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ABSTRACT. We study the small initial date Cauchy problem for the generalized incompressible
Navier-Stokes-Coriolis equations in critical hybrid-Besov space %’2% ;QQ’%_QQH(H@) with 1/2 <
a < 2and 2 < p <4. We prove that hybrid-Besov spaces norm of a class of highly osillating
initial velocity can be arbitrarily small. and we prove the estimation of highly frequency LP
smoothing effect for generalized Stokes-Coriolis semigroup with 1 < p < oo, At the same time,
we prove space-time norm estimation of hybrid-Besov spaces for Stokes-Coriolis semigroup.
From this result we deduce bilinear estimation in our work space. Our method relies upon

Bony’s high and low frequency decomposition technology and Banach fixed point theorem.

1. INTRODUCTION

We consider the initial value problem for the generalized incompressible Navier-Stokes-
Coriolis equations(GNSC):

Ou+v(=A)u+Qeg x u+ (u-Vu+Vp=0, z€R3 tec(0,00),
(1.1) divu = 0, r € R3 t € (0,00),
u(0,x) = up(z), z € R3,

where number o > 0 represents the ‘strength of dissipation’. u = u(t,z) = (u!(t,z),u?(t, z),
u3(t,z)) denotes the unknown velocity vector field of the fluid and p = p(¢,2) denotes the
unknown scalar pressure at the point (¢, z) € (0,00) x R3, while ug(z) denotes the given initial
velocity vector field with divug = 0. The constant 2 € R is the Coriolis parameter, which
represents the speed of rotation around the vertical unit vector ez = (0,0, 1) and v denotes the
kinematic viscosity coefficient of the fluid. “x” denotes the exterior product. Moreover, 9; and
A = Z?zl 8%_ are the partial derivative with respect to ¢ and the Laplacian with respect to

x = (x1,x9,x3), respectively. (—A)*(a > 0) denotes the fractional Laplacian which is defined
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as
F((=A)*u)(t,€) = [E**F(u)(t,€),
where Fu is the Fourier transform of u with respect to space variable x. Sun and Ding [24] proved
the time-local existence and uniqueness of mild solution for every @ € R\ 0 and ug € H*(R?)?
with 1/4 <« <3/2,3/2—a<s<5/4.
If ©Q = 0, the equations become the generalized incompressible Navier-Stokes equation-
s(GNS):

o +v(—=A)u+ (u-V)u+Vp=0, x€R3 te(0,0),
(1.2) divu = 0, z € R3, t € (0,00),

u(0,x) = ug(x), T € R3.
When a = 1, the equation become the classical Navier-Stokes equations. For a > 5/4,
Lions [21] proved the global existence of the classical solutions of .

For x € R™, n > 2, there are many results on in recent years. Wu [28] proved
has a unique global solution with small data in Bﬁ{lpﬁaﬂ(l <qg< o) fora>1/2p=2
or1/2 < a<1,2< p < oo. Li Zhai, Xiao and Yang [I8-20] obtained the well-posedness of
in the case 1/2 < a < 1 in some Q-spaces and diagonal Besov-Q spaces. Yu and Zhai
[29] showed the global existence and uniqueness with small initial data in Bég 22 for in the
case 1/2 < a < 1. Recently, Huang and Wang [I4] proved the global well-posedness for
(o = 1/2) with small data in critical Besov spaces B;i/lp (1 < p < o) and proved the similar
results for all @ € (1/2,1). Sun and Liu [25] proved uniqueness of the weak solution to the
fractional anisotropic Navier-Stokes system with only horizontal dissipation.

fa=1, is the well-known Navier-Stokes-Coriolis equation (NSC) which have been
extensively studied in recent years due to its importance in applications to geophysical flows, cf.
[, (2}, 4H7, TO-13, 5] 17, 22, 26]. More specifically, allows a global mild solution for arbitrary
large data in the L2-setting provided the speed €2 of rotation is fast enough, see [1], [2] and [4].
Hieber and Shibata further proved that possess a unique globallmild solution for arbitrary
speed of rotation provided the initial data ug is small enough in the HZ-norms, see [13]. Iwabuchi
and Takada proved the existence of global unique solutions in the homogeneous Sobolev spaces
H* for 1/2 < s < 3/4 if the speed of rotation is sufficiently large, see [I5]. They also proved the
local in time existence and uniqueness of the mild solution for every Q € R\{0} and uy € H*
with 1/2 < s < 5/4, see [16]. Koniecany and Yoneda proved that exists a unique global
solution in the Fourier Besov framework when initial data be small enough, see [I7]. Ohyama
showed the unique existence of global in time mild solutions for small initial data belonging to
function spaces of the Besov type characterized by the time evolution semigroup associated with

the linear Stokes-Coriolis operator, see [22]. Sun, Yang and Cui [9] proved uniqueness existence
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of global mild solutions to in BS ~(R3) with p € (2,2) in the case [Q] > Qg > 0, see [26].

