References
Abramoff, M.D., 2004. Image
Processing with ImageJ. Biophotonics International 11, 36–42.
Alfaro, M.E., Santini, F., Brock, C., Alamillo, H., Dornburg, A.,
Rabosky, D.L., Carnevale, G., Harmon, L.J., 2009. Nine exceptional
radiations plus high turnover explain species diversity in jawed
vertebrates. P Natl Acad Sci USA 106, 13410–13414.
https://doi.org/10.1073/pnas.0811087106
Antonelli, A., Zizka, A., Carvalho, F.A., Scharn, R., Bacon, C.D.,
Silvestro, D., Condamine, F.L., 2018. Amazonia is the primary source of
Neotropical biodiversity. PNAS 115, 6034–6039.
https://doi.org/10.1073/pnas.1713819115
Axelrod, D.I., Kalin Arroyo, M.T., Raven, P.H., 1991. Historical
development of temperate vegetation in the Americas. Revista Chilena de
Historia Natural 64, 413–446.
Bacon, C.D., Silvestro, D., Jaramillo, C., Smith, B.T., Chakrabarty, P.,
Antonelli, A., 2015. Biological evidence supports an early and complex
emergence of the Isthmus of Panama (vol 112, pg 6110, 2015). P Natl Acad
Sci USA 112, E3631–E3631. https://doi.org/10.1073/pnas.1511204112
Baele, G., Li, W.L.S., Drummond, A.J., Suchard, M.A., Lemey, P., 2013.
Accurate Model Selection of Relaxed Molecular Clocks in Bayesian
Phylogenetics. Mol Biol Evol 30, 239–243.
https://doi.org/10.1093/molbev/mss243
Berthier, S., 2005. Thermoregulation and spectral selectivity of the
tropical butterfly Prepona meander : a remarkable example of
temperature auto-regulation. Applied Physics A 80, 1397–1400.
https://doi.org/10.1007/s00339-004-3185-x
Bouckaert, R., Heled, J., Kuhnert, D., Vaughan, T., Wu, C.H., Xie, D.,
Suchard, M.A., Rambaut, A., Drummond, A.J., 2014. BEAST 2: A Software
Platform for Bayesian Evolutionary Analysis. Plos Comput Biol 10.
https://doi.org/10.1371/journal.pcbi.1003537
Brakefield, P.M., Gates, J., Keys, D., Kesbeke, F., Wijngaarden, P.J.,
Montelro, A., French, V., Carroll, S.B., 1996. Development, plasticity
and evolution of butterfly eyespot patterns. Nature 384, 236.
https://doi.org/10.1038/384236a0
Buerki, S., Forest, F., Alvarez, N., Nylander, J.A.A., Arrigo, N.,
Sanmartin, I., 2011. An evaluation of new parsimony-based versus
parametric inference methods in biogeography: a case study using the
globally distributed plant family Sapindaceae. J Biogeogr 38, 531–550.
https://doi.org/10.1111/j.1365-2699.2010.02432.x
Cerling, T.E., Harris, J.M., MacFadden, B.J., Leakey, M.G., Quade, J.,
Eisenmann, V., Ehleringer, J.R., 1997. Global vegetation change through
the Miocene/Pliocene boundary. Nature 389, 153.
https://doi.org/10.1038/38229
Chazot, N., Condamine, F.L., Dudas, G., Peña, C., Matos-Maraví, P.,
Freitas, A.V.L., Willmott, K.R., Elias, M., Warren, A., Aduse-Poku, K.,
Lohman, D.J., Penz, C.M., DeVries, P., Kodandaramaiah, U., Fric, Z.F.,
Nylin, S., Müller, C., Wheat, C., Kawahara, A.Y., Silva-Brandão, K.L.,
Lamas, G., Zubek, A., Ortiz-Acevedo, E., Vila, R., Vane-Wright, R.I.,
Mullen, S.P., Jiggins, C.D., Slamova, I., Wahlberg, N., 2020. The
latitudinal diversity gradient in brush-footed butterflies
(Nymphalidae): conserved ancestral tropical niche but different
continental histories. bioRxiv 2020.04.16.045575.
https://doi.org/10.1101/2020.04.16.045575
Chazot, N., Willmott, K.R., Condamine, F.L., De-Silva, D.L., Freitas,
A.V.L., Lamas, G., Morlon, H., Giraldo, C.E., Jiggins, C.D., Joron, M.,
Mallet, J., Uribe, S., Elias, M., 2016. Into the Andes: multiple
independent colonizations drive montane diversity in the Neotropical
clearwing butterflies Godyridina. Mol. Ecol. 25, 5765–5784.
