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Abstract

The paper is concerned with the SIZR mathematical model for an out-
break of zombie infection with time-dependent infection rate. This class
of the SIZR model involves equations that relate the susceptible S(t), the
infected 1(t), the zombie Z(t), and removed population R(t). The well
poseness of the model is presented. The proposed model is then out-
stretched to the fractional order mathematical model with three different
derivative operators i.e., Caputo, Caputo-Fabrizio, and Atangana-Baleanu
fractional derivative operator. The conditions under which the model has
a unique solution are established for different derivative operators. Using
the numerical scheme which was proposed by Atangana and Toufik the
numerical solutions are presented for the different fractional derivative
operators.
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1 Introduction

Fictional characters have been something that intrigues humans the most. From
movies to TV shows to video games, these fictional characters somehow become
a part of us. Creators manifest these characters showing a possibility that
someday they might turn into reality. One such fictional character that is quite
popular and most sought after among writers and creators is zombie’. The
word ’zombie’ originated from the West African word 'nZambi’ or *Zumbi’. It
was taken into the English dictionary as Zombie in the year 1819. A zombie
is a walking cadaver that feeds on human life. Zombies can be perceived as
the victim of some serious infectious disease outbreak. They have their brains
almost dead and their sole purpose is to run after other people’s life, bite them
and infect them as well.

Zombies gained popularity from movies like 'Resident Evil’, "Zombieland’ etc,
while TV shows like " The Walking Dead’ increased their popularity. In movies,
TV shows, and video games, zombies are depicted as dead corpses grunting and
limping around the city in search of human bodies to relish their flesh and con-
verting them to one of their kind. They are deemed walking dead. Although
they possess the body of a dead person, they are still alive with their only ob-
jective being to infect other humans. Their treatment is not possible by any
means. The only way to quell their proliferation is to kill them. Zombies are an
exaggerated description of an infectious disease. This disease is so severe that
once a person is infected there is no turning back [I].

In the movie "World War Z’, it is shown that how a zombie outbreak takes place
and spreads around the whole globe. The protagonist embarks on an adventure
to discover a cure of the outbreak while tackling boisterous zombies and even-
tually succeeds in his mission.

Zombies apart from a fictional story can be seen as a viral disease that might
become a challenge for the human race. Its spread can be considered as that of
any other viral disease. Mathematical models are capable of decision making,
saving lives, assisting in policy, and many more. These are helpful in under-
standing the conditions needed to sustain lives and provide us ways to study
and predict the behavior of the spread. The concept of derivatives and integrals
pays a lot in the formulation of these mathematical models. In this work, we
will study the SIZR mathematical model for the outbreak of zombies attack.
A SIZR model determines the number of people infected with a transmissible
infection in a closed population over a while. These models are acquired in such
a way that they involve equations that correlate number of susceptible people
S(t), number of people infected I(t), number of people who have transformed to
zombie, and who have removed R(t).



2 SIZR Model For Outbreak of zombie With
Time Dependent Infection Rate.

In the SIZR model for zombie infection, we have considered the four different
classes of individuals as S: Susceptible group of individuals I: Infected symp-
tomatically group of individuals Z: Individuals who have become infected, R:
Removed group of individuals. We assume that when zombies attack the sus-
ceptible individuals, they leave wound containing zombie’s slobber in it, this
slobbering fluid get mix with the blood of susceptible individuals and therefore
infecting them. The susceptible class of individuals after the zombie’s attack
first move to the class of infected individuals. The infected individuals can ei-
ther die natural death or else become zombie. Zombies move to the removed
group by demolishing their brains or by removing their heads. This removed
group is comprised of the humans who have died either through the natural
death or by zombie attack. Individuals in the removed class can also restore to
life and again become a zombie. The following assumptions are also made

e Zombies have thirst for human beef only and can transmit infection only
to the human beings.

e The new zombies can only arise through (a) the susceptible individuals
who came in contact with zombie, (b) those who have restored to life from
the removed class of individuals.

Further, a time dependence on the parameter § the transmission rate [2], is
introduced in this model, so the effect of transmission will be given as By e~
This choice of decreasing exponential function is justified by step by step im-
plementation of rules and by rise in consciousness and awareness in individuals.
Here, [y is the infection rate at the beginning of the zombie infection and ¢
determines the change in the time of infection [2]. Keeping in mind the afore-
mentioned assumptions the SIZR model is formulated as [3]

as

= = N—Boe ' S(t) Z(t) - wS(1), 5(0) = So,
% = BoeStS(8) Z(t) — x I(t) — wI(1), 1(0) = I,
% — XI(t)+ 6 R(t) — pS(t) Z(b), 2(0) = Zo,
CiT]f = WS +wI(t)+pSH)Z(E)—R(E),  R(O)=Ro. (21)

Where, N, w, d, p, x represents the birth rate, death rate, rate by which removed
individuals resurrect and become a zombie, the rate by which zombie move to
removed class by destroying their brains and demolishing their heads, the rate
by which infected individuals become zombie respectively. The SIZR model is
demonstrated in fig
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Figure 1: The SIZR model for zombie attack

Theorem 1. [2]] Assuming that all the parameters which are defined in the
above model are positive, the solution of the model S(t),I(t), Z(t), R(t) with
non-negative initial conditions are positive ¥t > 0.