3

Chen, Miao and Zhang proved the global well-posedness in the hybrid-Besov spaces %2 P for
€ [2,4], see [7]. Let us emphasize that this result allows us to construct global solutlons for

highly oscillating initial data which may have a large norm in HY2. A typical example is

’LL()( )—SlH;( $2¢( ) 8x1¢($),0),

where ¢ € C§° and € > 0. At the same time, there is a large literature on existence of solutions
of in the setting of nondecaying initial data by Giga et al., see [I0HI2]. In fact, there
are many exact solutions which is unbounded at space infinity in some practical flow problem.
In this paper, we mainly consider the case a > 0. i.e. the generalized incompressible Navier-
Stokes-Coriolis equations is the main object of study.

The goal of this paper is to prove the global existence of a solution of for a class of
highly oscillating initial velocity. Motivated by the concept of hybrid-Besov spaces in [7], we
consider the global well-posedness of (| m ) in the appropriate hybrid-Besov spaces.

Throughout this paper, C' > 1; 0 < ¢ < 1 will denote constants which can be different at
different places, we will use A < B to denote A < CB. We denote LP(R?) the Lebesgue function
space with the norm || - [|,. For u(t,z) = (ul(t,z),v?(t,x),u3(t,z)), we denote |[u(t,z)|, =
(lut ()12 + lu?(t, )12 + [Ju?(t, :1;)||12))1/2 provided 1 < p < oo, and we do usual modifications
for p = oco. Let X be a quasi-Banach space. For any I C [0,00), we denote

1/r
el oy = ( [ ute dt) .

2. FUNCTION SPACES AND MAIN RESULTS

Now let us recall the definition of dyadic decomposition in Littlewood—Paley theory. We

denote ¢ € S(R?) a smooth cut-off function supported in {¢ € R?: 3 < [¢] < 5} such that
ng Ig) =1 forall £+#0.
JEZ

We also introduce the following functions:

0i(€) = 0(277€) and $;(&) = D @n(©)-
For f € 8, we define the standard localization operators:

(2.1) Aif =¢i(D)f. Sif= ) Awf=4(D)f, je€Z, D=-".

k<j—1

It is then easy to verify the following identities:

(2.2) AjALF =0, i [j— k| >2
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(2.3) Aj(Sko1fARf) =0, it |j—k| =5

Moreover, we have the following Bony decomposition:

(2.4) fg=Trg+Tyf + R(f,9),

where

(2.5) Trg =) Sj-1fAjg, R(f,9) =Y Ajfljg, Ajg= > Ajg.
Jjer = 15 —41<1

Definition 2.1. Let s € R, 1 < p < 00,1 < ¢ < co. the homogeneous Besov spaces B;q is
defined

1/q
B (R") = feS’(R?’)/@:HfHB;,q:(Zz‘“sqrmkfumm) <o

kEZ

By o (R") = {f e SR/ 5 Il . =500 2| AS e < oo},
: €
where S’ be a tempered distribution space, & be a space of polynomial functions.

Definition 2.2. (hybrid-Besov space) Let 5,0 € R,1 < p < oo. The hybrid-Besov space %7;;
is defined by
By = €S®))P: |flgyq < oo,
where
£l s.o = sup 2"*(| Ak fll 2 + sup 27| Agf| 1.
BEEEAESY: 2k>Q

The norm of the space ETT(%SU) is defined by

3505 7= 510 2718k gz + s 2 NSl

2k>0
Lemma 2.1. ([5]) Let 1 < < +oo. Then for any B,y € (NU{0})3, there exist a constant
C independent of f, j such that for any f € LP,
supp f € {€: |¢] < 4027} = 9 fllza < C2HHGTD) £ 1o,

supp f C {€: 4120 < €] < Ao} = || f||e < O27 ”'*'|S|111|3|H35f|!m

r1

Lemma 2.2. Let ¢ € C°(R3), a > 1/2, and p > max{Qa 7, 1} If ¢c(x) = e's ¢(x), then for
any 0 <e < Q20> 1),

3
a—3 —
2p
Dl . max(s —200-17,3 < Ce
(Zs Omax{Q 20, 2}‘10 2a+1 ’
72,p

[NIES

where C' is a constant independent of €.
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Proof. First of all, we consider the estimate of ||A; ¢c| re for ¢ > 1:
Noting that el = (—ieo)NV e for any N € N. By integration by parts we have

A; del(z) = (ie)N2¥ / N (W@ (z — 1)) dy.  h(z) = (Flo)(a).

