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Abstract

In this study, we present an algorithm in MATLAB to classify 8 dimensional non-abelian
nilsoliton metric Lie algebras with singular Gram matrices. With this algorithm, we can
compute Lie brackets, structure constants, index, rank and eigenvalues of the nilsoliton
derivation.

This paper can be considered as a follow up paper to our previous study [12]. In our
previous paper, we defined an algorithm that helps to classify algebras that admit simple
derivations and singular Gram matrices U. Since the Gram matrices are singular, there
exists infinitely many solutions to Uv = [1],,, where the solutions are exactly the structure
constants’ squares. In order the algebra to be a Lie algebra, the structure constants has to
satisfy the Jacobi identity. In our previous work, we did not present a methodology to classify
algebras that satisfy Jacobi identity. But in this paper, we extend the capability in such a way
that we are able to create and solve the Jacobi identity /identities with the help of computer
algorithms for each index set. Therefore we completely classify all indecomposible nilsolitons

in dimension 8. Several examples are provided for the illustration of the methodology.

1 Introduction

Symbolic computation is an area of mathematics which deals with developing, executing and
applying the algorithms to manipulate and analyze the mathematical expressions or other math-
ematical objects. It concerns with the formulation of algorithms to find mostly exact solutions of
symbolic mathematical problems and also concerns with the implementation of these algorithms
in terms of the operations and control structures available in computer algebra programming
languages such as MATLAB, GAP, Fortran etc. It is a useful tool since it does the computations
more productively and accurately than doing by hand, or does the computations that are almost

impossible to carry out by hand.
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Recently, symbolic computation methods have been used for Lie algebra theory which is
mostly result highly complex symbolic expressions that are very difficult to carryout without
the aid of computer algorithms. But introduction and implementation of new algorithms make
it possible to work with Lie algebras that are too big to deal with by hand. These days, most of
the fundamental objects occurring structure theory of Lie algebras can be constructed by com-
puter algorithms. For example, for a given algebra one can develop algorithms for constructing

quotient algebras, its centralizer, normalizer or minimal matrix representations etc.[4, 3, 7, 9, 21].

There are three methods to represent a Lie algebra and its related structures: Representing a
Lie algebra as a linear Lie algebra, i.e. subalgebra of gl(n), using table of its structure constants
or using generators and relations [7]. In this paper, we use the table of structure constants
related to a Lie algebra. We vary the Lie algebra structure by finding structure constants.
Namely we determine a Lie algebra n with a fixed basis {X; : 1 < i < n} explicitly by given

multiplication table, consisting of structure constants ozfj which are defined by the relations

X5, X5 = ol Xy (1)

In order to use computer algebra systems, we encode nonzero structure constants by using
index set A = {(3, 7, k‘)|a§j # 0,1 < j < k} ignoring repetitions due to skew-symmetry. While
indexing the structure constants, we use triples (i,7,k) € A such that i < j < k, and if
(i,4,k), (i,7,m) € A then k = m and (i,71,k), (4,72, k) € A then j; = jo. Therefore we fix a
basis { X1, ..., X;,} for a nilpotent Lie algebra n with [Xi, Xj] = > aijk # 0 such that for every
i, 7, #{k : ozfj # 0} < 1, and for every i, k,#{j : ozfj # 0} < 1. Such basis {X;} is called nice
and defined by Nikaloyevski in [16].

It is possible to define several different Riemannian metrics on Lie groups. Considering
any Riemannian metrics, Einstein metrics are the most preferable metric, as the Ricci tensor
complies the Einstein metric: Ric = cg for some constant ¢ € R. But, it is not possible to define
Einstein metrics on non-abelian nilpotent Lie algebras, therefore we consider the following weaker

condition on a left invariant metric g on a nilpotent Lie group G:

Ricy = BI+ D (2)

for some 8 € R and D € Der(n), where Ric, denotes the Ricci operator of (7, g), n is the
Lie algebra of G and Der(n) denotes the Lie algebra of derivations of 7. Equation 2 is called
nilsoliton condition, D is called nilsoliton derivation, and 3 is called nilsoliton constant.

Nilsolitons are an important topic in mathematics for several reasons. First, nilsoliton metric
Lie algebras are unique up to isometry and scaling. In [14], Theorem 2.11 states that a nilpotent
Lie algebra n is an Einstein nilradical if and only if n admits a nilsoliton metric. Therefore it
indicates that classification of nilsoliton metrics on a nilpotent Lie algebra is equivalent to the
same of Einstein nilradicals. On the other hand, an Einstein solvmanifold § can completely be
determined by the Lie algebra n = [d,d]. Therefore the study of solvmanifolds are actually the

study of nilsolitons. See [14] and [15] for a survey on nilsoliton metric Lie algebras.
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Nilsoliton metrics are classified in different dimensions by several approaches [2, 5, 8, 13,
14, 19, 22| and [16]. In dimension 7 and 8 with non-singular Gram matrix in [10] and also
dimension 7 in [5] and [6]. Also in [11] the ordered type of nilsoliton metrics in higher dimensions
were classified. In this paper, we classify 8-dimensinal nilsoliton metric Lie algebras with simple
nilsoliton derivation D corresponding to a singular Gram matrix. By using that any nilpotent Lie
algebra of dimension less than or equal to 6 is an Einstein nil-radical, and that all nilsoliton metric
Lie algebras are classified in dimension 7, by Theorem 2.2, one obtains that any decomposable
8-dimensional nilpotent Lie algebra is an Einstein nilradical and it is easy to give a nilsoliton
metric in each case; therefore we focus on studying indecomposable algebras.

This paper can be considered as a continuation paper to our last paper. In our last paper, we
defined an algorithm which prunes algebras with non-simple derivation and with non singular
Gram matrix [12]. But we have not considered the Jacobi identity. This paper takes care of
this issue. By this study, we complete the classification of nilsolitons in dimension 8, because
we have already classified 8 dimensional nilsoliton metric Lie algebras with simple derivation,
where the corresponding Gram matrix is nonsingular [10]. In dimension 8, the classifications of
such nilsoliton metric Lie algebras corresponding to a singular Gram matrix can be found in the

following theorem:

Theorem 1.1. Let (n,Q) be a 8-dimensional nilsoliton metric Lie algebra with nilsoliton deriva-
tion D having distinct positive eigenvalues. Suppose that the canonical Gram matriz U is sin-
gular. Then (n,Q) is homothetic to precisely one of the 8-dimensional nilsoliton Lie algebras

listed in Table I, Table II, Table III and Table IV.

Proof. The proof of Theorem 1.1 rely on a computational procedure implemented in the com-

puter algebra system Matlab. O

This paper consists of six sections. In the second section, we present preliminary background
to construct the symbolic computation algorithm. In the third section, we prove necessary
theorems that helps us to calculate structural elements of a nilsolitons with the help of the
algorithm. In fourth section, we present the algorithm, and give some examples to illustrate the
steps of it. In the fifth section, we present some remarks regarding to the computation results.
And in sixth section, we present the classification tables, and the notations with the several
examples.

The computational procedure was implemented using Matlab R2018a on Intel(R)Core(TM)
i3-5015U CPU at 2.10 GHz processor and 4 GB of RAM.

2 Preliminaries

Let (n,, Q) be a metric algebra , where u € A’n® n*. Let B = {X;}"; be a Q-orthonormal
basis of 7, (We always assume that basis are ordered). The nil-Ricci endomorphism Ric,, is
defined as < Ric, X,Y >=ric,(X,Y), where
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n n

1 1
ricu(X,Y) = -3 ) < [X, X[V, X] > + d <X X, X ><[X, XY > (3)
i=1 i=1

for X,Y € n (We often write an inner product Q(.,.) as < .,. >.). When 7 is a nilpotent Lie
algebra, the nil-Ricci endomorphism is the Ricci endomorphism. If all elements of the basis
are eigenvectors for the nil-Ricci endomorphism Ric,, we call the orthonormal basis a Ricci

eigenvector basis.

Let Der(n) denote the derivation algebra of n . A maximal abelian subalgebra of Der(n)
comprised of semisimple elements is called a maximal torus. The dimension of a maximal torus

is called the rank of n.