Proof. Define A=Sup{t > 0: Sy, I, Zy, Ryp > 0}. Consider the following equa-
tion

% — N = BoeStS() Z(t) — wS(t), > —wS(t)
- ds
ar => —wS(t). (2:2)

On solving, we get S(t) = Ay e™*t, where A; is constant of integration.
Using the fact that S(0) = Sy > 0, we get

S(t)=Spe ¥t >0. (2.3)

Next Consider,

% = Boe 'S Z(t) —xI(t)—wlI(t), >—(x+w)I(t)
— I
= 2 —(x+w)(®). (2:4)

On solving, we get I(t) = Ay e(Xt)t where Ay is constant of integration.
Using the fact that 1(0) = I, > 0, we get

I(t) = Ty e X >0, (2.5)

In a similar way, we get
Z(t) = Zoe MM >0, (2.6)
R(t) = Roe @' >o. (2.7)



3 Fractional SIZR model of Zombie Infection

We will now extends the SIZR model of zombie infection to the fractional mathe-
matical model of zombie infection using different fractional derivative operators.
The concept of fractional derivatives ([5]-[8]) are very useful in making better
understanding of the real world problems which exhibit non-local behaviours.
Different fractional derivative operators have their own significance. The defi-
nition with singular kernel was proposed by Riemann-Liouville [5] and this was
the first most accepted definition in the area of fractional calculus, after that
new developments were made in the area of fractional calculus which involves
definition of fractional derivative with non-singular kernel, one of which was pre-
sented by Caputo [5]. This definition is based on the conception of power law,
so is does not work for the problems that exhibit the fading memory process.
Next improvement in this area was made by Caputo and Fabrizio [9] by suggest-
ing the definition that can deal with the process that exhibits fading memory
process due to the exponential decay accompanied by Delta-Dirac characteris-
tic. Lastly Atangana and Baleanu [I0] introduced the definition of fractional
derivatives and integrals that can easily handle the process by exhibiting a pas-
sage from fading memory to power law. For the detail applications of fractional
calculus we can be see [I1]-[30]. We will now discuss the detail analysis of the
proposed fractional mathematical SIZR model in the sense of Caputo, Caputo-
Fabrizio and Atangana-Baleanu fractional derivative operators. The existence
and uniqueness of the solution of the SIZR model and their numerical schemes
in the sense of different fractional derivative operators are briefed in the next
sections. In section 4, 5, 6 we have analysed the SIZR model in sense of Caputo,
Caputo-Fabrizio and Atangana-Baleanu fractional derivative respectively.

4  SIZR model of zombie infection with Caputo
fractional derivative

CIS(t) = N—Poe*'S(t)Z(t) —wS(t), 5(0) = So,
CGIt) = Boe ' S(t)Z(t) — xI(t) —wI(b), 1(0) = Io,
“Gz(t) = xIM)+R()—pS(t)Z(t), Z(0) = Zo,
C¢IR(t) wS(t) +wl(t)+pS(t) Z(t) — & R(t), R(0) = Ry. (4.1)

here, ©¢; denotes the fractional Caputo derivative of order n. which is defined
as

Definition 1. [5] Let f on R be an integrable function, 0 < n < 1 the fractional
Caputo derivative of order n is given as

G0 = s | o (42)

Where, ¢} denotes the fractional Caputo derivative of order 1.



Theorem 2. [F1] Assuming that there exists positive constants L and L such
that the following holds

e Lipschitz Condition: Yv,vy € R and Vt € [to, T
lg(t, v1(t)) = g(t, v2(8))[< Llvy — val, (4.3)
o Linear growth condition: V(v,t) € R x [[to, T]]
l9(t, v)[P< L(1 + [v]?). (4.4)

Then the Cauchy problem with Caputo derivative admits a unique solution.

4.1 Existence and Uniqueness of the fractional SIZR Model.

We will now prove the existence and the uniquness for SIZR mathematical model
and for convenience, we write the SIZR model as

€S(t) = fi(t,S)

CGIt) = fo(t, 1)

“AFZ(t) = f3(t, 2)

“CIR(t) = fa(t, R) (4.5)
where, D denotes the Caputo fractional derivative and

fl(taS) = N—ﬂoe_gtS(t)Z(t)—WS(t),

o, I) = Boe™'St) Z(t) — x I(t) —wI(t),
f3(t.Z) = xI(t)+dR(t) —pS(t) Z(t),
Fit,R) = wSE) +wI(t)+pS(t)Z(t) — 6 R(t). (4.6)

To prove the existence and the uniqueness of the solution of the SIZR model,
we use the concept which was recently proposed by Atangana [3I] and hence
prove the following theorem.