R3
Using the Leibnitz formula, we can now derive the following estimates:
86,0 < CN S 2 [, 105 @ @ = ilio) o] .
k=0

For 57 > 0, we utilize Young’s inequality to show that

N
14 ellze < CeN S 24999 (9l 1) (27| 2 [0 o) e < CeN2I,
k=0

and for j < 0,

N
o , e
18y éellze < O™ 37 29299 95 h) (@) |l o (w)llps < CeN 2=
k=0
Let jo € N with Q < 290 ~ ¢71/2. According to Lemma it follows that
j 3 _1
sup 2.7( 2a+1 ”A (z)gHLP < 2j0( 20{+1) < 08 7%75'
Jj=jo
(2 3 ; N 3 _1
sup 2GR 6| e < CeNolr T2 I Ot T,
Q<27 <290

For any o > 1/2,

sup 2906 29|11 A pel 2 < <O 20NN < oy —(G-a),
27 <Q,5>0
sup 2D A; el 2 < 003NN < CeT (37,
21 <0,j>0
sup 27472 DA ¢l 2 < CQFEEN < OV —
27 <Q,5<0
For % <a< 1,
sup 2/(372 DA pell2 < CU20N < CeN 27,
27 <Q,j<0

We choose N large enough, then the above estimates yields that

P O 1
2p 2
‘ EH 5 _oa,a-1},3 2011 S C€ .
P ;nax{j a,a 2}’11 a-+
s P

We have thus proved the Lemma
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Definition 2.3. Let 1 < p < oo, we denote by E, . the space of functions such that

Epo=A{u:divu =0, |lulE, <100}
where

u = ||u 5
fuley .. =l s

(]R+ j§72o¢ 772o¢+1) + [Jul] ( %+1)'
. 3—204, %—204—&—1

Definition 2.4. We denote by C+ ([0, 00); 2 p

—2a, 2 —2a+1
continuous from (0, co) to ,%’2 G , but weakly continuous at t = 0, i.e.,

) the set of functions w such that w is

lim sup (u(s,-),g(-)) =0 for all g € S with [|g|| (§-20), ~(B-20+1) S <1
B

t—=0t 0<s<t 2

2,10

Here S is the set of Schwartz functions.

Our main results are the following theorems.:

Theorem 2.3. Let 1/2 < a<2,2<p<4and l > max {%, 57640‘}. If there exists a positive

constant ¢ independent of  such that Hu0|| §-203 2011 S G then there exists a unique solution

u€ B, q of . ) such that

2p

.3 20,3 2041
u € C*([0, 00); B, SR
2,p

Remark 2.5. Due to the inclusion relation
5_2 3 —2a+1
H’_zaC% TP for p=2,

Theorem [2.3]is an improvement on Theorem A. In particular, Theorem 2.3 allows us to construct

global solutions of (|1.1)) for a class of highly oscillating initial velocity ug, for example,
uo(x) = Sm*( D29(x), 019(x),0)

where ¢ € C§° (R?) and ¢ > 0 is small enough. This type of data is large in Sobolev spaces;

however, it is small in hybrid-Besov spaces.

If ug € H 3_20‘, we can obtain the following global well-posedness result.

Theorem 2.4. Let 1/2 < a <5/4,2<p <4 and 1% > max{“T_l, 5_640‘}. For ug € H%_Qa, if

there exists a positive constant ¢ independent of € such that |uo|l s 5o 3 _s041 < ¢, then there
B P

2,p

exists a unique global solution of in C(RT, H’_Qa)

Remark 2.6. Since we only impose the smallness condition of the initial data in the norm of
. 52q, 2 -20+1
p
2,p
=5
oscillating initial velocity ug. Moreover, the uniqueness holds in the class C(R*, H 5_20‘) with

1/2 < a < 5/4, i.e., it is unconditional.

, this allows us to obtain the global well-posedness of 1) for a class of highly
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In order to solve , we consider the following integral equations:
¢
u(t) = So(tyuo — / Sa(t — 7)Bl(u - V)u)(r) dr, (IGNSC)
0

where P denotes the Helmholtz projection onto the divergence-free vector fields and Sq(+) denotes

the semigroup corresponding to the linear problem of (|1.1)), which is given explicitly by

So(t)ug = F~1 |:COS <Q‘§§3’t> eI Iy + sin (Qf;t) e_tlth(E)ﬂB] ,

for t > 0 and divergence-free vector fields ug. Here I is the identity matrix on R? and R(€) is

the skew-symmetric matrix symbol on R3, which is defined by

. 0 & =&
R(§) = ] & 0 & |, €eR*\{o}.
& —& 0

For the derivation of the explicit form of Sq(-), we refer to Babin, Mahalov and Nicolaenko [I]
[2], Giga, Inui, Mahalov and Matsui [10], Hieber and Shibata [13] and Iwabuchi and Takada [15].
We call that u is a mild solution to if u satisfies (IGNSC) in some appropriate function
space.