Let 17 be a nilpotent Lie algebra. The lower central series for the Lie algebra 7 is defined
by n° = n, and n* = [n,n*"!] for k > 1. If " = 0 and 5"~ # 0, then 7 is called an r— step
nilpotent Lie algebra, and r is called nilpotency index of the Lie algebra 7.

Suppose that A = {(¢, 7, k)|a§j # 0,1 < j < k} a finite set which indexes the set of nonzero
structure constants corresponding to a Lie algebra 7, ignoring repetitions due to skew-symmetry.
For 1 <i,j,k < n, we define 1 X n row vector yfj to be €/ + e? — €b, where {€} is the stan-
dard orthonormal basis for R™”. We call the vectors in {yfj|(z, J, k) € A} root vectors for A. Let
Y1, Y2, -, Ym (where m = |A|) be an enumeration of the root vectors in dictionary order. We
define root matrixz Y for A to be the m x n matrix whose rows are the root vectors yi, y2, ..., Ym.
The Gram matriz Uy for A is the m x m matrix defined by Uy = YAY; the (i, ;) entry of
Uy is the inner product of the i th and j th root vectors. From Theorem 5 in [18] we know
that U is a symmetric matrix where its all diagonal entries are 3 and its off-diagonal entries are
in the set {—2,—1,0,1,2}. Nikolayevski showed that every Lie algebra admitting a derivation
with all the eigenvalues of multiplicity one has a nice basis [16], we use this type of basis in our
classifications. This way our Gram matrices corresponding to metric nilpotent Lie algebras does

not have a 2 as an entree (Lemma 2 in [10]).

Now, suppose that |A| = m and [1],, represents a column vector [111..1]7 in R™.

Theorem 2.1. (Theorem 1 in[18]) Let n be a nonabelian metric algebra with Ricci eigenvector
basis B . Let U and [o?] be the Gram matriz and the structure vector for n with respect to B .

Then 1 satisfies the nilsoliton condition with nilsoliton constant 3 if and only if Ula?] = 26[1]m.

Above theorem indicates a Lie algebra 1 admits a nilsoliton metric iff there exists a solution

v € R™ of the Linear system Upv = [1],,, where all entries are positive real numbers.

Theorem 2.2. (See Theorem 7 in [17]) Let a nilpotent Lie algebra n be the direct sum of m
and n2. Then:
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(a) If D; are pre-Einstein derivations for n;, then D = Dy @ Dy derivation for n.
(b) The algebra n is an Einstein nilradical if and only if n; are Finstein nilradicals.
Now we present the theorems which helps to create possible Jacobi identity equations:

Theorem 2.3. ([18]) Let n be an n-dimensional vector space, B = {X;}I' | be a basis for n.
Suppose that a set of nonzero structure constants ozifj relative to B, indexed by A, defines a
skew symmetric product on n. Assume that if (i,5,k) € A, then i < j < k. Then the algebra
18 a Lie algebra if and only if whenever there exists m so that the inner product of root vectors
< yfj,yl"k‘ >= —1 for triples (i,7,1) and (I,k,m) or (k,l,m) in A, the equation

> ag ol +of ol + o ol =0 (4)

,] 7S,
s<m

l

holds. Furthermore, a term of form o ;o) is nonzero if and only if < yéj,yl"}€ >= —1.

Lemma 2.4. (Lemma 2.8 in [10]) Let n be an n-dimensional nonabelian nilpotent Lie algebra.
Suppose that n admits a derivation D having distinct real positive eigenvalues. Let B be a basis
consisting of eigenvectors for the derivation D, and let A index the nonzero structure constants
with respect to B. Let Y be the m x n root matriz for A. If rank(Y) = m, then the following
hold.

1. Al <n—1.

2. If (i1, j1, k1) € A and (i2, j2, k2) € A, then < yffjlyyffh ># -1
Theorem 2.5. (Theorem 3.2 in [12]) Let n be an n dimensional nonabelian nilpotent Lie algebra
which admits a soliton derivation D having distinct real positive eigenvalues, where n > 5.
Suppose that B is a basis consisting of eigenvectors for the derivation D, and A indexes the
nonzero structure constants with respect to B. If the corresponding Gram-matriz U is singular,

then |[A| > 5.

Considering Theorem 2.3 together with Lemma 2.4, one can see that the Jacobi identity is

always satisfied when rank of the root matrix is 8 and therefore the Gram matrix is non-singular.

3 Computing the Structural Elements of the Nilsolitons

In this section, we introduce theorem-like environments for providing algorithmic approach to
compute structural elements of the nilsoliton metric Lie algebras.

In order an algebra to be a Lie algebra, we need to satisfy the Jacobi identity. Using our index
set A, the corresponding Jacobi identity turns into the Equation 4. Also, in the Jacobi identity,
there has to be at least two product couples. Otherwise if there is one product couple in Jacobi

identity, it leads to o ;a"y = 0, therefore it contradicts the fact that (1,7,8), (s, k,m) € A.

In some cases, there can be more than two square root product couples in the Jacobi equation

4. In that case, we need to consider all the cases of the signs between the product couples a; ja;”k,

s . m
a; kas,i7

H and ay ;0. Following proposition deals with this matter.
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2k71

Lemma 3.1. If there are k product couples in the Jacobi identity, then there are —1 possible

stgn choices.

Proof. Suppose that there are ¢t product couples in the Jacobi identity for the same number m

in Equation 4 , and
Pm:{p17p27”'7pt : ps:a;ﬂ;a:«z,k, 1 SSSt} (5)

is the set of all product couples related to the Jacobi identity for m. Therefore the Jacobi
identity turns into p; F p2 F ... F pr = 0. Without loss of generality, we assume that p; > 0. For
each ps € Py, where 2 < s <t there are two possible sign choices {+, —}. Therefore we have
2!=1 possible sign choices. Since all the product couples are nonzero, then they can not all be
+. Therefore we drop the case (4,4, ..., +). Thus there are 2=! — 1 possible sign choices for
the set P,,. O

Sign Choices: By above lemma, if there are t product couples in the Jacobi identity for
same m, to encode those 2= — 1 number of sign choices we define a (2= — 1) x (¢ — 1) matrix
SC = [sjs] such that for each j € {1,2,...,271 — 1}

o 1 ps >0,
7 0 ps<0

The ;™ Jacobi identity is computed by p; + Zf;%(—l)sjipi = 0. Therefore each Jacobi identity
is of form p; F po F ... F pr = 0. For example, if there are 3 product couples, i.e.,if p; =
afll?jlaz’kl, p2 =i’ 12Oy jyr D3 = g’ 5 Ctus 15 cOtTesponds to an algebra 7, then the matrix SC

is as follows:

10
01
0 0
Possible Jacobi identities are
p1+ (=1)*1pe 4+ (=1)%2pg = 0
p1+ (1) py+ (=1)"2p3 = 0
pr+ (=1)®py+ (=1)*2p3 = 0.

In order n to be a Lie algebra, at least one of the above equations has to be satisfied.
Additionally, if there is more than one array of number m’s in equation 4 in the Theorem
2.3, then one needs to find common solutions of at least one Jacobi identity for each m. The
following example is........
The following proposition and its following corollary helps us to compute rank of a nilsoliton

metric Lie algebra.

Proposition 3.2. (See Proposition 4.7 in [20].) Let n be a nonabelian Lie algebra that admits

a simple derivation D. Let B = {Xi}]", be an eigenvector basis with index set , and let Y be
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the root matriz associated to . Then the rank of the nilsoliton metric Lie algebra n equals to the

nullity of the root matriz Y .

Corollary 3.3. Let n be a nonabelian n— dimensional Lie algebra that admits a simple deriva-
tion. Let B be an eigenvector basis with index set , and let Y be the root matriz associated to .
Then

rank(n) = n + nullity(YY") — |A|. (6)

Proof. Suppose that 7 is an n— dimensional non-abelian Lie algebra admitting a simple deriva-
tion. Let B be an eigenvector basis with index set where |A| = m, and let Y be the root matrix
associated to . By Proposition 3.2, the root matrix Y is an m X n matrix, whose nullity is
rank(n). Therefore, from rank-nullity theorem, rank(n) = n — Rank(Y). We also know that
rank(Y) = rank(YYT), therefore we have

rank(n) = n — Rank(YY7T).

On the other hand, YY7 is an m x m matrix. Therefore Rank(YY7T) = m — Nullity(YYT).