Theorem 3. 12:5/ Assuming that there exists positive constants C1,Csy,C3,Cy
and Cy,Cs, C3,Cy, such that the following holds

v |f1(t, S()) — fu(t, 51(1)|< CulS = S
|fo(t, 1(t)) — f2(t, 1 () |< Call — L]
|f3(t, Z(t)) — f3(t, Z1(1))|< Cs1Z — Z4]
| fa(t, R(t)) — fa(t, Ra(t))|< Ca|R — Ry
* [f1(t, S@)P< CL(1+[5]?)
| f2(t, I()) < Co1 + |T]?)
|f3(t, Z($)]?< C3(1 +12]?)
|fa(t, R(1)P< Ca(1 + |RP)



Proof. Consider
[f1(t,8) = f1(t, S1)|= [ (Bo e ™" Z(t) — w) (S(t) — S1(t))]- (4.7)
Define the norm as ||q||cc= Supicio,1)lql, we get
[f1(t,8) = A1, 51)] < (BollZ|os+w)IS — Sil. (4.8)
Taking (5o||Z||cc+w) = C1, we have

|f1(t,S) = fa(t, 1) < C1|S = Sl (4.9)
Next consider
[f2(t, 1) = f2(t, 1) = [(=(x +w)) (L(t) — L (£))]. (4.10)
Again defining the norm as ||gls= Supreo.rdl,
|fo(t, 1) = fo(t, [)|< (X +w) [ = L] (4.11)
Take (x +w) = Cs,
\fa(t, 1) — folt, I)|= Ca|I — L. (4.12)
Next consider,
f3(t, Z) = f3(t, Z1)|= [(—=pS(1) (Z(t) — Z:(1))]. (4.13)
|f3(t, Z) = f3(t, Z1)|< pllS]lec| Z — Z4 (4.14)

On taking p||S||co= C3

|f3(t, Z) — f3(t, Z1)|= Cs|Z — Za], (4.15)
Similarly,

|fa(t, R) — fa(t, R1)|= 6| R — R, (4.16)
Taking § = Cy We get

| fa(t, R) — fa(t, R1)|= C4lR — Ry, (4.17)

We now prove the second part of the above stated theorem. We first show
|f1(t, S(t))|< Li(1 + |S]?). Consider

it )P = [N —Boe™" S(t) Z(t) — wS(t)|?
= [N+ (=Boe™*'Z(t) —w)S(t)]?
< 2IN|*+(285e7* " Z|*+2w?)|S|?
< INIZ+28311 2] % +w?) ISP

282(| Z |2, +w?
— IV [1 n (°'|'| N”@o ) |S|2} (4.18)



On taking C; = ||N||%, and under the condition
207112 12
(Y

IV 13,
we get
|f1(t, S)P< Cr(1+S]?). (4.19)
We now show
| fo(t, 1(1))P< Ca(1+ [I(1)[?). (4.20)
Consider
[f2(t, D? = |Boe™ 'S Z(t) — (x +w)I(1)]?

< 2B5e7*SP|ZP+2(x + w)*| L)
< 2651815 M1 Z 1% +20x + w)? 1 (#)?

2(x +w)?
2828|212 ;[u(
olISl 121 2B2ISTE 21

On taking Cy = 262||5||2,[|Z||%,, and under the condition

2(x + w)? )
— A 27 ) <
(253||5||§<>||le§o
We get | fo(t, I())]*< Ca(1 + [I(t)]?).
Next to show |f3(t, Z(t))|?>< C3(1 + |Z(¢)]?).
Consider
[fa(t, Z)? = |[xI(t) +0R(t) — pS(t)Z(t)|?
< 3XP| I +36%| RI>+3p°|S|?| 2]
<3112 438 || RIZ+30% 1S [12. 1 Z 1%

=<3 2||I||2 +362||RH2 1+ 3p2||5||c2>o KZE )
—= ol x <32, +36%[RIE, )

JLCEREN

On taking C3 =< 3x2||||2,+352||R||%,, and under the condition

SIS Y -,
<32 +30%RIZ ) —
We get |f3(t, Z(1))]?< Cs(1+]Z(t)]?).
Next to show |f4(t, R(t))|>< Cu(1 + |R(1)|?).

Consider
it R)P = |wS(t) +wI(t) + pS()Z(t) — SR(t)[?
< 4w?|S|?4-4w? 1) +4p2|S)?| Z|*+46% | R)?
< 4w? || 8|12+ 4w? | 1[2+40 || S5 1| 2115 +40% | R[5
= (42|85 +4w? | 1|13 +407 (IS |13 1 2113 )

462
1+< ) RQ} 4.23
{ ST A sz ) B @2)




On taking Cy = 4w?||S||%, +4w?||T]|%,+4p%|S||%.]| Z||%, and under the condition

452
<1.
<4w2||5||§o+4w2||1|§o+402Slliollleio) -
We get | fa(t, R(t))[*< Ca(1 + [R(2)]?).

Hence, by using Theorem [2] proof for the existence and uniqueness of the SIZR,
model is completed. O

4.2 Numerical scheme for the SIZR model in frame of
Caputo Derivative

Consider the SIZR model for Zombie infection in frame of Caputo fractional
derivative operator

CS(t) = N—Boe ' S(t)Z(t) —wS(t), S(0) = So,
CCII(t) = Boe ' S(t) Z(t) — xI(t) —wI(t), 1(0) = Io,
€Pz(t) = xI(t)+5R(t)—pS(t)Z(t), Z(0) = Zo,
CCIR(L) wS(t) +wl(t)+pS(t) Z(t) — 6 R(t), R(0) = Ry.(4.24)

here, €¢/ denotes the fractional Caputo derivative of order .
To find the numerical solution ([32]-[33]), consider

§C(t) = k(t, (1), t>0, 1(0)= . (4.25)