This paper is organized as follows. In Section 3, we recall some results concerning the
generalized Stokes-Coriolis semigroup’s regularizing effect. Section 4 is devoted to the important

bilinear estimates. In Section 5, we prove Theorem [2.3] and Theorem [2.4

3. REGULARIZING EFFECT OF THE GENERALIZED STOKES-CORIOLIS SEMIGROUP

We consider the linear system

Ou+v(=A)u+Qes x u+Vp=0, xcR3t>0,
(3.1) divu = 0, zeR3 t>0,
u(0, ) = up(z), T € R3.

From the Proposition 2.1 of [13], we know that

(3.2) a(t, &) = cos <Q|££’|t> e 1€ 135(€) + sin (QE:&) e P R(&)ug(€),

for t > 0 and ¢ € R3. The generalized Stokes-Coriolis semigroup is explicitly represented by
(3.3)  Sq(t)u = [cos(QRst)I + sin(QRst)R]e "=y, for t >0,u € LP,and divu = 0,

where Rsu(€) = (&5/|¢))a(€) for € # 0.
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Theorem 3.1. (smoothing effect of the generalized Stokes-Coriolis semigroup) Suppose that
a>1/2, ¢ = {£ € R3:1/2 < |¢| < 2} be a ring centered at 0 in R3, u = (u',u?,u3). If
supp ui AE,1=1,2,3, then there exist positive constants ¢ and C depending only on v such
that:

(i) for any A >0,

—c 2«
(34) ISa(t)ull Lz < Ce™ N |lul| 2
(ii) if A 2 Q, then, for any 1 < p < oo,
(3.5) 1S ®ullr < Ce™ N |ul|Lo.

Proof. (i) Since [Jull, := ([Ju']|Z+[Ju?||2+ ||u3|]12,)1/2, it suffices to prove that the conclusion holds
for scalar function f. Thanks to (3.2]) and the Plancherel theorem, we get

1Sa(t) fllz2 = 1Sa(t, ) F(©)ll12 < Clle™ 1 f(&)]|2 < Ce || £ o
(i) Let ¢ € C5°(R3\{0}) be a nonnegative radial function, supp¢ C {£ € R3 : 1/4 < [¢| <

4}, ¢(&) =1 for all 1/2 < |€] < 2. Set

g(t,x) = (27T)_3/ e EH(ATE) Sa(t, €) €.

RS

To prove (3.5)), it suffices to show
(3.6) lg(t, @)1 < Cem ™",

Thanks to (3.3)), we infer that

[, ot 0l

37) < C / I6(A1E)[|Sa(t, )| dé do < Ce™ N / A3 dA < Cem N,
lz|<a—1 JR3

|z|<A—1

Set L :=z - V¢/(i|z|?). Noting that L(e*) = e¥®¢. Using integration by parts, we have

g@.t) =C | LM 960 1Sat s = [ e L)Y (OO Sa(t€)) de,

where N € N is chosen later. Using the Leibnitz formula, it is easy to verify that
& [e% [e%
(M < ClelhI(+ 0nn, (o7 (e | < ClglPlem B,

o <é|>‘ <ClE. i=1,2.3
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Thus we obtain

(L)Y (6(A716)Sal(t, €))]

.~ & o
< Cla|™ 3 A= N+K (va|k|¢)(§)ak1(e:tzQ‘?i”lt)ab(e,wﬂz 0ok (1 + R(E)
|1 |+ k2|43 | =|k| <N
< Chal™ 3 Mg (g et SR g el

k1 [+ k2| + k3| =|k|<N

Taking N = 4. For any £ € {£:27'A < |¢] < 2A} and A 2, we obtain
(L)Y (A1) Sa(t, €))| < C|Ax| e 1IEP,
which implies that

/ gl t)dz < C’e_CXMtA?’/ x|t dz < Cem N,
|z|>+

|z|>+
which, together with (3.7]), we finally have (3.6). Then the inequality (3.5 is proved. O

We now turn to time-space norm estimation of hybrid-Besov spaces to the generalized

Stokes-Coriolis semigroup

2a 5 2a

Theorem 3.2. Let a > 0,s,0 € R, and (p,q) € [1,00]. Then, for any u(x) € @;;T ¢ we