Then we have
rank(n) = n— (m— Nullity(YYT))
= n+4 NullityYYT) —|A|.
O

As a result of above corollary, and YY 7 = U, we compute the rank of nilsoliton metric Lie
algebra by rank(n) = 8 + nullity(U) — |A|.

Definition 3.4. Let X € n, adx denotes the adjoint representation and n* denotes the dual of
the Lie algebra m. Then the skew symmetric bilinear form Wy where f € n* is defined by

Ueinxn— R
(X,Y) - \Ilf(va) = f([va])

The index of a Lie algebra 1 is the integer inf{dimns : f € n*} where ny = ker(¥y) defined
by ny ={X en: f([X,Y]) =0,vy € n}.

Proposition 3.5. (see Proposition 4 in [1]) The index of a n-dimensional Lie algebra n is the
integer
indexy = n — Rankp ) ([Xi, Xj])1<ij<n (7)

where R(n) is the quotient field of symmetric algebra S(n).

Remark 3.6. Above proposition tells us that the index of a Lie algebra is the nullity of the
matriz E, = ([X;, X;]).
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Example 3.7. Suppose that A = {(1,2,3),(1,3,4),(2,3,5)}is the index set of an algebra n of

dimension 6. Its corresponding Gram matrix is

S O W
— W O
W — o

Since there is no —1 entry, n is a Lie algebra. The matriz E, is as follows

0 X3 X4y 000
—-X3 0 X5 000
-X4 —-Xs5 0 0 0 0

0 0 0 00O

0 0 0 00O

Its rank is 2, therefore index, = 4.

4 Algorithm

In our previous paper [12], we have eliminated the rows of W that correspond to a unique —1
inner product of root vectors, nonsingular Gram matrices, abelian algebras, and non-simple
derivations. We also have pruned some of the rows of W that correspond to algebras that does
not satisfy Jacobi identity in the 14th step of the algorithm. For each algebra in the row of W
matrix, we first obtain the array of number m’s in equation 4 in the Theorem 2.3. We call the
array as Arrayofms. Different number m’s correspond to different equations. Thus if there is a
unique m for A, there exists a unique couple of indexes {(i,7,1), (I, k,m)} or {(¢,7,1), (k,l,m)}
in A. For this m, the Jacobi identity is af;jalrz = 0 which implies that at least one of alij or ayp is
zero. This means the algebra does not satisfy Jacobi identity for positive ozfj structure constant.

We eliminate these cases in our algorithm. The following is an example of such case:

Example 4.1. Let A = {(1,2,3),(1,6,7),(3,4,7),(3,5,6),(3,6,8)}, then —1 entries are coming
from {(1,2,3),(3,4,7)}, {(1,2,3),(3,5,6)}, {(1,2,3),(3,6,8)} and {(1,6,7),(3,5,6)}. Then,
Arrayofms = {7,6,8,6} respectively. As can be seen, m = 7 is coming only from indexes
{(1,2,3),(3,4,7)}. So, corresponding Jacobi identity equation is a3y.alf, = 0. We eliminate this

case.

So far, we have eliminated the rows that correspond to zero structure constants. But this
does not eliminate the rows that does not correspond to a nilsoliton metric Lie algebra. What
we need to do is to compute Jacobi identity equation/equations-which are non-linear equations-
for each algebra, and find out if there exists a common solution to the system of non-linear
equations.

For this, we first start with dividing the W matrix in terms of its nullity type. The maximum
nullity is 5, therefore we need to create five sub matrices of W, W Nullityl to W Nullityb which

consist of the rows of W.
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Now we present the algorithm that we have used for our classifications.

Input: The input is the dimension.

Output: The outputs of this algorithm are: index set, eigenvalue of the nilsoliton derivation,
rank, step and the index of the Lie algebra, and structure constants of the nilsoliton metric Lie
algebra.

The main algorithm of this study is the following one:

Enter the dimension 7.

Compute Z matrix: The matrix whose rows are elements of the index set A.

Compute the root matrix Y and the Gram matrix U.

Use the algorithm in [12] to compute prunned W matrix.

Use Theorem 2.5 to eliminate the rows of W that corresponds to an index set A where |[A] < 5
Divide W into 5 submatrices in terms of nullity of Gram matrices.

For each submatrix, compute Arrayofms, subindex set A

Compute Sign table of each structure constant in Jacobi identity.

© ® X s @ r w b=

Compute Jacobi identity for each different entries in Arrayofms.

[
o

. Find common solution of Jacobi identities for each entree in Arrayofms.
11. Compute the rank, step, index and eigenvalues of the derivation of the Nilsoliton metric Lie algebra

If there is more than one entry in Arrayofms matrix, then we need to find a common solution

of Jacobi identities for each m.

Example 4.2. Let A = {(1,2,4),(1,4,5), (1,5,7), (2,3,6), (2,7,8), (3,6,8), (4,5,8)}, then m =
8, and the Jacobi identity is: \/4/9 —x\/1/3 —x — \/z\/T = 0 whose solution is © = 4/21.

Therefore A corresponds to a nilsoliton metric Lie algebra with corresponding structure constant

squares are as the following:

1

((a12)® (a1.4)* (a15)" (a3,5)% (03,7)% (a5,6)° (a5)°) = £5(12,21,16,14,9,14,12),

and the eigenvalues of nilsoliton derivation are D = %(2,4, 5,6,8,9,10,14). This nilsoliton

metric Lie algebra appears in row 75 of Table 2.

Now we give an example of an algebra with more than one entry in Arrayofms that does not

satisfy Jacobi Identity:

Example 4.3. Suppose that A = {(1,4,5),(1,5,6),(1,6,7),(2,7,8),(3,4,6),(3,5,7)}. Then
Arrayofms = [7 8], and the Jacobi identities are:

o form =17, /25/33 — x,/58/99 = /58/99/,
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o form =38, \/25/33 — x/19/33 —z = \/z — 1/19y/x
The solution to the first equation is x = 25/66, and the solution to the second equation is

x = 475/1331. Clearly no common solution to the Jacobi identities. Therefore the index set

does not correspond to a Lie algebra.

5 Remarks

Remark 5.1. After applying above algorithm, we find a counterexample of the reverse of Lemma
2.4. Therefore if non of the inner product of root vectors is —1 does not imply that the Gram
matriz of the nilsoliton is nonsingular. Additionally, if the kardinality of the index set |A| <
n — 1 does not imply that the Gram matriz is nonsingular. The following example is one of the

examples of this case.

Example 5.2. Suppose that n be an algebra which is indexed by the following index set:

A: {(17275)’ (]‘7376)7(1757 7)7(1’678)7(2’4’ 7)7(27578)7(37478)}' (8)
Its corresponding Gram matriz is as follows.
3101100
1310001
0131110
1013 011 (9)
1010311
0011131
0101113

It is a singular matriz with nullity = 1. Also, it does not have —1 entry. From Theorem 2.3, it
is a Lie algebra. Also, since the solution space of Uwv = [1] is {v = (t +1/19,6/19 —¢,¢,5/19 —
t,5/19—1¢,3/19,t)|0 < t < 5/19} from theorem ... in [18] that it is a nilsoliton metric Lie algebra
with the magnitudes of the structure constants |of 5| =t +1/19, |af 5| = 6/19 —t, \0415\ =t,
|04513,6| =5/19 —t, ]0&4\ =5/19 — ¢, |a§75| = 3/19 and ]a§74| =t with simple derivation of type
7<10<13 <14 <17 <20 < 24 < 27 with singular Gram matriz U and |[A| =n —1. We have
two examples of this type which appear #63 in Table 2, and #112 in Table 3.

Remark 5.3. After running the algorithm, we could not find any 2-step nilpotent Lie algebra
with soliton metric in dimension 8 where the corresponding Gram matrices are singular. As we
combine this result with the results of our previous paper [10], we conclude that there is no 2-step

nilpotent Lie algebra endowed with a soliton metric in dimension 8.

6 Classifications

Classification results for dimensions 8 appear in Table 1 , Table 2 and in Table 3. By this

classification, we complete all nilsoliton metric Lie algebras with simple nilsoliton derivation in
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dimension 8. Please note that the Lie algebras appear in Table 1 and Table 2 are the ones whose
nullity of the Gram matrix is 1. We use vector notation to represent Lie algebra structures, as
we did in [10] and [11].