https://doi.org/10.1111/mec.13773
Chazot, N., Willmott, K.R., Endara, P.G.S., Toporov, A., Hill, R.I.,
Jiggins, C.D., Elias, M., 2014. Mutualistic Mimicry and Filtering by
Altitude Shape the Structure of Andean Butterfly Communities. The
American Naturalist 183, 26–39. https://doi.org/10.1086/674100
Chazot, N., Willmott, K.R., Lamas, G., Freitas, A.V.L., Piron-Prunier,
F., Arias, C.F., Mallet, J., De-Silva, D.L., Elias, M., 2019. Renewed
diversification following Miocene landscape turnover in a Neotropical
butterfly radiation. Global Ecology and Biogeography 28, 1118–1132.
https://doi.org/10.1111/geb.12919
Clark, J.R., Ree, R.H., Alfaro, M.E., King, M.G., Wagner, W.L., Roalson,
E.H., 2008. A Comparative Study in Ancestral Range Reconstruction
Methods: Retracing the Uncertain Histories of Insular Lineages. Syst
Biol 57, 693–707. https://doi.org/10.1080/10635150802426473
Condamine, F.L., Silva-Brandao, K.L., Kergoat, G.J., Sperling, F.A.H.,
2012. Biogeographic and diversification patterns of Neotropical Troidini
butterflies (Papilionidae) support a museum model of diversity dynamics
for Amazonia. Bmc Evol Biol 12. https://doi.org/10.1186/1471-2148-12-82
Darwin, C., 1880. The sexual colors of certain butterflies. Nature 21,
237.
Darwin, C., 1874. The descent of man and selection in relation to sex,
2nd ed. London, UK.
Descimon, H., 1977. Biogéographie, mimétisme et spéciation dans le genreAgrias Doubleday (Lep. Nymphalidae Charaxinae). Publ. Lab. Zool.
de l’Ecole. Norm Sup 9, 307–344.
De-Silva, D.L., Elias, M., Willmott, K., Mallet, J., Day, J.J., 2016.
Diversification of clearwing butterflies with the rise of the Andes. J
Biogeogr 43, 44–58. https://doi.org/10.1111/jbi.12611
De-Silva, D.L., Mota, L.L., Chazot, N., Mallarino, R., Silva-Brandao,
K.L., Pinerez, L.M.G., Freitas, A.V.L., Lamas, G., Joron, M., Mallet,
J., Giraldo, C.E., Uribe, S., Sarkinen, T., Knapp, S., Jiggins, C.D.,
Willmott, K.R., Elias, M., 2017. North Andean origin and diversification
of the largest ithomiine butterfly genus. Sci Rep-Uk 7.
https://doi.org/10.1038/srep45966
Eastman, J.M., Alfaro, M.E., Joyce, P., Hipp, A.L., Harmon, L.J., 2011.
A Novel Comparative Method for Identifying Shifts in the Rate of
Character Evolution on Trees. Evolution 65, 3578–3589.
https://doi.org/10.1111/j.1558-5646.2011.01401.x
Espeland, M., Breinholt, J., Willmott, K.R., Warren, A.D., Vila, R.,
Toussaint, E.F.A., Maunsell, S.C., Aduse-Poku, K., Talavera, G.,
Eastwood, R., Jarzyna, M.A., Guralnick, R., Lohman, D.J., Pierce, N.E.,
Kawahara, A.Y., 2018. A Comprehensive and Dated Phylogenomic Analysis of
Butterflies. Current Biology 28, 770-778.e5.
https://doi.org/10.1016/j.cub.2018.01.061
Fan, Y., Wu, R., Chen, M.H., Kuo, L., Lewis, P.O., 2011. Choosing among
Partition Models in Bayesian Phylogenetics. Mol Biol Evol 28, 523–532.
https://doi.org/10.1093/molbev/msq224
Felsenstein, J., 2004. Inferring Phylogenies. Sinauer, Sunderland, MA.
Finkbeiner, S.D., Briscoe, A.D., Reed, R.D., 2014. Warning signals are
seductive: Relative contributions of color and pattern to predator
avoidance and mate attraction in Heliconius butterflies.