)

have

(3.8) 1Sa(ullzg (ay0) < Cllull o200 2

2, p

and for any u(t,z) € INJIT(%’;;), we have

(3.9) H /0 Salt — yu(r) dr

s (00 < Cllu®llzy )
P

Proof. Here we only prove (3.9)). (3.8]) can be proved by the method analogous to (3.9)). For any
27 > Q, we get by Theorem [3.1] that

‘ N /Ot So(t — T)u(r) dr

Using Young’s inequality, we have

t )
S C/ e~ T2 || Aju(7) | o
Lp 0

¢ —c 2aj _2a .
(3.10) Aj/o Sa(t—7u(r)dr) < Cle P e 1A |y pe < C27 9| Aju(r) | 1y Lo
La.Lp

Similarly, for 2/ < Q, we also have

t ag _2a,
1) |85 [ Salt=ru(rdr| <Ol gy Ajur) g e < CF A ) g o
0 L%LQ

Then the inequality (3.9) follows from (3.10]) and (3.11)). O
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4. BILINEAR ESTIMATES

Let us first define the space E, o7 whose norm is defined by

U = ||u + ||u .
H HEp,a,T ” HE°°<0,T;3?§;2&72_2&+1> H ||Z1<O,T;3Z§§+l>

Set
t
B(u,v) = / Sa(t —7)PV - (u®v)dr,
0

where P denotes the Helmholtz projection.

Theorem 4.1. Let 1/2 < a < 5/2, 2 < p < 4 and % > maX{O‘T_l,5_64a}. Assume that

u,v € By o 7. There exists a constant C' independent of Q, such that for any T > 0,
(4.1) 1B, v)|| B, or < Cllulle,, o rllvl5,, 00
Proof. Due to Theorem [3.2, we need only prove

(4.2) [utll 52 3-sr2 < Cllllgy s 0]15,
T2, p

Using Bony’s decomposition (2.4]) and ({2.5)), we get
Aj(uv) = Z Aj(Sk_luAkU) + Z Aj(Sk_lvAku) + Z Aj(AkuAkv)
[k—j|<4 lk—j|<4 k>j—2
=: Ij + IIj +IIIj.
Put J; := {(K', k) : |k — j| <4,k <k —2}. Then for 27 > Q,

ilare < D 1A (Apudo)| o ps
Jj

< DD D 1A (Arud) s e = Tin + Lo + I,

Jiu o Jian o Jjkh
where

Jiu={K k)e J;: 2F <0, 2F <O},
Jjn ={(K' k)€ J;: 2K < Q,2F > Q},

Jinn = {(K k) e J;: 28 > 0,28 > Q).
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Using Lemma we obtain

E,E
Li < C > [l Apulpzer~2"G5 HAWHle

(k' k)eJju
_ 3
<0 Y G2 agule 2t Co D2t A a2 ()
(K, k)eJ;
3
< Cllull. 5 903 samllvll. 5334 Z o(K'—k)(2a—1) 9 —k(5 ~20-+2)
oo B2 P il j2 p
T %2, p T2, (kl,k)eﬁ]j,ll
—j(2—2a+2)
< C2 P HuHi%ogZé;2a’%72Q+IHUHL1,EQ 341

where we used in the last inequality the fact that

Z o(k'—k)(2a=1)9—k(; (3—20+2) Z 9~ k(2—20a+2) Z 9K —k)(20=1) < r9~d i(3—2a+2)
(K", k)E€Jjn |k jl<a k' <k—2

with C' independent of j. A similar argument, we get

Lo < C Y |Apullsgrl|Axoll s e

(K, k)T 1n

< ¢ > HE)agu g2t @ Al 1
(K, k)eJj1n
—j(2—2a+2)

< 02 P HUHL%}@E;M,%—2a+1HUHL%@§§+1

and

Liz < C Y |lAwulrgre | Aol
(k",k‘)EJj,hh

k(2 —20+1 /(20—
<o Y O a2 D Ay

(k/,k)EJj,hh
—j(2—2a+2
< Ol e enlV, s
T 72,p T2, p

For 27 < Q, we have

Iilpyze < ) 118 (Apudew)||z 2
Jj

< A 1A Al 12 = Lia + Lis + Lis.
J

s Jiin o Jjnn
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Using the same argument as above, we obtain