Notation:

1. Lie Bracket column illustrates both structure constants and how Lie bracket functions
on a given ordered eigen-vector bases {Xi}le. In the following, we give an example to

illustrate how to read the tables in this section:

Example 6.1. In table 2, line 118, Lie bracket type:

(0,0,2v/3.12,0,2v/5.13,1/15.15, 2v/3.24, 2¢/3.26 + v/15.35) (10)

shows structure constants together with Lie bracket as follows:

(X1, X2 = V3X3, (X1, X3] = V5X5, (X1, X5] = V15X, (11)
(X2, X4] = V/3X7, (X2, X6] = v/3Xs, [X3, X5] = V15 X5

The eigenvalues of the nilsoliton derivation are ﬁ(l& 24,37,48,50,63,72,87). Therefore
the nilsoliton is of type 13 < 24 < 37 < 48 < 50 < 63 < 72 < 87.

2. AoM shows how many Jacobi identities that the Lie algebra satisfies. This is encoded as
arrayofms matrix which consists of the distinct entries from Arrayofms as we define in
Section 2. For example in Table 2, #77, AoM is 2, because there are two entries in the
arrayofms matrix [7, 8], which means that the number m’s in the Equation 2.3 are 7

and 8. Therefore there are two Jacobi identities as the following: For m = 7, the Jacobi

\/_x\/_xZ\/ 3 (12)

and for m=8, the Jacobi identity is

in which both is satisfied for + = 2/5. Therefore since Jacobi identity is satisfied, it

identity is

is a Lie algebra. On the other hand, this solution leads to the squares of the struc-

ture constants vector v = (i, %, %, %, %, %) As can be seen all of the elements of the

vector are positives. Thus the Lie algebra is nilsoliton. With the rescaling we have

(0,0,0,v/15.12,2v/5.14,/15.15, 21/6.26 4 21/6.45, 6.37).

3. The E/VPA column, the letter E shows that the solution of the Jacobi identity is exact.
VPA shows that the solution is approximated using VPA (Variable-precision arithmetic).
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Please note that VPA evaluates each element of the symbolic input x to at least 32 sig-
nificant digits. There is also — symbol appears in #63 in Table 2, and #112 in Table
3, meaning that there is no —1 entry in their Gram matrix, therefore there is the Jacobi
identity is always satisfied for any number such that all entries of the solution are positive

numbers.

. The Rank column illustrates the dimension of maximal torus of derivations.
. The Index column illustrates the index of the Lie algebra.

. The NI column illustrates the nilpotency index of the Lie algebra, i.e. the length of the

lower central series for the Lie algebra.
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Lie Bracket Derivation AoM | E/VPA | Rank | Index | NI
1 (0,0,0,0,v/414.13,/260.14 + v/391.23,/529.15 + v/338.24, /430.17 + 1/559.26 + v/138.35) 1u<13<22<25<32<33<40<50 1 E 1 2 4
2 (0,0,0,1.13, 1.23, 1.14, 1.16+1.25+1.34, 1.27+1.45 ) P e e 1 VPA |1 2 5
3 (0, 0,0, 1.13, 1.14, 1.34, 1.15+1.23, 1.17+1.24+1.35) 4<42 <53 <57 <96 <105 < 120 < 164 1 VPA 1 2 5
4 (0,0,0,1.13, 1.14, 1.15, 1.16+1.23,1.27+ 1.36+1.45) 1<4<5<6<7<8<9<13 1 VPA 1 2 6
5 (0,0,0,v162.13,v/33.12,/99.15 + v/135.23, /77.14 + v/110.25, /168.16 4 /140.24) 32 <43 <54 <66<75<87<88<119 1 E 1 4 4
6 (0,0,0,v45.13,v/6.12, v/40.14 + /19.23, /42.25 + /22.34, V/45.16 + v/19.24) 46 < 60 < 82 < 86 < 106 < 121 < 125 < 167 1 E 1 2 4
7 (0,0,0,v/31.13,2.12,3v/2.14 + 5.23, V/14.15 + 2¢/5.34, v/31.16 + 5.24) 32 <44 <53 <65 <76 <87 <8 <119 1 E 1 4 4
8 (0, 0,0, 1.12, 1.13,1.23, 1.15+1.24, 1.27+1.36+1.45) 2<3<4<5<6<7<8<11 1 VPA 1 2 4
9 (0,0,0,1.12, 1.13, 1.14+1.23, 1.24, 1.27+1.36+1.45) 2<3<4<5<6<7<8<11 1 VPA 1 2 4
10 | (0,0,0,1.12, 1.13, 1.14+1.23, 1.15+1.24, 1.47+1.56) 2<3<4<5<6<7<8<13 1 VPA 1 2 4
11| (0,0,0,1.12, 1.13, 1.14+1.23, 1.15+1.24, 1.37+1.46) 2<3<4<5<6<7<8<12 1 VPA 1 2 4
12| (0,0,0,v/755.12,+/750.13, V1701.14 + /258.23, /1782.15 + /1075.24, v/1911.27 + /2002.36) 2<3<4<5<6<7<8<11 1 E 1 2 4
13 (0,0,0,v168.12,v/162.13,v/99.14, \/7.15 + /110.24, v/33.16 + /140.25 + 1/135.34) 2<3<4<5<6<7<8<9 1 E 1 2 4
14 | (0,0,1.12,0, 1.14, 1.15, 1.16+1.23, 1.27+1.36+1.45) 44 < 203 < 247 < 318 < 371 < 406 < 468 < 680 1 VPA 1 2 5
15 | (0,0,V/11685.12,0,v/13596.13, v/16480.23, v/20188.15 + /7885.24, vV13653.17 + v/12566.26 + 1/9213.34) 2<‘3<5<6<7<8<0<11 1 E 1 2 5