Using the fundamental theorem, we rewrite the above equation as

90 = 60) + o [ ek i (4.20
—OT L e |
at t = tpy1, we have

R B 4 e T
U1 = 6lty) = 00) + i [ty = r)an, (420)

at t =t,, we have

1 [t
Uy = U(t,) = ¥(0) + o) /0 (tp — )" k(3 T)drT, (4.28)
From the above two equations, we get
1 tpt1
Bltpsn) =0t =~ | [ty = 1) e

_ /0 " (tp — 7)1 (0, T)dr | (4.29)
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Now, applying Atangana and Toufik numerical scheme with Lagrange polyno-
mial interpolation, we have the following numerical scheme

h T
Syt = S O il S,) (0= m+1)(p—m +2+2)

m=0

—(p—m)"(p —m+2+2n)]

T

w(nhZ—Q) Z filtm=1,Sm-1) [(p —m+ )" —(p—m)"(p—m+1+ 77)] )
" (4.30)
where,
fi(t,S) =N — Boe ' S(t) Z(t) — w S(t). (4.31)

h s
ot = G 3y 0l ) (0= m 1)1 =t 2420

— (p—m)"(p—m+2+2n)]

s

- w(nh:—Q) Z fotm—1,Im—1) [(p —m+1)"" —(p—m)"(p—m+1+ 77)] )
" (4.32)
where,
falt, 1) = Boe ' S(t) Z(t) — x I(t) —wI(t) (4.33)

h T
Zpt1 = 60(27_:2) > faltm: Zm) [(p—m +1)"(p — m + 2 + 2n)

m=0

—(p—m)"(p—m+2+2n)]

T

- W(Whl?) Y faltm1, Zina) [(p = m 4+ 1) — (p—m)"(p —m + 14 1)
m=0

(4.34)

f3(t,Z) = xI(t)+dR(t) — pS(t) Z(t) (4.35)

Rpi1 = %%ﬂl(tm,]‘?m) [(p—m+1)"(p—m+2+2n)
— (p=m)"(p —m+2+2n)]

—% Z faltm—1, Rm—1) [(p—m+ )" — (p—m)"(p—m+1+n)],
m=0

(4.36)
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fat.R) = w S(t) + wI(t) + pS(t) Z(t) — 6 R(t). (4.37)

Susceptible
3500 F
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= L - ) = ' — k —— i DH'!,"E-
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Figure 2: Simulation of S(t) for different ordered fractional derivatives using
Caputo fractional derivative for the parameter value ¢ = 0.1,w = 0.0001, y =
0.005,0 = 0.0001, p = 0.005. This shows that on decreasing the order of frac-
tional derivative the susceptible individuals decreases well.
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Infected
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Figure 3: Simulation of I(t) for different ordered fractional derivatives using
Caputo fractional derivative for the parameter value ¢ = 0.1,w = 0.0001, xy =
0.005,6 = 0.0001, p = 0.005. This shows that on increasing the order of frac-
tional derivative (close to 1) the infected individuals decreases well but the
infection can not be completely eradicated since there is no availability of vac-
cine and this is also because the proposed model shows that the removed group
of zombies can also restore to life.
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Zombie
800 |
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Figure 4: Numerical simulation of Z(t) for different ordered fractional deriva-
tives using Caputo fractional derivative for the parameter value ¢ = 0.1,w =
0.0001, x = 0.005,6 = 0.0001,p = 0.005. This shows that on increasing the
order of fractional derivative (close to 1) the zombies decrease but the zombie’s
group can not be completely eradicated since there is no availability of vaccine
and this is also because the proposed model shows that the removed group of
zombies can also restore to life.

n
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e _ // = .I';I=U_4-
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Figure 5: Numerical simulation of R(t) for different ordered fractional deriva-
tives using Caputo fractional derivative for the parameter value ¢ = 0.1,w =
0.0001, xy = 0.005,6 = 0.0001,p = 0.005. This shows that on increasing the
order of fractional derivative (close to 1) the removed individuals keep on in-
creasing, since the only way to get out of the infection is to destroy the zombies.

5 SIZR Model of Zombie Infection With Ca-
puto Fabrizio Fractional Derivative

CFEIS(t) = N—Poe'S(t) Z(t) —wS(t), 5(0) = So,

TG = Poe TS Z(1) — xI(t) —wI(1), 1(0) = Io,

() X I(t) +0R(t) —pS(t) Z(1), Z(0) = Zo,

CFCIR(t) = wSt)+wl(t)+pS(t) Z(t) — 6 R(t), R(0) = Ro.(5.1)
here, ©¥ ¢} denotes the Caputo Fabrizio fractional derivative of order 7. defined
as

Definition 2. [9] Let f on R be an integrable function, t >0, 0<n <1, the
Caputo-Fabrizio fractional derivative of order n is defined as

CF _M tex —n(t—1) "(FVdr
srerro) = 12 [ enn( D) p rar )

Where OCFCZ’ represents the fractional Caputo-Fabrizio derivative of order n,
N(n) is a normalization function such that N(0) = N(1) = 1.
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Definition 3. [J] Let f on R be an integrable function, t >0, 0<n <1, the
Caputo-Fabrizio time fractional integral of order n is given as

cFBo o 2(1_77) 27 ¢ ) dr
TP (0) = e {0+ G / frydr (53)

Where, N(n) is the normalization function such that N(0) = N(1) = 1.