/ / k &
L < € 30 207 Apullpge 2V 0 D2T Aoy 2277

(k',k:)EJle
—_i(I_9
< C2 4e a)H“”~?E%Qg—2a,%—2a+1“v” 1T*92% B
» P

Noting that 2 <p < 4 and > 5= 4a , we have

Lis < C 30 bwul o 8lsys

(K", k)EJ; 1n

5_ L(3_5
<03 ETApulge 20T Y | Al 1y
(k' k)EJ; 1n

< 279Gy

.372%%720&1””” 1%)% S
T 2,p
and
Lis < C 1Awull 2 1AV Ly Lo
(K", k)EJT;, hn T
E(3— 5
< ¢ Y AUl 2 DA
(K", k)EJ;, hn
T
< 02 1 2Q)HUH~w@%f2a,%72a+1”1}”i1 @%,%+1'
T 2,p T2, p
Summing up the estimates for I;; through I;¢ yields that
(22042 i(L—
(4.3) 2S_u% 9i(;—2a )”I]-HLlTL,, +25u%21(2 QQ)HIJ'HLlTL? < CHUHEP,Q,THUHEP,Q,T-
3> 3 <

Using the same argument as in the proof of (4.3 , we can easily obtain

—2a+2)
(4.4) sup 27022 17, Iz rr + sup 2/(3=29)| 114 Izy 2 < Cllullg, o rllvlE,, o0
27 >0 27 <

Put K :={(k, k') : k > j — 3,k — k'] <1}. We have

L= [ >+ Y+ + > | Aj(Apul ) :=IILy + 111 o + 111 5 + 111, 4,

K;u Kjwm Kjn  Kjnn

where

Kin={(k k) e K;:2F<Q,2" <},
Kjin = {(k, ') € K;: 28 <0,2% > 0},
Kim={(k, k) e K;: 28 >0 2¢ <},
Kinn={(k, ¥) e K; : 28 > Q2" > q}.
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Noting that 1/2 < a < 5/2, we get by Lemma that

(11
Tl < 29075 3™ I Awud o]
(k,k")EK; 1

75

. 1 ;
< 029070 N RGN A e 1227 FE 2O | Ay 1227 R

(k: k/)EK]'”
3j(1—1 5_ 5K
SRl TN BT I F DD 9~k -200=%
it Eey (ke
—j(2—2a+2 —5)(k—j
< Ol s aellVl g DO 20070
LPB; Ly%] ] P
—j(2—2a+2
< 277572 ulg, Lllollg, s
and
Ny
1Ll e < €27 Y Al p
(k,k")EK; 1
< coF > gh(3—22) [ Agullpger22” FJ&QW?HAMUHLM?Z_%
(k,k")EK; 1
31 _k(5_2q)_ Bk
< O2Flull, | ga g anllvll, s Y 2HETn
LE 75 Lhs (k, K" )EK;,u
(I —5)(k—i
< ORIl g g aenllell pan D0 20070
T 2, p LTQZ k>j73
(T
< C2 ](2 2a)||u”Ep,a,T||v||Ep,a,T'

Similarly, we have

11 o + I1Tj 3l 1 e

< 027 S 1Aul o] 2
LLLZFP
(k, K" EK; 1nUK; 1
37
< 027 | Y Al Arlle + D Akl el Awll g2
(k7k/)€Kj,lh (k,k/)Eijhl
3
< 02_3(5 2a+2)"u“~ .%72a’%72a+1”’UH~1 .%’%Jrl 2 % Z 2] k’)(*-?a-‘r )
Ly A, Ly#] ] Pralt
—j(2—2a+2
< 027G |l LlvlE, .
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and

111,24+ T11; 3] 1 12

4
< 027 3 (NN
Ll 2+p
(k, k") eK; 1nUK; T
37
< C2v > lAwullizeellArvlle + D 1Akl ol Arll g2
(k, k" EK; 11, (k, k" )EK; m

2

. . 7 3
< CIGETul|s e ol ga, (2% Y 207G
T oo ’p ng2’l)

T 2, p T2, p

k>j—3

.7
< 027907 u|g, , 4ll0lB,, o

Finally, thanks to 2 < p < 4, it follows that

VL4l 1o
35
< 02r 30 | Awudwe]
(k,k/)GKth
35
< 027 Z [Agul|Lge o | Aol L1 1o
(k,k/)Gijhh
(32042 j—k)(2—2a+8
< 02 3(5—2a )HUH~OO .%72%%72‘1“”11““ 5341 Z oli—k)(2—2a+7)
T %2, p T2, p k>j—3
—i(3-2a+2
< 279G ug, ool o
and
115 4]l 2 22
) 1
< 029672 N AwApll,, g
T
(k,k/)Eijhh
202 1
< 29672y [AkullLge o | Awoll o o