16| (0,0, 1.12,0, 1.13, 1.14+1.23, 1.15+1.24, 1.47+1.56) < B < S B < S < Bl < BT 3 VPA |1 2 5
17 (0,0, /14820.12,0, \/15774.13, v/7885.14 + /19120.23, \/23422.15, /6692.17 + /22464.26 + v/11952.34) | 2 <3 <5<6<T <8 <9< 11 1 E 1 2 5
18 (0,0,+/1020.12,0, v/5610.13, v/3071.14 4 1/6800.23, v/8330.15 + /3984.24, \/6364.17 + 1/8256.26) 2<3<5<6<T7T<8<9<11 1 E 1 4 5
19 | (0,0,v/1533.12,0,/3120.13, v/1022.14 + /2720.23, /1533.15 + v/1460.24, \/2574.16 + 1/2244.25) 2<3<5<6<7<8<9<10 1 E 1 4 5
20 | (0,0,v/53.12,1/82.13,0,2v/3.15,/53.14 + /34.25, v/55.27 + 1/55.34 + 1/38.56) 10 < 39 < 49 < 78 < 87 < 116 < 126 < 184 1 E 1 2 5
21 (0,0,v/11448.12,1/12935.13, 0, v/5771.15, v/9646.14 + v/6766.23, v/10044.27+1/8463.34++/10945.56) 3 <61 <64<122<174 <232 <235 < 351 1 E 1 2 5
22| (0,0,1.12, 1.13, 1.23, 1.14, 1.164+1.25, 1.37+1.46) =< f;,ﬂ <HE <M <B U B |1 VPA |1 2 6
23 | (0,0,1.12, 1.13, 1.23, 1.14, 1.164+1.25, 1.27+1.36) P < aw < S < B < 2L < B < %f <#E 1 VPA |1 2 6
2|00/ BB 12 s [, R a6 (o5 [EEEE 6 [ B sy | B B lmonm e i m i |1k o2 s
25 | (0,0,1.12, 1.13, 1.14, 1.15, 1.23, 1.27+ 1.36+1.45) 1<4<5<6<7<8<9<13 1 VPA 1 2 6
*26 | (0,0, 1.12, 1.13, 1.14, 1.15, 1.1641.23, 1.47+1.56) 1<4<5<6<7<8<9<15 1 VPA 1 2 7
*27 | (0,0, 1.12, 1.13, 1.14, 1.15, 1.16+1.23, 1.37+1.46) 1<4<5<6<7<8<9<14 1 VPA 1 2 7
*28 | (0,0, v/621.12, v/5736.13, v/6270.14, v/3889.15, \/4824.16 + v/4565.23, /7409.27 + /6231.45) 1<4<5<6<7<8<9<13 1 E 1 2 7
29 | (0,0,v/26.12,V/31.13,1/30.14,4.15, VI1.16 + v/11.23, /26.25 + v/30.34) 1<4<5<6<7<8<9<1l 1 E 1 2 6
**30 | (0,0,v/603.12, v/1995.13, v/1943.14, v/2680.15, \/1742.16+ 1/2695.23, \/1824.17+ /2464.24) 1<4<5<6<7<8<9<10 1 E 1 4 7
**31 | (0,0,0,0,v/238.14, v/253.23, v/253.15+ /84.34, V/153.17+ v/230.26+ /54.35) 11 <18 <22 < 25 < 36 <40 < 47 < 58 1 E 2 2 4
32| (0,0,0,0,1.13, 1.24, 1.15+1.34, 1.27+1.36) 11<13<16<22<27<35<38<51 1 VPA 3 2 4
33 | (0,0,0,0,1.13, 1.23, 1.15+1.34, 1.27+1.46) 11<15<16<22<27<31<38<53 1 VPA 3 2 4
34 1(0,0,0,0,6.13,v/30.23,v/22.15 + v/22.24,/30.16 + 5.25) 5F<6<7<11<12<13<17<18 1 E 3 4 4
35 | (0,0,0,0,v2.13, v2.15 + 1.23, v2.24 , V/2.16 + 1.25 2<4<5<6<7<9<10<11 1 E 3 4 4
36 | (0,0,0,0,3.13,2v/2.15 + 2.23,2v/2.24 + 2.35,3.16 + 2.25) 6<12<19<24<25<35<40<49 1 E 2 2 4
37 1 (0,0,0,0,v/7.13,0,2v/2.14 + /7.23,3.17 + 3.25 + 1/2.36) 5<8<10<13<15<17<20< 27 1 E 3 2 3
38 | (0,0,0,0,2.13, v/5.23, 2.14, 2.16++/5.25) 8<10<11<16<19<21<24<29 1 E 4 4 3
39 | (0,0,0,0,/30.13,v/22.14 + 5.23,1/22.24,6.16 + v/30.25) 5<6<8<9<13<14<15<19 1 E 3 4 3
40 | (0,0,0,0,v/21.13,2v/5.14 + v/14.23, V/11.24 + V/21.35, 3v/3.16 + 31/2.25) 17 <21 < 50 < 54 < 67 < 92 < 96 < 151 1 E 2 2 3
41 | (0,0,0,0,3.13, V1414, V14.16 4 2/3.23, 2v/3.17 + 4.25) 2<5<6<T<8<9<11<13 1 E 3 4 4
42 (0,0,0,0,v/21.13,4v/2.14,/22.16 + v/29.23, /2117 + /29.25 + /22.46) 10<18<33<42<43<63<73<94 1 E 2 2 4
43 | (0,0,0,0,1.13, 1.14+1.23, 1.15+1.34, 1.27+1.46) 34 <49 < 53 < 68 < 87 < 102 < 121 < 170 1 VPA 2 2 4
441 (0,0,0,0,3v2.13, VI1.14 + v/22.23, 2V/7.15+ V14.24, v/22.17+ 2V/7.26) 10 <15 <23 <28 <33<38<43<53 1 E 2 4 4
45 | (0,0,0,0,3v/3.13,v14.14 + v/23.23, V14.15 + 4.24, 3/3.16 + /23.25) 10<15<18<23 <28<33<38<43 1 E 2 4 3
46 | (0,0,0,13, 0, 15, 14423, 17+24+56) 3<6<12<15<21<32<34<45 1 E 2 2 4
47 | (0,0,0,1.13, 1.23, 1.14, 1.25+1.34, 1.17+1.36) 72 < 83 < 94 < 166 < 177 < 238 < 260 < 332 1 VPA 2 2 4
48 | (0,0,0,V/1794.13, V/1353.14, v/1640.34, v/2009.15 + /1404.23, \/1978.17 + +/1548.24) 11 < 73 < 107 < 118 < 169 < 185 < 220 < 311 1 E 2 4 5
49 (0,0,0,//819.13, /828.14,1/975.23, v/805.15++/253.34, 3/70.164 5v/30.24 34 < 82 < 90 < 124 < 169 < 183 < 203 < 239 1 E 2 4 4
50 (0,0,0,1/22.13, 2/7.14,2v/7.23, 3v/2.15+1/22.26, V11.164 v/14.24 8 <23 <37<45<97 <104 <105 < 134 1 E 2 4 4
51 (0,0,0,1.13,1.14, 1.15, 1.16,1.27+1.36+ 1.45) 10 < 123 < 133 < 143 < 153 < 163 < 173 < 296 1 VPA 2 2 6
52 | (0,0,0,V/21.13,v/22.14, 4V/2.15,/22.16 + /29.23, v/21.17 + 1/29.24) 5<20<22<27<32<37<42<47 1 E 2 4 6
53 | (0,0,0,0,v19.12, v/22.23, v24.15+ V13.24, V19.17+ v/22.36 + 1/19.45) 18 <22 <27 <36 <40 <49 <58 < 76 1 E 2 2 4
54 | (0,0,0,0, 1.12, 1.14+1.23, 1.25+1.34, 1.37+1.56) 19 <20 <29 <30 <39<49<59<88 1 VPA 2 2 4
55 | (0,0,0,0,1.12, 1.14, 1.25+1.34, 1.17+1.36) 32 <45 < 59 <63 <77 <95< 122 < 154 1 VPA 3 2 4