5.1 Numerical scheme for the SIZR model in frame of
Caputo-Fabrizio Derivative

Consider the SIZR model for Zombie infection in frame of fractional Caputo-
Fabrizio derivative

CFSEH) = N—PBoe“'St)Z(t) —wS(t), 5(0) = So,
I = BoetS(H) Z(t) — xI(t) —wl(t), 1(0) = Io,
Fzt) = xI(t)+0R(E) —pSt) Z(t), Z(0) = Zy,
CFCTR(t) = wS(t)+wl(t)+pS(t) Z(t) — & R(t), R(0) = Ry.(5.4)

here, €7 ¢;" denotes the fractional Caputo Fabrizio derivative of order 7.

To illustrate the method ([32]-[33]), consider

61 ¢o(t) = k(t,6(t), >0, ¢(0) = go. (5.5)
Using the fundamental theorem, we rewrite the above equation as
() —(0) = %kwu)) + % / k(o) (5.6)
At t =ty4q, for p=0,1,2 - - -, equation is given as
Bltpen) ~ 000 = g i)+ g [ K 6
n) G(n) Jo

At t =tp, for p=0,1,2 - - -, equation (5.6) is given as

Bltp) — $(0) = %gup,m(t,},m o / "kroo(r)dr. (58)

From the above two equations, we get

Bltpr)—(ty) = “—?[k(tp,w<tp>>—k<tp71,w<tp71>>]+$ / " ke ().

Q

(n

p

(5.9)
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Considering k(7, ¥(7)) through Lagrange polynomial interpolation,

k(r, (7))
T —tm—1 T —1tm

= ——9(lm,
tm—tm—1g( Yr,) +

kE(tm—1,%t, ,). (5.10)

tm—l - tm

where ¥(t,,) is a function at time ¢, and 1 (¢,;,—1) is a function at time ¢,,_1.
Substituting the value of k(7,1 (7)) in equation (5.9), we get

Upr1 —¥p = lg(;n?[k(tp,wp)) — k(tp—1,¥(ty—1))] + %
/t " (W(T —tp_1) — %(T - tp)) dr. (5.11)

P

Substituting h = t,, — t,,—1 and after solving, we have

Yp+1 = o + ( +
1- h
(7
G(n)  2Gn)
Using this concept ([32]-[33]), the numerical scheme for the fractional model of
zombie attack in the sense of fractional Caputo-Fabrizio derivative is given as

)k(tphwpl)). (5.12)

1—n 3h
Sp+1 =S80 + (G(n) + 2G(77)> fi (tp7 ¢(tp))_
1—n nh
(G(U) + 2G(17)> filtp—1,9(tp-1)). (5.13)
where,
fit,8) =N —Boe ' S(t) Z(t) —w S(t).
Ip+1 =1Io+ <1G(_773] + 22}27’)) f2(tp71/)(tp))_
1—n nh
(G + g ) ety bl 510
where,
fo(t, 1) = Boe ' S(t) Z(t) — x I(t) —w (1)
Zmy1 = Zo + (1G(777)7 + 5 é?ﬁ)) fa(tp, (tp))—

(1_"+ nh )fg(tpl,w(tpl)). (5.15)
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f3(t,2) = x I(t) + 6 R(t) — pS(t) Z(1)

1-—79 3h
G(n)

) Falty 0(t,))—

Q
—~
3
~

[N}

1-n  _nh
<G(77) "2 G(n)> Folty—1,%(ty-1))-  (5.16)

where,

Falt, R) = wS(t) +wI(t) + pS(t) Z(t) — 6 R(t).

Susceptible

3000
2500 | — n=0.7
2000 | — n=056
— J']I‘=|:|-5
1500 — n=04
— I]:U-3

Crays

20 4 i ] a0 100

Figure 6: Simulation of S(t) for different ordered fractional derivatives using
Caputo-Fabrizio fractional derivative for the parameter value ¢ = 0.1,w =
0.0001, xy = 0.005,6 = 0.0001,p = 0.005. This shows that on decreasing the
order of fractional derivative the susceptible individuals decreases well.
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Figure 7: Simulation of I(t) for different ordered fractional derivatives using
Caputo-Fabrizio fractional derivative for the parameter value ¢ = 0.1,w =
0.0001, x = 0.005,5 = 0.0001,p = 0.005. This shows that on increasing the
order of fractional derivative (close to 1) the infected individuals decreases well
but the infection can not be completely eradicated since there is no availability
of vaccine and this is also because the proposed model shows that the removed
group of zombies can also restore to life.
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Figure 8: Numerical simulation of Z(t) for different ordered fractional derivatives
using Caputo-Fabrizio fractional derivative for the parameter value ¢ = 0.1, w =
0.0001, x = 0.005,5 = 0.0001,p = 0.005. This shows that on increasing the
order of fractional derivative (close to 1) the zombies decrease but the zombie’s
group can not be completely eradicated since there is no availability of vaccine
and this is also because the proposed model shows that the removed group of
zombies can also restore to life.

