algebra, 46 (2018), 4625–4653.325

[4] H. Pei, L. Sun and H. Zhai, Green’s relations for the variants of trans-326

formation semigroups preserving an equivalence relation, Comm. Algebra, 35327

(2007), 1971–1986.328

[5] A. Guterman, M. Johnson and M. Kambites, Linear isomorphisms p-329

reserving Green’s relations for matrices over anti-negative semifields, Linear330

Algebra Appl., 545 (2018), 1–14.331

[6] V. Olshevsky, G. Strang and P. Zhlobich, Green’s matrices, Linear332

Algebra Appl., 432 (2010), 218–241.333

[7] P. Petro, Green’s relations and minimal quasi-ideals in rings, Comm. Alge-334

bra, 30 (2006), 4677–4686.335

[8] X. Mary, On generalized inverses and Green’s relations, Linear Algebra Ap-336

pl., 434 (2011), 1836–1844.337

12



[9] L. S. Levy and J. C. Robson, Matrices and pairs of modules, J. Algebra,338

29 (1974), 427–454.339

13