Table 1: 8-dimensional nilsoliton metric Lie algebras-Nullity 1
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56 (0,0,0,0,1.12, 1.14+1.23, 1.25+1.34, 1.17+1.36) 71 <90 < 116 < 135 < 161 < 206 < 251 < 322 | 1 VPA 2 2 4
57 (0,0,0,0,/2.12,v/2.14 + 1/2.23,/2.24,1/3.16 + /3.35) 5<6<7<8<11<13<14<18 1 E 3 2 3
58 (0,0,0,0, 1.12, 1.14, 1.164+1.25+1.34, 1.17+1.36) 29 < 45 < 58 < 61 < 74 < 90 < 119 < 148 1 VPA 2 2 4
59 (0,0,0,0,2.12,/3.14 4 2.23,v/2.15 + /3.24,1/5.16 + /5.35) 8<11<13<16<19<24 <27 <32 1 E 2 2 3
60 (0,0,0,0, 1.12, 1.13, 1.16+1.25+1.34, 1.27+1.56) 71 <79 < 87 <142 <150 < 158 < 229 < 308 | 1 VPA 2 2 4
61 (0,0,0,0,3v/3.12, 3v/3.13, v/14.16+ 4.254++/14.34, /23.26+ 1/23.35) 27 < 28 <29 < 54 < 55 < 56 < 83 < 84 1 E 2 2 3
62 (0,0,0,0, 1.12, 1.13, 1.1541.24, 1.37+1.56) 5<6<7<10<11<12<16<23 1 VPA 3 2 4
63 (0,0,0,0, 1.12, 1.13, 1.154+1.24, 1.16+1.25+1.34) 7T<10<13 <14 <17 <20 < 24 < 27 0 - 2 2 3
64 (0,0,0,0,3v/2.12,3v/2.13, 3v/2.14 + 1/10.23, /21.27 + 4.36 + v/21.45) 46 < 51 < 56 < 61 < 97 < 102 < 107 < 158 1 E 2 2 3
65 (0,0,0,+/2.13,/2.12,0,2.15 4+ v/2.23,v/3.17 + /3.24 + v/2.36) 7<9<14<15<16<18 <21 <26 1 E 2 2 4
66 (0,0,0,2+/5.13,3.12,3v/2.25,3v/2.15 4 4.23,5.17 + 21/5.24) 6<7<10<12<13<14<15<21 1 E 2 4 4
67 (0,0,0,1.12,0,2v/3.15 4+ 1.23,v/15.16 + 1/15.34,1/22.27) 5<7<11<12<13<18<23<30 2 E 3 2 4
68 (0,0,0,3.12,0,3.23,21/2.14,/7.16 4+ v/2.25 + /7.34) 7T<9<11<16<18<20<23 <27 1 E 3 2 3
69 (0,0,0,1.12, 1.23, 1.14, 1.16+1.35, 1.27+1.46) 30<32<45 <62 <77<92<122< 154 1 VPA 2 2 5
70 (0,0,0,+/3.12,0,2.14,2.16 + v/3.23, /3.17 + /2.25 + /3.34) 2<5<6<T7T<8<9<11<13 1 E 2 2 5
71 (0,0,0,1.12, 1.23, 1.14, 1.16+1.25, 1.17+1.45) T4 < T7T< 145 < 151 <222 < 225<299 < 373 | 1 VPA 2 2 5
72 (0,0,0,1.12,0,1.14 4 1.23,1.15 + 1.24,1.37 + 1.46) 51 <70 <102 <121 <140 < 172 <191 <293 | 1 VPA 2 2 4
73 (0,0,0,v/5.12,0,v/3.14 4+ 2.23,/2.15 + 1/3.24,1/5.16 + 2.34) 7<10<14<17<20 <24 <27 <31 1 E 2 4 4
74 (0,0,0,6v/10.12, v/624.23,\/574.14, v/255.15 + 1/442.34, v/451.16 4+ /651.25) | 19 < 24 < 33 < 43 < 57 < 62 < 76 < 81 1 E 2 2 4
#k75_11 | (0,0,0,2v/3.12,1/21.14,1/14.23,4.15,3.27 + /14.36 + 21/3.45) 2<4<5<6<8<9<10< 14 1 E 2 2 5
76 (0,0,0,1.12, 1.14, 1.23, 1.15+1.24, 1.37+1.46) 45 <90 <98 < 135 < 180 < 188 <225 <323 | 1 VPA 2 2 5
77 (0,0,0,v/15.12, 2v/5.14,v/15.15, 21/6.26 + 21/6.45, 6.37) 10<21<24<31<41<51<72<96 2 E 3 2 6
78 (0,0,0,1.12, 0, 1.13, 1.16+1.25, 1.27+1.46) 10<14<19<24<25<29<39<53 1 VPA 3 2 4
79 (0,0,0,v/5.12,+/5.13,2.24,/13.25 4+ 1/13.34, 31/2.17) 5<8<10<13<15<21 <23<28 2 E 3 2 4
80 (0,0,0,1.12, 1.13,0, 1.154 1.24,1.27+1.36 + 1.45) 8§ <13 < 18<21 <26<29<34<47 1 VPA 2 2 4
81 (0,0,0,1.12, 1.13, 1.23, 1.15+1.24,1.37 + 1.46) 69 <77 <85 < 146 < 154 < 162 <223 <308 | 1 VPA 2 2 4
82 (0,0,0,1.12, 1.13, 1.23, 1.15+1.24, 1.27+1.45) 25 < 41 < 57 < 66 < 82 < 98 < 107 < 148 1 VPA 2 2 4
83 (0,0,0,v/5.12,1/2.13,1/5.23,2.15 + 2.24,1/5.16 + /5.34) 5<6<7<11<12<13<17<18 1 E 2 4 3
84 (0,0,0,1.12, 1.13, 1.15, 1.24, 1.2641.45) 21 < 47 < 61 < 68 < 82 < 103 < 115 < 150 1 VPA 3 2 4
85 (0,0,0,1.12, 1.13, 1.15+1.24, 1.35, 1.26+1.45) 13 <15 <17 <28 <30 < 43 < 47 < 58 1 VPA 2 2 4
86 (0,0,0,1.12, 1.13, 1.15+ 1.23, 1.24+ 1.37+ 1.46) 11 <22 < 31 < 33 <42 <53 <55< 86 1 VPA 2 2 4
87 (0,0,0,1.12, 1.13, 1.15+1.23, 1.24, 1.26+1.45) 22 < 44 < 57 < 66 < 79 < 101 < 110 < 145 1 VPA 2 2 4
88 (0,0,0,//6.12, 3.13, v/10.15, v/10.24, /5.16+ 2.25+ /6.34) 2<4<5<6<7<9<10<11 1 E 2 2 3
89 (0,0,0,v/6.12,/5.13,1/10.15 + 2.23,1/10.24,3.16 4 1/6.34) 2<4<5<6<T7T<9<10<11 1 E 2 4 4
90 (0,0,0,1.12, 1.13, 1.15, 1.16+1.24, 1.26+1.45) 3<8<10<11<13<16<19<24 1 VPA 2 2 4
91 (0,0,0,v/21.12,/29.13,41/2.15,1/22.16 + /22.24,/21.25 + 1/29.34) 17<37<40 <54 <57 <T74<91 <94 1 E 2 2 4
92 (0,0,0,3.12,/7.13,1/2.23,2v/2.14, 3.25 + /7.34) 7<9<11<16<18<20<23<27 1 E 3 4 3
93 (0,0,0,+/2.12,1/7.13,3.23,21/2.14,/7.16 + 3.25) 7<9<11<16<18<20<23<27 1 E 3 4 3
94 (0,0,0,1.12, 1.13, 1.14, 1.24, 1.3641.45) 25 < 45 < 59 < 70 < 84 < 95 < 115 < 154 1 VPA 3 2 4
95 (0,0,0,1.12, 1.13, 1.14, 1.24, 1.2741.36+1.45) 8 <13 <18 <21 <26<29<34<47 1 VPA 2 2 4
96 (0,0,0,1.12, 1.13, 1.14, 1.23, 1.3641.45) 22 <49 <50 <71 <72 <93 <99 < 143 1 VPA 3 2 4
97 (0,0,0,1.12, 1.13, 1.14, 1.23, 1.27+1.36+1.45) 8§<16<17<24<25<32<33<49 1 VPA 2 2 4
98 (0,0,0,1.12,1.13,1.14-+1.23,1.24,1.36+1.45) 20 < 45 < 58 < 74 < 87 < 103 < 119 < 161 1 VPA 2 2 4
99 (0,0,0,5.12,2+/5.13,3v/2.14, 3v/2.24, 3.16 + 21/5.25 + 4.34) 4<5<8<9<12<13<14<17 1 E 2 2 4
100 (0,0,0,1.12, 1.13, 1.14, 1.16, 1.3641.45) 14 <57 <58 <71 <72 <85 <99 < 143 1 VPA 3 2 4
101 (0,0,0,1.12, 1.13, 1.14, 1.16+1.35,1.27+ 1.46) 64 < 110 < 119 < 174 < 183 < 238 < 302 < 412 | 1 VPA 2 2 5
102 (0,0,0,2v/3.12, 3.13, V14.14, v/14.16, 4.25+2/3.34) 2<5<6<7<8<9<11<13 1 E 3 2 4
103 (0,0,0,1.12,1.13,1.14,1.1641.24,1.3741.56) 5<10<13<15<18 <20 <25< 38 1 VPA 2 2 5
104 (0,0,0,1.12, 1.13, 1.14, 1.16+1.24,1.36+ 1.45) 45 < 90 < 116 < 135 < 161 < 180 < 225 < 226 | 1 VPA 2 2 4
105 (0,0,0,4/819.12, v/630.13, 6+/23.14, /805.16 + 1/253.24, v/975.25++/750.34) | 45 < 90 < 119 < 135 < 164 < 180 < 225 < 254 | 1 E 2 2 4