Evolution 68, 3410–3420. https://doi.org/10.1111/evo.12524
FitzJohn, R.G., 2010. Quantitative traits and diversification. Syst.
Biol. 59, 619–633. https://doi.org/10.1093/sysbio/syq053
Fordyce, J.A., Nice, C.C., Forister, M.L., Shapiro, A.M., 2002. The
significance of wing pattern diversity in the Lycaenidae: mate
discrimination by two recently diverged species. J Evolution Biol 15,
871–879. https://doi.org/10.1046/j.1420-9101.2002.00432.x
Forest, F., 2009. Calibrating the Tree of Life: fossils, molecules and
evolutionary timescales. Ann Bot-London 104, 789–794.
https://doi.org/10.1093/aob/mcp192
Garzione, C.N., Hoke, G.D., Libarkin, J.C., Withers, S., MacFadden, B.,
Eiler, J., Ghosh, P., Mulch, A., 2008. Rise of the Andes. Science 320,
1304–1307. https://doi.org/10.1126/science.1148615
Harmon, L.J., Weir, J.T., Brock, C.D., Glor, R.E., Challenger, W., 2008.
GEIGER: investigating evolutionary radiations. Bioinformatics 24,
129–131. https://doi.org/10.1093/bioinformatics/btm538
Harvey, M.G., Rabosky, D.L., 2018. Continuous traits and speciation
rates: Alternatives to state-dependent diversification models. Methods
in Ecology and Evolution 9, 984–993.
https://doi.org/10.1111/2041-210X.12949
Hoorn, C., Wesselingh, F.P., ter Steege, H., Bermudez, M.A., Mora, A.,
Sevink, J., Sanmartin, I., Sanchez-Meseguer, A., Anderson, C.L.,
Figueiredo, J.P., Jaramillo, C., Riff, D., Negri, F.R., Hooghiemstra,
H., Lundberg, J., Stadler, T., Sarkinen, T., Antonelli, A., 2010.
Amazonia Through Time: Andean Uplift, Climate Change, Landscape
Evolution, and Biodiversity. Science 330, 927–931.
https://doi.org/10.1126/science.1194585
Jenkins, D.W., 1987. Neotropical Nymphalidae VI. Revision ofAsterope (=Callithea Auct.). Bulletin of the Allyn Museum
1–66.
Jiggins, C., Naisbit, R., Coe, R., Mallet, J., 2001. Reproductive
isolation caused by color pattern mimicry. Nature.
Jiggins, C.D., 2008. Ecological Speciation in Mimetic Butterflies.
BioScience 58, 541–548. https://doi.org/10.1641/B580610
Jiggins, C.D., Mallarino, R., Willmott, K.R., Bermingham, E., 2006. The
phylogenetic pattern of speciation and wing pattern change in
neotropical Ithomia butterflies (Lepidoptera: nymphalidae).
Evolution 60, 1454–66.
Josse, C., 2003. Ecological systems of Latin America and the Caribbean:
a working classification of terrestrial systems. NatureServe.
Kemp, D.J., 2007. Female butterflies prefer males bearing bright
iridescent ornamentation. Proceedings of the Royal Society B: Biological
Sciences 274, 1043–1047. https://doi.org/10.1098/rspb.2006.0043
Kürschner, W.M., Kvaček, Z., Dilcher, D.L., 2008. The impact of Miocene
atmospheric carbon dioxide fluctuations on climate and the evolution of
terrestrial ecosystems. PNAS 105, 449–453.
https://doi.org/10.1073/pnas.0708588105
Lagomarsino, L.P., Condamine, F.L., Antonelli, A., Mulch, A., Davis,
C.C., 2016. The abiotic and biotic drivers of rapid diversification in
Andean bellflowers (Campanulaceae). New Phytologist 210, 1430–1442.
https://doi.org/10.1111/nph.13920
Lamas, G., 2004. Checklist: Part 4A. Hesperioidea – Papilionoidea, in:
Atlas of Neotropical Lepidoptera. Associa-tion for Tropical Lepidoptera
and Scientific Publishers, Gainesville, FL, p. 439.
Lanfear, R., Calcott, B., Ho, S.Y.W., Guindon, S., 2012.