(k, k") EK, hn

. . 6
< 0G| s s ool say, Y 20TRETRE)
00 > p L%’%QQ’P

2
T 72,p » P k>j—3

(T
g 02 ](2 2a)HuHEp,a,THU”Ep,a,T'
Taking the estimates of I11; 1 — I11; 4 into cosideration, we obtain

(32042 i(I_
(4.5) sup oi(;—2a+ )H][]j\\LlTLp + sup 27 (3 QQ)HIIIj”LlTLQ < Cllullgy, o rllvllE, .-
21> 21<Q)
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Combining (4.3)), (4.4]) and (4.5]), we are confident that the inequality (4.2]) holds. The proof
is completed. O

In order to obtain the uniqueness of the solution in C'(R*; H %720‘), we need consider the

following new bilinear estimate in the weighted time-space Besov spaces.

.5_9
Theorem 4.2. Assume that % <a< % and u,v € Bf’oo . Then, for any T > 0, we have

(5
B0 g < Ol gl 12782 1l e
T —2,00 2,00
where
wj, T 1= sup ek7T2(g_2°‘)(j_k), ejr:=1- e~ 20T
k>3
Proof. Since e; 7 < wj 7 for any j € Z and that
(4.6) wir <2620y, 1 if f <j, wir < 2wypr if§ <5
From Theorem thus we conclude that
1B o)l g5 < sup2 2 [ Salt = r)ARY - (w0 dr
2,00 JEZL
< 2j(772a —c2270 A -
sup 270 ey 1A (@ )l
(T
(4.7) < Csup 2 4e; 2| Aj(uw) | poor2-

JET

Thanks to Bony’s decomposition to estimate ||Aj(uv)|[zeer2 and (4.6), we infer that

Z HAJ‘(SkAUAkU)HL%OL?

[k—j|<4
< CHUH -5 —2a Z 2k(2a 1)||AkUHLooL2
T 200 ‘k) ]|<4
_ ; _7 5
(4.8) < Cuwyp2ite Z)HuHLTB§ ollwe 22 Ao
and
3p 5 _ _
ISk-rvlle < D7 1Ak0)1222% < flow, 72V G20 Ao g ol Y 2V
k' <k—2 k' <k—2
< 28Dt gy p2F (G2 Al o 1
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it follows that

Z ||Aj(5k—1UAkU)||L39L2

[k—j|<4
— e /(5
(19 < GBIl 22 Al
As the remainder term,
> 1A (Arud )| peer
k>j—2
§ . ~
< Z 22JHA’€“AWHL§9L1
k>j—2
§ . ~
g C Z 22~7HA]€'LLHL%OL2HA]C'UHL%OLQ
E>j—2
_ ; _r k
(4.10) < Cuwjp2ite Q)HUH ol o ||k, 72M 2a)||AkaLooLszoo
T 2,00
Combining (4.8)), (4.9), (4.10) and (4.7]), which completes the proof of Theorem O

5. PROOFS OF THEOREM [2.3] AND THEOREM [2.4]

The trick of the proof to Theorem is the following classical lemma.

Lemma 5.1. ([3]) Let (X, | - ||x) be a Banach space and B : X x X — X a bounded bilinear
form satisfying ||B(x1, z2)||x < nllz1l|x||z2||x for all z1,29 € X and a constant n > 0. Then if
0<e<1/(4n) and if y € X such that |y||x < €, the equation x = y + B(x,x) has a solution
in X such that ||z|x < 2¢. This solution is the only one in the ball B(0,2¢). Moreover, the

solution depends continuously on y in the following sense: if ||y|lx < €,& = g+ B(Z,%), and
|Z]| x < 2€ then
|z — Z[|x < ! ly =9l
T—Z||x < .
XSy~ Ylix

Proof of Theorem Noting that the integral form to (1.1])
¢
(5.1) u(z,t) = Sa(t)up — / Sa(t —7)PV - (u® u)dr := Sq(t)uo + B(u, u).
0
Thanks to Theorem we infer that

[Sauollg,,o < CHuoH 20,3201 S CC.
P

Clearly, B(u,v) is bilinear, and we obtain by Theorem that

||B(U, v)”Ep,a < CHuHEp,a H/U”Ep,a'
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Set ¢ such that 4C%c < %, Lemma ensures that the equation
u = Sq(t)ug + B(u, )
has a unique solution in the ball {u € Ey, : ||lullg,, < %}
Proof of Theorem We define a Banach space F}, , whose norm is defined by
el = Nl g2y + el

Step 1: Existence in F), 4.
Let Tu := Sq(t)up + B(u,u). Our purpose now is to prove that the map .7 has a unique
fixed point in the ball