J']=|:|-3
I']=U--I'-'|-
J']I=UE
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J']I=|:|-E
— J']I=|:|-5
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F 20 40 &0 20 100

ays

Figure 9: Numerical simulation of R(t) for different ordered fractional deriva-
tives using Caputo-Fabrizio fractional derivative for the parameter value ¢ =
0.1,w = 0.0001, x = 0.005,6 = 0.0001, p = 0.005. This shows that on increas-
ing the order of fractional derivative (close to 1) the removed individuals keep
on increasing, since the only way to get out of the infection is to destroy the
zombies.

6 SIZR Model of Zombie Infection With Atangana-
Baleanu Fractional Derivative

ABCCIS(t) = N —Boe*'S(t)Z(t) —wS(t), S(0) = So,

ABECI(t) = Boe ' S() Z(t) — x I(t) —w I(t), 1(0) = Io,

ABEQZ() = xI(t) +SR(t) — pS(t) Z(), Z(0) = Zo,

ABCCIR(t) wS(t) +wlI(t)+pSEt)Z(t)—R(t),  R(0) = Ro(6.1)
here, ABC(]" denotes the Atangana-Baleanu fractional derivative of order 7. de-
fined as

Definition 4. [I0] Let f on R be an integrable function, let 0 < n < 1, then
the Atangana-Baleanu fractional derivative is given as

n _ N(U) ! / (t — 7—)71
s2ctia) =12 [ o, |0 an (6:2)

Where, §B€ ¢} is the Atangana-Baleanu fractional derivative of order n in Ca-
puto sense, E, is the Mittag-Leffler function and N(n) is the normalization
function such that N(0) = N(1) = 1.
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Definition 5. [10] Let f on R be an integrable function, the fractional integral
of Atangana-Baleanu fractional derivative of order n is given as

AB'l —1_77] _n t V(t — )" Ldr
T2 (0(0)) = 90+ s |, 9= 0

Theorem 4. [I0)] The fractional differential equation
T8 (9(1) = w(t),

possesses a solution which is unique given as

g(t) = ﬁw(t) + m/o w(r)(t —7)"dr.

6.1 Existence and Uniqueness of the Solution

Theorem 5. [25] The kernels

ftS) = N—Boe stS(t)Z(t) —wS(t)
RtI) = Boe 'S(t) Z(t) — x I(t) — wI(t)
fs(t,Z2) = XxI(t) +0R(t) — pS(t) Z(t)
fit,R) = wSEt)+wl(t)+pS(t)Z(t) — s R(t)

satisfy the Lipschitz condition and contractions if following hold:
(i) o<Ci <1

(i) 0<Cy <1

(iii) 0 < C3 <1

(iv) 0<Cy <1

Proof. The Lipschitz’s condition is proved in theorem and if 0 < C; < 1, 0 <
Cy <1,0< C3 <1,0 < Cqy <1 then this proves contraction for fi(t,S),

fg(t,f), f3(f,,Z), f4(t,R). O

Theorem 6. [25] The following is the time fractional SIZR model of zombie
infection

ABCENG(t) = N —Boe st S(t) Z(t) —wS(t), S(0) = Sp,
ABCAII(t) = Boe ' S(t) Z(t) — xI(t) —wI(t), 1(0) = o,
ABCZ(t) = xI(t)+0R(t)—pS(t) Z(t), Z(0) = Zo,
ABCCIR(E) = wS(t)+wl(t)+pS(t) Z(t) — 6 R(t), R(0) = Ro(6.4)

possesses a unique solution under the conditions that we are able to search t,,q.
which satisfies

1—n tl .
Ci+-—"2% _C; <1, fori=1,23. 6.5
N(n) N (n)w(n) / (5)
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Proof Consider the following equation
0POCIS(t) = N = Boe*" S(t) Z(t) - wS(1), 5(0) =5y (6.6)

Taking f1(t,S) =N — Boe <t S(t) Z(t) — w S(t)
Then equation can be written as

0 PCES(t) = fi(t, 9). (6.7)

Using theorem [4 we get

= 1_777 S t — )", S())dT
S(0) = S0+ Fb i 0:50) + s [ = S (69

Let L = (0,T) and define an operator X : C(L,R*) — C(L,R*) such that
X[S()] = 8+ }V;(n’;fl (050) + o [ =77 A S (69

)
So equation (6.8)) can be seen as X[S(¢)] = S(t). Define the supremum norm
on L as ||S||= Supt6J|S( )|. Then C(L,R*) and ||.|| defines a Banach Space.
Finally consider

X[S1(t)] — X[S2(t)] = 1- N 7)7 (f1(t, S1(t)) — fa(t, Sa(t))) +
U n—1 7,51(7)) — f1(T e - .
W/ (t =) (f(r,50(7)) = fi(7, Sa(7))) dr. (6.10)

Now take the modulus on both sides of equation (6.10) and using triangle in-
equality we have

X[81(0) = X[S2(0] € 37 10 0:51(0) = falt, Safe))] +

/ |(t =)' (fi(7, 81(7)) — fu(7, S2(7))) dr| . (6.11)

Lastly, knowing that the kernel fi(¢, S(t)) satisfies Lipschitz condition, we get

X(S) - X(S)|< Lo, e 1Sy — Sa|. (6.12)