PartitionFinder: Combined Selection of Partitioning Schemes and
Substitution Models for Phylogenetic Analyses. Mol Biol Evol 29,
1695–1701. https://doi.org/10.1093/molbev/mss020
Losos, J.B., Warheit, K.I., Schoener, T.W., 1997. Adaptive
differentiation following experimental island colonization inAnolis lizards. Nature 387, 70–73.
https://doi.org/10.1038/387070a0
Louca, S., Pennell, M.W., 2020. Extant timetrees are consistent with a
myriad of diversification histories. Nature 580, 502–505.
https://doi.org/10.1038/s41586-020-2176-1
Magallon, S., Sanderson, M.J., 2001. Absolute diversification rates in
angiosperm clades. Evolution 55, 1762–1780.
https://doi.org/10.1111/j.0014-3820.2001.tb00826.x
Mallet, J., Gilbert, L.E., 1995. Why are there so many mimicry rings?
Correlations between habitat, behaviour and mimicry in Heliconiusbutterflies. Biological Journal of the Linnean Society 55, 159–180.
https://doi.org/10.1111/j.1095-8312.1995.tb01057.x
Matzke, N.J., 2018. BioGeoBEARS: BioGeography with Bayesian (and
likelihood) Evolutionary Analysis with R Scripts. GitHub.
https://doi.org/10.5281/zenodo.1478250
Matzke, N.J., 2014. Model selection in historical biogeography reveals
that founder-event speciation is a crucial process in island clades.
Syst Biol 64, 167–167. https://doi.org/10.1093/sysbio/syu091
Mavarez, J., Salazar, C.A., Bermingham, E., Salcedo, C., Jiggins, C.D.,
Linares, M., 2006. Speciation by hybridization in Heliconiusbutterflies. Nature 441, 868–71. https://doi.org/10.1038/nature04738
Mayhew, P.J., 2007. Why are there so many insect species? Perspectives
from fossils and phylogenies. Biol Rev Camb Philos Soc 82, 425–54.
https://doi.org/10.1111/j.1469-185X.2007.00018.x
Montes, C., Cardona, A., Jaramillo, C., Pardo, A., Silva, J.C.,
Valencia, V., Ayala, C., Perez-Angel, L.C., Rodriguez-Parra, L.A.,
Ramirez, V., Nino, H., 2015. Middle Miocene closure of the Central
American Seaway. Science 348, 226–229.
https://doi.org/10.1126/science.aaa2815
Morlon, H., 2014. Phylogenetic approaches for studying diversification.
Ecology Letters 17, 508–525. https://doi.org/10.1111/ele.12251
Morlon, H., Lewitus, E., Condamine, F.L., Manceau, M., Clavel, J.,
Drury, J., 2016. RPANDA: an R package for macroevolutionary analyses on
phylogenetic trees. Methods in Ecology and Evolution 7, 589–597.
https://doi.org/10.1111/2041-210X.12526
Morlon, H., Parsons, T.L., Plotkin, J.B., 2011. Reconciling molecular
phylogenies with the fossil record. PNAS 108, 16327–16332.
https://doi.org/10.1073/pnas.1102543108
Mullen, S.P., Savage, W.K., Wahlberg, N., Willmott, K.R., 2011. Rapid
diversification and not clade age explains high diversity in neotropicalAdelpha butterflies. P Roy Soc B-Biol Sci 278, 1777–1785.
https://doi.org/10.1098/rspb.2010.2140
Nadeau, N.J., Pardo-Diaz, C., Whibley, A., Supple, M.A., Saenko, S.V.,
Wallbank, R.W.R., Wu, G.C., Maroja, L., Ferguson, L., Hanly, J.J.,
Hines, H., Salazar, C., Merrill, R.M., Dowling, A.J., ffrench-Constant,
R.H., Llaurens, V., Joron, M., McMillan, W.O., Jiggins, C.D., 2016. The
gene cortex controls mimicry and crypsis in butterflies and moths.
Nature 534, 106–110. https://doi.org/10.1038/nature17961
Neild, A.F.E., 1996. The Butterflies of Venezuela. Part 1: Nymphalidae I
(Limenitidinae, Apaturinae, Charaxinae). A comprehensive guide to the
identi cation of adult Nymphalidae, Papilionidae, and Pieridae. Meridian
Publications, Greenwich.
Nicholson, D.B., Ross, A.J., Mayhew, P.J., 2014. Fossil evidence for key
innovations in the evolution of insect diversity. Proc Biol Sci 281.
https://doi.org/10.1098/rspb.2014.1823
Nijhout, F., 1991. The Development and Evolution of the Butterfly Wing
Patterns. Smithsonian Institution Press.