Table 2: 8-dimensional nilsoliton metric Lie algebras-Nullity 1-Continued
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Lie Bracket Derivation AoM | E/VPA | Rank | Index | NI
106 (0,0,0,1.12, 1.13, 1.14, 1.16+1.23,1.36+ 1.45) 10 < 29 < 30 < 39 < 40 < 49 < 59 < 79 1 VPA 2 2 4
107 (0,0,0,//7.12, v/7.13, V/15.14, v/15.15 + v/10.24, /17.27++/17.36) 8 <13 <18 <21 <26<29<34<47 1 E 2 2 4
108 (0,0,0,3+/3.12,3+/3.13,/14.14, v/14.15 + 4.24,1/23.25 + /23.34) F<7<9<12<14<17<19<21 1 E 2 4 3
109 (0,0,0,1.12, 1.13, 1.14, 1.15+1.23, 1.4741.56) 5<10<12<15 <17 <20 <22 < 37 1 VPA 2 2 4
110 (0,0,0,1.12,1.13,1.14,1.15+1.23,1.27+1.45) 8§<16<17<24<25<32<33<49 1 VPA 2 2 4
111 (0,0,0,v/5.12, v/5.13, v/19.14, V/17.15 + v/6.23, v/19.27+/17.36) 8<16<17<24<25<32<33<49 1 E 2 2 4
112 (0,0,0,12,13,14,15-+23,16+24) 5<10<14<15<19<20<24<25 0 - 2 4 4
113 (0,0,3.12,0,1/21.23, v/14.14, \/14.16 + 21/3.25,2/3.17 + 4.35) 2<3<5<7<8<9<11<13 1 E 2 4 5
114 (0,0,1.12, 0 ,1.14, 1.15, 1.16, 1.27+1.36) 2<22<24<25<27<29<31<53 1 VPA 3 2 5
115 (0,0,1.12, 0 ,1.14, 1.15, 1.16+1.23, 1.2741.36) 3<13<16<20<23<26<29<42 1 VPA 2 2 5
116 (0,0,1.12, 0 ,1.13, 1.23, 1.15+1.24, 1.37-+1.46) 13 <22 <35 <39 <48 < 57 <61 <96 1 VPA 2 2 5
117 (0,0,,/287.12,0, v/528.13, \/456.23, v/287.15 + /246.24, \/374.16++/323.25) 15 < 19 < 34 < 45 < 49 < 53 < 64 < 68 1 E 2 4 4
118-25 | (0,0,2v/3.12,0, 2v/5.13, v/15.15, 21/3.24, 21/3.26++/15.35) 13 <24 <37 <48 <50 < 63 < 72 < 87 1 E 3 4 5
119 (0,0,+/5.12,0,4.13,/5.15 4 2v/7.24, v/35.26 + 1/35.35,1/46.17) 11<13<24<33<35<46<59<70 2 E 2 2 6
120 (0,0,+/46.12,0,6+/5.13,/161.15 + 1/96.23, /161.24, 1/165.16 + 1/88.25) 7T<14<21<24<28<35<38<42 1 E 2 4 5
121 (0,0,1.12, 0 ,1.13, 1.15, 1.16+1.24, 1.37-+1.56) 5<13<18<20<23<28<33<51 1 VPA 2 2 6
122 (0,0,1.12, 0 ,1.13, 1.15, 1.16+1.24, 1.27-+1.36) 5<11<16<20<21<26<31<42 2 VPA 2 2 6
123 (0,0,2+/6.12,0,2+/10.13,/31.15,2.16 + 2/6.24, 2/6.26 + /31.35) 25 < 52 < 77 < 100 < 102 < 127 < 152 < 179 1 E 2 2 5
124 (0,0,+/3.12,0,2v/2.13,2v/7.15 + /3.24,1/33.16 + /33.34, 5/2.27) 9<17<26<27<35<44<53<70 1 E 2 2 6
125 (0,0,v/22.12,0,/30.13,6.23,1/22.14, 5.16 + 1/30.25) 4<5<9<11<13<14<15<18 1 E 3 4 4
126 (0,0,v/14.12,0,3+/3.13,/14.14 + 1/23.23, 4.24, 31/3.16 + /23.25) 20 < 23 < 43 < 46 < 63 < 66 < 69 < 86 1 E 2 4 4
127 (0,0,1.12,0, 1.13, 1.14, 1.16+1.23, 1.37+1.56) 2<5<7<8<9<10<12<19 1 VPA 2 4
128 (0,0,v/253.12,0, /630.13, /828.14, v/805.16 + v/819.23,5v/30.17 + /975.25) 37 <90 <127 <143 <164 < 180 < 217 < 254 | 1 E 2 4 4
129 (0,0,2v/6.12, 0, 24/10.13, 2.14, 2¢/6.15 + 21/6.24, v/31.27++/31.35) 32 <45 <77 <96 < 109 < 128 < 141 < 186 1 E 2 2 5
130 (0,0,v/442.12,0,/451.13,1/255.14 + v/451.23, v/574.15, 1/624.26 + 61/10.34) 17<22<39<44 <56 <61 <73<83 1 E 2 2 4
131 (0,0,4.12,0,3v/3.13,v/14.14,/14.15 + 31/3.23,/23.17 + /23.25) 7T<14<21<27<28<34<35<42 1 E 2 4 5
#5132 | (0,0,3.12,v/14.13,0,0,3.14 + v/6.25,3.27 + 3.34 + v/6.56) 2<6<8<13<15<18<21<30 1 E 2 2 5
##133 | (0,0,1/10925.12, v/16709.13, v/5642.23, /14030.14, 11718.25, v/9690.26+1/12444.34) | 65 < 82 < 147 < 212 < 229 < 277 <311 <359 |1 E 2 4 5
134 (0,0,2+/3.12,4.13,0,2v/3.14,2.15,/13.26 + 1/13.34) 8<27<35<43<48<51<56<78 1 E 3 2 5
135 (0,0,2.12,v/5.13,0,2.14, 1.15 4 1.23,2.26 + 2.34) 3<8<11<14<16<17<19<25 1 E 2 2 4
136 (0,0,6v/2.12, v/85.13, 0, 8.14+ /34.23, v/34.15, 9.26+ 6/2.34 ) 4<8<12<16<17<20<21 <28 1 E 2 2 5
137 (0,0,+/209.12, v/126.13, 1/209.14, v/88.23,1/259.35, \/72.17 + 1/148.45) 3<32<35<38<41<67<76<T79 2 E 2 2 6
138 (0,0,3/13.12, 4.13, v/13.14, 2.23, v/29.25+ 1/29.34, 1/34.17 ) 1<4<5<6<T<9<11<12 2 E 2 2 6
*139 | (0,0,v/3.12, 2.13, v/3.14, 3v/3.25+ 31/3.34, v/38.16, 21/5.17 ) 1<20<21<22<23<43 <44 <45 2 E 2 2 7
140 (0,0,/11.12, /21.13, v/21.14, 3v/3.23, 2¢/5.15, V/14.16+ 3v/2.24 ) 19 < 50 < 69 < 88 < 107 < 119 < 126 < 138 1 E 2 4 5
141 (0,0, 1.12, 1.13, 1.14, 1.15, 0, 1.274+1.364+1.45 ) 7T<14<21 <27<28<34<35<42 1 VPA 2 2 6
142 (0,0, 1.12, 1.13, 1.14, 1.15, 1.23, 1.364-1.45 ) 23 < 139 < 162 < 185 < 208 < 231 < 301 < 393 | 1 VPA 2 2 6
143 (0,0, 1.12, 1.13, 1.14, 1.15, 1.23, 1.264+1.35 ) 1<4<5<6<7<8<9<12 1 VPA 2 2 6
*144 | (0,0, 1.12, 1.13, 1.14, 1.15, 1.16, 1.37+1.46 ) 2<TI<T3<T5<TT<T79<8l<154 1 VPA 2 2 7
*145 | (0,0,v/184.12,/3876.13, /3195.14, \/1804.15, /3366.16, v/4218.27 + 1/3663.45) 10 <123 < 133 < 143 < 153 < 163 < 173 < 296 | 1 E 2 2 7
146 (0,0, 1.12, 1.13, 1.14, 1.15, 1.16, 1.27+1.36 ) 10 < 123 < 133 < 143 < 153 < 163 < 173 < 296 | 1 VPA 2 2 7
147 (0,0, 1.12, 1.13, 1.14, 1.15, 1.16, 1.264+1.35 ) 4<29<33<37<41<45<49< 74 1 VPA 2 2 6
148 (0,0,8.12,/85.13,61/2.14,/34.15, /34.16, 61/2.25 + 9.34) 2<11<13<15<17<19< 21 <28 1 E 2 2 6