1 Ve N Nnw(p™)
Equation (6.12)) is a contraction if

1-—n tl

Ci+ mar o < 1. 6.13

N Nty (643)

Hence, using the Banach Fixed Point theorem, we can show the existence of a
unique solution for the fractional model of zombie attack in sense of Atangana-
Baleanu derivative operator.
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6.2 Numerical Scheme In Frame of ABC Derivative

Consider the SIZR model for Zombie infection in sense of Atangana-Baleanu
fractional derivative operator

ABCCS(1) = N — foe <! S(t) Z(t) - w S(b), $(0) = So,
ABECT(t) = Boe St S(E) Z(t) = x I(H) —w (), 1(0) = Io,
ABCCIZ() = XI(t)+ S R(t) - pS(t) Z(2), 2(0) = 2o,

ABCCIR(t) = wS(t)+wl(t)+pS(t) Z(t) — 6 R(t), R(0) = R{6.14)

here, ABC(]" denotes the Atangana-Baleanu fractional derivative of order 7.

Using the Collocatation method which was proposed by Toufik and Atangana
([32- [33]), for solving fractional derivatives that have non-singular and non-
local kernel. To illustrate the method

SEOCIX(t) = k(t, x(1), =0, x(0)= xo. (6.15)

Using Theorem [4 we rewrite the the above equation as

W(t) —(0) = %k(t,w)) + #w(n) /O (¢t — 1) Vk(r,b(r))dr.  (6.16)

At t =t,4q, for p=0,1,2 - -+, equation (6.16]) becomes

Bltpr) —(0) = = Lk(ty, (1) + G / " (s — )7 (o))
(6.17)

Bper = Wl(tper) = (0) + g(;n;wp, (1))

G 3 [t e 619
+ toy1 — 7)) g(T,Y(T))dT. .
Gw(n) == Jr, "

Considering k(7, ¥(7)) through Lagrange polynomial interpolation,

up = k(1,9(7))

T_tmfl
= ——" k(tm, 1) + ————
tm_tm—l (m ‘ ) tm—l_tm

T—1tm

k(tmfla Ve, 4 ) (6.19)

Substituting the value of k(7, x(7)) in equation ([6.18]), we get

_ 1-n

Z <W/t ”Lﬂ(t — tm—1)(tpr1 — )" Nt

m

m=0

g(tmer, f(tm—l)) /ttm+1 (t—tp 1) (tpr1 — t)ﬂ—ldt> . (6.20)

m
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Substituting h = t,, — t,;,—1 and on solving, we get

1—n

Up1 = o + wk(tpﬂ/)(tp)) * S
mzz:o {W((erlm)” (p—m=+2+n)—(p—m)"(p—m+2+2n))

Mt ) (g )™ = ) (o= 1)
(6.21)

Using the above illustrated concept, the numerical scheme for the fractional
model of zombie infection in framework of Atangana-Baleanu derivative operator

is given as
_ 1—n U
Sp+1 =S50+ Wfl(tpas(tp» + W
3 [P @t pems 2 = o+ 2 4 2)
2 fl(lzjzniz()tml)) (p+1=m)™ —(p—m)" (p—m+1+n))
(6.22)
where,
fi(t,S) =N — Boe st S(t) Z(t) — w S(t).
_ 1—n n
Iyyr =10+ @fﬂtmf(tp)) + fel))
mz::O {hn j?:f;)t"‘) (p+1-m)" (p—m+2+n)—(p—m)"(p—m+2+2n))
,h" f2(ingnl—~a_l2()tml)) ((er 1_ m)n+1 —(p—m)" (p—m+1+ ,,7)) ]
(6.23)
where,
fa(t,I) = Boe ' S(t) Z(t) — x I(t) —w I(t).
_ 1-n Ul
Zpy1r = Zo + Wf?)(tpv Z(tp)) + fel)
3 [P @ 1y 2 )~ (o2 20)

h7 fB(tmflaz(tmfl)) n n _
_ W +2) (p+1=m)™ —(p—m)" (p m+1+77)()6£4)
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where,
f3(t,2) =x1(t) + S R(t) — pS(t) Z(t)

1—
Rp+1 = Ro + anlﬁ(tpa R(tp)) + %
> [%ﬁ’gtm)((ﬁﬂ%—m)" (p—m+2+n)—(p—m)"(p—m+2+2n))
m=0

m f4(i:n(7_71];()tm_l)) (p+1-=m)"™" —(p—m)" (p—m+1+4n))|.
(6.25)