Obara, Y., Majerus, M.E.N., 2000. Initial Mate Recognition in the
British Cabbage Butterfly, Pieris rapae rapae . Zoological Science
17, 725–730. https://doi.org/10.2108/zsj.17.725
Oliver, J.C., Tong, X.-L., Gall, L.F., Piel, W.H., Monteiro, A., 2012. A
Single Origin for Nymphalid Butterfly Eyespots Followed by Widespread
Loss of Associated Gene Expression. PLOS Genetics 8, e1002893.
https://doi.org/10.1371/journal.pgen.1002893
Ortiz-Acevedo, E., Bonfantti, D., Casagrande, M., Mielke, O.H.H.,
Espeland, M., Willmott, K.R., 2017. Using Molecules and Morphology to
Unravel the Systematics of Neotropical Preponine Butterflies
(Lepidoptera: Charaxinae: Preponini). Insect Syst Divers 1, 48–56.
https://doi.org/10.1093/isd/ixx002
Ortiz-Acevedo, E., Willmott, K.R., 2013. Molecular systematics of the
butterfly tribe Preponini (Nymphalidae: Charaxinae). Systematic
Entomology 38, 440–449. https://doi.org/10.1111/syen.12008
Paradis, E., Claude, J., Strimmer, K., 2004. APE: Analyses of
Phylogenetics and Evolution in R language. Bioinformatics 20, 289–290.
https://doi.org/10.1093/bioinformatics/btg412
Peña, C., Espeland, M., 2015. Diversity Dynamics in Nymphalidae
Butterflies: Effect of Phylogenetic Uncertainty on Diversification Rate
Shift Estimates. Plos One 10.
https://doi.org/10.1371/journal.pone.0120928
Peña, C., Wahlberg, N., 2008. Prehistorical climate change increased
diversification of a group of butterflies. Biol. Lett. 4, 274–278.
https://doi.org/10.1098/rsbl.2008.0062
Pinto-Sanchez, N.R., Ibanez, R., Madrinan, S., Sanjur, O.I., Bermingham,
E., Crawford, A.J., 2012. The Great American Biotic Interchange in
frogs: multiple and early colonization of Central America by the South
American genus Pristimantis (Anura: Craugastoridae). Mol
Phylogenet Evol 62, 954–72. https://doi.org/10.1016/j.ympev.2011.11.022
Pound, M.J., Haywood, A.M., Salzmann, U., Riding, J.B., Lunt, D.J.,
Hunter, S.J., 2011. A Tortonian (Late Miocene, 11.61–7.25Ma) global
vegetation reconstruction. Palaeogeography, Palaeoclimatology,
Palaeoecology 300, 29–45. https://doi.org/10.1016/j.palaeo.2010.11.029
Pybus, O.G., Harvey, P.H., 2000. Testing Macro-Evolutionary Models Using
Incomplete Molecular Phylogenies. Proceedings: Biological Sciences 267,
2267–2272.
Rabosky, D.L., 2014. Automatic Detection of Key Innovations, Rate
Shifts, and Diversity-Dependence on Phylogenetic Trees. PLoS One 9.
https://doi.org/10.1371/journal.pone.0089543
Raftery, A.E., Satagopan, J.M., Newton, M.A., Krivitsky, P.N., 2007.
Estimating the integrated likelihood via posterior simulation using the
harmonic mean identity, in: Bernardo, J.M., Bayarri, M.J., Berger, J.O.,
Dawid, A.P., Heckerman, D., Smith, A.F.M., West, M. (Eds.), Bayesian
Statistics. Oxford University Press, London, UK, pp. 1–45.
Rahbek, C., Borregaard, M.K., Antonelli, A., Colwell, R.K., Holt, B.G.,
Nogues-Bravo, D., Rasmussen, C.M.Ø., Richardson, K., Rosing, M.T.,
Whittaker, R.J., Fjeldså, J., 2019. Building mountain biodiversity:
Geological and evolutionary processes. Science 365, 1114–1119.
https://doi.org/10.1126/science.aax0151
Rambaut, A., Suchard, M.A., Xie, D., Drummond, A., 2014. Tracer v1.6.
Rasband, W.S., 1997. ImageJ. National Institute of Health, Bethesda,
Maryland, USA.