BA = {’U, € prOé : ”uHEp,a < AC’ HUHFP’D‘ < AHUOHH%an}

if ¢ is small enough for some A > 0 to be determined later. Using Theorem and Theorem
[4.1] we get

(5.2) 1T ullg,. < CI!UOIIg,gzg;za,g_zaﬂ +Clulg, -

On the other hand, we get by Theorem [3.1] that

HB(’U’? U)HE/OO(]RJ";H%_QQ)

< ’ /Ot Sot — )PV - (u @ u)(r) dr

Loo (Rt 327

[NIES

t 2
< C ZQj(54a)<sup/ ||SQ(t—T)AjPV-(U®u)(7’)HL2dT>
0

jez teR+

(5.3) < c‘

t .
93(3-20) sup / e~ (t=T) 1A (u® )| g2 dr
teR+ JO 12

We get by Lemma [2.1] that

t =~ j o
sup / || A (Tyu)| 2 dr

teR+ JO
_92ja
< e @ @n D 1A (Sk-1udiw)| poe @)
k—j|<4
< C277 Y |Gkl poo(ersoooy | Akull Lo (et 2)
|k—j|<4
< Clluf. .3 2a,3 2a+1 2~ Z 2k(zail)HAICUHLOO(RJF-L?)
(s, ) |k—jl<4
(5.4) < 029G ulg,,, 3 2D DPCE| Al g 12

lk—jl<4
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The remainder term of uv is estimated by

t .
sup / =2 U= A R(u, u)| 2 d

teR+ JO
_m92ja B
< e ey > 18 (Apud )| g2
kzj—2
< ¢ Z | Akull oo s | Aull L1 1)
k>j—2
(5.5) < Ol P 2R || Al oo 12
i1<R+ 232 >k>ZJ:2 ).

Combining (5.4)) and ( with ( . yields that

1B (u, w) < Cllullg,q llull;

Foo(®H;H3—20) Foo(R+;H3 20y’

where we used the fact that

127G 29 37 27K Ajul| o ||

k>j—2
= |2 3-2) > 2 K(3-2a)9k(3 22| Apul| oo (m+s.2) 2
k>j—2
1/2
= [Z Z o—(k— ])(*—204) (_QO{)HAkUHLN(Rﬁm))Z}
7 k>j—2

. 1/2
- [Z PIR I ”’““Ha)uAﬂk/uumma)z}

7 k'>-2
204k ) (3 —2) | A . 2 /25— k' (Z—2a)
< D02 22| A 3o g 2y) 27 G
k>-2 j
17
< Y MG (N G Al )
K>—2 I
< Cllul;

Foo(RH;H3 20y

It is straightforward to verify that

[Sa(t)uol ;

Hence by (5.2)) and the estimate

§-20 < Clluoll 43

Lo H2 32

HUOHQEPM 5 201 < Clluoll 4

Hj 2a)
we obtain

(5.6) [T ullF o < Clluoll 320 + Cllulle, ollull 7, o
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Taking A = 2C and ¢ > 0 such that 2C%¢ < , it follows from and that the map 7
is a map from B4 to B4. Similarly, it can be proved that 7 is also a contraction in B 4. Thus,
the Banach fixed point theorem ensures that the map .7 has a unique fixed point in By4.
Step 2: Uniqueness in C(R*; H ’_20‘)
Let u; and ug be two solutions of in C(R™; ’_20‘) with the same initial value ug. A

routine computation
U — ug
= B(u; — Sq(t)ug,ur — uz) + B (Sq(t)ug, u1 — ug)
+ B(u; —ug,ug — Sq(t)up) + B (u1 — ug, Sq(t)up) .
It follows by Theorem [4.2] that

sup [[(ur —u2)(®)]] .50

t€[0,T] 7 oo
< C sup |[(ur —u2)(t ws i3 Asolls||
e [ = )05 (JJwos, 222 A uo]o
(5.7) +  sup [lui(t) — Salt )UOHHWZQ + sup ||uz(t) — Sq(t )UOHH22a> ,
t€[0,T 1e[0.7]

where we used the fact w; 7 < 1 so that

5
A o IR R TGP

Because of the fact that w; g = 0 and uy € Hg_zo‘, we have

5 1
s, 7272 Ao o < 55
for T small enough. On the other hand, since ui,us € C(R™; Hg%a), we also get
1
sup [lur(t) — Sa(t)uoll ;320 + sup [lua(t) — Sa)uoll ;1320 < 55
tef0,7] A3 t€[0,7] H272 = 30

for T' small enough. Then ([5.7]) ensures that u;(t) = ua(t) for 7' small enough. Using a standard

continuity argument, we can derive that u; = ug on [0,00). The proof is completed. O
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