where,

Fi(t,R) = wS(t) + wI(t) + pS(t) Z(t) — 6 R(t).
Susceptible
3000 |
2500 | — n=0.3

— n=0.4

2000 [ L
1500 | — n=0.6
1000 | -

20 a0 s 80 'mﬂcm

Figure 10: Simulation of S(t) for different ordered fractional derivatives using
Atangana-Baleanu fractional derivative for the parameter value ¢ = 0.1,w =
0.0001, x = 0.005,6 = 0.0001, p = 0.005. This shows that on decreasing the
order of fractional derivative the susceptible individuals decreases well.
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Figure 11: Simulation of I(t) for different ordered fractional derivatives using
Atangana-Baleanu fractional derivative for the parameter value ¢ = 0.1,w =
0.0001, x = 0.005,6 = 0.0001,p = 0.005. This shows that on increasing the
order of fractional derivative (close to 1) the infected individuals decreases well
but the infection can not be completely eradicated since there is no availability
of vaccine and this is also because the proposed model shows that the removed
group of zombies can also restore to life.
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Zombies
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Figure 12: Numerical simulation of Z(t) for different ordered fractional deriva-
tives using Atangana-Baleanu fractional derivative for the parameter value
¢ = 0.1,w = 0.0001,x = 0.005,6 = 0.0001,p = 0.005. This shows that on
increasing the order of fractional derivative (close to 1) the zombies decrease
but the zombie’s group can not be completely eradicated since there is no avail-
ability of vaccine and this is also because the proposed model shows that the
removed group of zombies can also restore to life.
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Removed
500 |
—_— q=[]_3
400 — n=0.4
300 B
— I|‘r=[]_5
200 — L -"'||'=U-T
100

Figure 13: Numerical simulation of R(t) for different ordered fractional deriva-
tives using Atangana-Baleanu fractional derivative for the parameter value
¢ = 0.1,w = 0.0001,x = 0.005,6 = 0.0001,p = 0.005. This shows that on
increasing the order of fractional derivative (close to 1) the removed individuals
keep on increasing, since the only way to get out of the infection is to destroy
the zombies.
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400 500 600 700 500
Days

Figure 14: Numerical simulation of SIZR for ¢ = 0.01 and n = 0.5,w =
0.0001, x = 0.005,6 = 0.0001,p = 0.005 using Atangana-Baleanu fractional
derivative. This shows that due to the unavailability of vaccine or any other
source to eradicate the infection, the zombies keep on increasing and there is no
solution except demolishing their head and moving them to the removed group.
The graph also justifies the proposed model that the removed group can also
restore to life and again become a zombie and hence the population of zombies
keep on increasing.
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Figure 15: Numerical simulation of SIZR for ¢ = 0.1 and n = 0.7,w =
0.0001,x = 0.005,6 = 0.0001,p = 0.005 using Atangana-Baleanu fractional
derivative. This shows that the the infection can not be eradicated but with the
effect of time dependency on the infection rate and the continuous increase in
the number of removed group, the infection can be minimized to great extent
and hence the zombie’s population can be controlled.
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Figure 16: Numerical simulation of SIZ

can be controlled.

Days

R for ¢ =

0.1 and 7

= 08w =
0.0001, x = 0.005,6 = 0.0001,p = 0.005 using Atangana-Baleanu fractional
derivative. This shows that the the infection can not be eradicated but with
the effect of time dependency on the infection rate and due to increasing frac-
tional order there is continuous increase in the number of removed group, the
infection can be minimized to great extent and hence the zombie’s population
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Figure 17: Numerical simulation of SIZR for ¢ = 0.1 and n = 0.9,w =
0.0001,x = 0.005,6 = 0.0001,p = 0.005 using Atangana-Baleanu fractional
derivative. This shows that the the infection can not be eradicated but with
the effect of time dependency on the infection rate and due to increasing frac-
tional order there is continuous increase in the number of removed group, the
infection can be minimized to great extent and hence the zombie’s population
can be controlled.

7 Conclusion and Future Directions

In this work, we have considered the SIZR model for the zombie infection with
time dependent infection rate. The SIZR model is then extended to the frac-
tional order using Caputo, Caputo-Fabrizio, and Atangana-Baleanu fractional
derivative operators. The existence and uniqueness of the solution of the frac-
tional SIZR model in the sense of each fractional derivative operator along with
their numerical solutions are briefed. Graphical representations provide us with
a better understanding of the fractional SIZR model. This SIZR model is very
different from the other infectious disease SIR and SEIR models as in this SIZR
model the removed zombies can again retort to life. This is an unexpected plot
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which are obviously not practical in real life but with this SIZR model we have
tried to illustrate the significance of mathematical modeling in different circum-
stances and challenges in the field of medical science. Figure 2,3,4,5 represents
the behaviour of the susceptible, infected, zombie and removed individuals for
different fractional ordered derivative 7 in sense of Caputo fractional derivative
operator. Figure 6,7,8,9 represents the behaviour of the susceptible, infected,
zombie and removed individuals for different fractional ordered derivative n in
sense of Caputo-Fabrizio fractional derivative operator. Figure 10,11,12,13 rep-
resents the behaviour of the susceptible, infected, zombie and removed individ-
uals for different fractional ordered derivative 7 in sense of Atangana-Baleanu
fractional derivative operator. In figure 14, 15, 16, 17 the impact of parameter
¢ along with different fractional order is represented. We have seen that for
¢ = 0.01 the infection is very high and for ¢ = 0.1, the infection rate has a
sharp decline. This shows the effect of time dependency on the infection rate
Bo. Furthermore, we concluded that the zombie’s infection on humans is very
disastrous. Although strong and rigid quarantine can be helpful in extirpating
the infection. A cure with proper vaccination can also be a way in eliminating
the infection. In the future, we can also consider SIZR model for zombie infec-
tion with parameters involving quarantine and vaccination. Lastly, as observed
in movies, we conclude that zombie infection can open on to the destruction and
collapse of human development and it is imperious to deal with zombies as early
as possible, otherwise this will put the civilization in unresting and destructive
circumstances.
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