Ree, R.H., Sanmartín, I., 2018. Conceptual and statistical problems with
the DEC+J model of founder-event speciation and its comparison with DEC
via model selection. Journal of Biogeography 45, 741–749.
https://doi.org/10.1111/jbi.13173
Ree, R.H., Smith, S.A., 2008. Maximum Likelihood Inference of Geographic
Range Evolution by Dispersal, Local Extinction, and Cladogenesis.
Systematic Biology 57, 4–14.
Reed, R.D., Papa, R., Martin, A., Hines, H.M., Counterman, B.A.,
Pardo-Diaz, C., Jiggins, C.D., Chamberlain, N.L., Kronforst, M.R., Chen,
R., Halder, G., Nijhout, H.F., McMillan, W.O., 2011. optix drives the
repeated convergent evolution of butterfly wing pattern mimicry. Science
333, 1137–1141. https://doi.org/10.1126/science.1208227
Ronquist, F., 1997. Dispersal-vicariance analysis: A new approach to the
quantification of historical biogeography. Syst Biol 46, 195–203.
https://doi.org/10.2307/2413643
Ronquist, F., Sanmartin, I., 2011. Phylogenetic Methods in Biogeography.
Annu Rev Ecol Evol S 42, 441–464.
https://doi.org/10.1146/annurev-ecolsys-102209-144710
Sahoo, R.K., Warren, A.D., Collins, S.C., Kodandaramaiah, U., 2017.
Hostplant change and paleoclimatic events explain diversification shifts
in skipper butterflies (Family: Hesperiidae). Bmc Evol Biol 17.
https://doi.org/10.1186/s12862-017-1016-x
Schluter, D., 2000. The Ecology of Adaptive Radiation. Oxford University
Press, New York.
Schneider, C., Rasband, W., Eliceiri, K., 2012. NIH Image to ImageJ: 25
years of image analysis.
Smith, B.T., McCormack, J.E., Cuervo, A.M., Hickerson, M.J., Aleixo, A.,
Cadena, C.D., Perez-Eman, J., Burney, C.W., Xie, X., Harvey, M.G.,
Faircloth, B.C., Glenn, T.C., Derryberry, E.P., Prejean, J., Fields, S.,
Brumfield, R.T., 2014. The drivers of tropical speciation. Nature 515,
406–9. https://doi.org/10.1038/nature13687
Strömberg, C.A.E., Dunn, R.E., Madden, R.H., Kohn, M.J., Carlini, A.A.,
2013. Decoupling the spread of grasslands from the evolution of
grazer-type herbivores in South America. Nat Commun 4, 1478.
https://doi.org/10.1038/ncomms2508
Taper, M.L., Ponciano, J.M., 2016. Evidential statistics as a
statistical modern synthesis to support 21st century science. Popul Ecol
58, 9–29. https://doi.org/10.1007/s10144-015-0533-y
Toussaint, E.F.A., Dias, F.M.S., Mielke, O.H.H., Casagrande, M.M.,
Sañudo-Restrepo, C.P., Lam, A., Morinière, J., Balke, M., Vila, R.,
2019. Flight over the Proto-Caribbean seaway: Phylogeny and
macroevolution of Neotropical Anaeini leafwing butterflies. Molecular
Phylogenetics and Evolution 137, 86–103.
https://doi.org/10.1016/j.ympev.2019.04.020
Turrent Carriles, A., García Días, J. de J., 2019. Descripcion de una
nueva especie de Prepona Boisduval, 1836 (Lepidoptera:
Nymphalidae) de la Sierra Madre del Sur. Revista de la Sociedad Mexicana
de Lepidopterología VII.
Wahlberg, N., Leneveu, J., Kodandaramaiah, U., Peña, C., Nylin, S.,
Freitas, A.V.L., Brower, A.V.Z., 2009. Nymphalid butterflies diversify
following near demise at the Cretaceous/Tertiary boundary. Proceedings
of the Royal Society B: Biological Sciences 276, 4295–4302.
https://doi.org/10.1098/rspb.2009.1303
Wallace, A.R., 1889. Darwinism: an exposition of the theory of natural
selection with some of its applications. Macmillan and Company, London,
UK.
Wallace, A.R., 1877. The colours of animals and plants. The American
Naturalist 11, 713–728.
Weir, J.T., Bermingham, E., Schluter, D., 2009. The Great American
Biotic Interchange in birds. Proc Natl Acad Sci U S A 106, 21737–42.
https://doi.org/10.1073/pnas.0903811106
Table 1. Model specifications for the RPANDA diversification rate
analyses.