Table 3: 8-dimensional nilsoliton metric Lie algebras-Nullity 1-Continued 2




REFERENCES 17

Lie Bracket Derivation AoM | E/VPA | Rank | Nullity | Index | NI
1 1(0,0,0,v6.13,v/5.14 + v/5.23,v/5.34,/6.15 + v/5.24,/6.17 + 1/6.25) 2<4<14<16<23<25<35<37) 2 E 2 2 2 5
2 1(0,0,0,1.13,1.14, 1.15, 1.26+1.35,1.17+1.3641.45), 1<11<12<13<14<15 <26 < 27 2 VPA 1 2 2 6
3 | (0,0,0,v/10.13,/11.14,/5.15 4+ /10.23, V/11.16 + /11.24,/10.17 4 1/10.25) 8 <24 <35<43<51<59<67<75 2 E 2 2 4 6
4 1(0,0,0,1.13,1.14,1.15 4 1.23,1.16 4 1.24, 1.17 4 1.25 + 1.34) 34 < 111 < 172 < 206 < 249 < 292 < 344 < 369 2 VPA 1 2 2 6
5 1(0,0,0,1.12,1.14 +1.23,1.24,1.15 4 1.34, 1.27 4 1.36) 22 <25 <44 <47 <69 <72 <91 < 116 2 VPA 2 2 2 5
6 |(0,0,0,1.12,1.14 4+ 1.23,1.24,1.15 4 1.34,1.17 4 1.26 + 1.35) 18914 < 28370 < 37828 < 47284 < 66199 < 75657 < 85113 < 104027 | 2 VPA 1 2 2 5
7 1(0,0,0,1.12,1.13,1.24,1.25 + 1.34, 1.17 + 1.26 + 1.45) 20 < 29 < 38 < 49 < 58 < 78 < 87 < 107 2 VPA 2 2 2 4
8 | (0,0,0,5v/2.12,V/65.13,v/70.25 + v/91.34, v/65.16 + v/91.45, 6/2.17 + 61/2.26) 5<10<13<15<18 <28 <33<38 3 E 2 2 2 5
9 1(0,0,0,1.12,1.13,1.15 + 1.24,1.26 + 1.45,1.27 + 1.56) 18 <29 < 40 < 47 < 58 < 76 < 105 < 134 2 VPA 2 2 2 5
10 | (0,0,0,1.12,1.13,1.15 + 1.24, 1.25 + 1.34, 1.26 + 1.45) 20 < 29 < 38 < 49 < 58 < 78 < 87 < 107 2 VPA 2 2 2 4
11 | (0,0,0,1.12,1.13,1.15 + 1.23,1.25 + 1.34, 1.27 + 1.46) 5<10<13<15<18<23<28< 38 2 VPA 2 2 2 4
12 | (0,0,0,1.12, 1.13, 1.15+ 1.24,1.25+1.34, 1.17+ 1.26), 20 < 29 < 38 < 49 < 58 < 78 < 87 < 107 2 VPA 2 2 2 4
13 | (0,0,0,1.12,1.13,1.15 + 1.23,1.26 + 1.45, 1.17 + 1.46) 5<10<14<15<19<24<34<39 2 VPA 2 2 2 5
14 | (0,0,0,1.12,1.13,1.15,1.16 + 1.25 + 1.34, 1.27 + 1.46) 5<10<13<15<18<23 <28 <38 2 VPA 2 2 2 5
15 | (0,0,0,1.12,1.13,1.15 + 1.23,1.16 + 1.34, 1.27 + 1.46) 5<10<13<15<18<23 <28 <38 2 VPA 2 2 2 5
16 | (0,0,1.12,0,1.23,1.24,1.16 + 1.25 + 1.34, 1.17 + 1.35) T<8<15<16<23<24<31<38 2 VPA 2 2 2 5
17 | (0,0,1.12,0,1.14 + 1.23,0,1.16 + 1.25 + 1.34, 1.17 + 1.35) T<8<15<16<23<24<31<38 2 VPA 2 2 2 5
18 | (0,0,1.12,0,1.14 + 1.23,1.24, 1.16 + 1.25, 1.17 + 1.35) T<8<15<16<23<24<31<38 2 VPA 2 2 2 5
19 | (0,0,1.12,0,1.14, 1.15 + 1.23, 1.26 + 1.35, 1.17 + 1.36) 5<19<24<33<38<43<62<67 2 VPA 2 2 2 5
20 | (0,0,1.12,0,1.14,1.15 4+ 1.23,1.26 + 1.35, 1.17 + 1.36 + 1.45) 31 < 125 < 156 < 235 < 266 < 313 < 470 < 485 2 VPA 1 2 2 5
21 | (0,0,1.12,0,1.13 4+ 1.24,0, 1.15 + 1.34, 1.27 + 1.35 + 1.46) 18 <21 <39 <40 <65 < 72<91 <108 2 VPA 2 2 2 5
22 1 (0,0,1.12,0,1.13,1.15 4 1.24,1.26 4 1.35, 1.17 + 1.36) 11 <13 <24 <33<35<46<59<70 2 VPA 2 2 2 6
23 | (0,0,1.12,0,1.13,1.15 4 1.24,1.16 4 1.34, 1.27 + 1.36) 9<17<26<27<35<44<53<70 2 VPA 2 2 2 6
24 | (0,0,v/37.12,0,3v/5.13,/37.15 + v/37.24, 5.16 + 5.34, 21/10.26 + 21/10.35) 41 <71 < 112 < 123 < 153 < 194 < 235 < 265 2 E 2 2 2 5
25 | (0,0,1.12,1.13,0,1.15 4 1.23,1.16 4 1.24, 1.17 4 1.34) 5<14<19<24<28<33<38<43 2 EA 2 2 4 5
26 | (0,0,1.12,1.13,1.14,0,1.26 + 1.35,1.17 + 1.36 4 1.45) 1<11<12<13<14<15<26< 27 2 VPA 2 2 2 6
27 | (0,0,3v/2.12,4.13,1/19.14,0,3v/2.25 + v/19.34, /14.17 + 2.26 + +/14.35) 1<4<5<6<T7<8<11<12 2 E 2 2 2 6
28 | (0,0,1.12,1.13,1.14,1.23,1.26 + 1.35,1.17 + 1.36 + 1.45) 1<3<4<5<6<7<10<11 2 VPA 1 2 2 6
29 | (0,0,1.12,1.13,1.14,1.23,1.25 + 1.34,1.17 + 1.35) 1<4<5<6<7<9<1l<12 2 VPA 2 2 2 6
30 | (0,0,1.12, 1.13, 1.14, 1.23,1.25+1.34, 1.17+1.26+1.35), 1<3<4<5<6<7<9<10 2 VPA 1 2 2 6
31 | (0,0,v/10.12,2+/2.13,+/19.14,1/10.25 + v/19.34, +1/26.16 + /26.35, 6.27) 13<20<33<46<59<79<92<112 3 E 2 2 2 7
321 (0,0,1.12,1.13,1.14,1.15,1.25 + 1.34,1.26 + 1.35) 1<4<5<6<7<8<11<12 2 VPA 2 2 2 6
33 | (0,0,1.12,1.13,1.14,1.15 + 1.23,1.26 + 1.35,1.27 + 1.56) 1<3<4<5<6<7<10<13 2 VPA 1 2 2 7
34 | (0,0,1.12,1.13,1.14,1.15 + 1.23,1.25 + 1.34,1.27 + 1.46) 1<3<4<5<6<7<9<12 2 VPA 1 2 2 6
35 | (0,0,1.12,1.13,1.14,1.15 + 1.23,1.25 + 1.34,1.26 + 1.35) 1<3<4<5<6<7<9<10 2 VPA 1 2 2 6
36 | (0,0,1.12, 1.13, 1.14, 1.15,1.26+ 1.35, 1.17+ 1.45), 1<11<12<13<14<15<26< 27 2 VPA 2 2 2 7
37 1 (0,0,1.12,1.13,1.14,1.15,1.25 + 1.34,1.17 4 1.26) 1<4<5<6<7<8<1l<12 2 VPA 2 2 2 6
38 | (0,0,1.12,1.13,1.14,1.15 + 1.23,1.36 + 1.45,1.17 + 1.46) <k < R 13 M BB 2 VPA |1 2 2 7
39 | (0,0,1.12, 1.13, 1.14, 1.15+1.23,1.26+ 1.35, 1.17+ 1.45), 1<3<4<5<6<7<10<11 2 VPA 1 2 2 7
40 | (0,0,1.12, 1.13, 1.14, 1.15+1.23,1.25+ 1.34, 1.17+ 1.26), 1<3<4<5<6<7<9<10 2 VPA 1 2 2 6
41| (0,0,1.12,1.13,1.14,1.15,1.16 + 1.25 + 1.34, 1.27 + 1.45) 1<2<3<4<5<6<7<9 2 VPA 1 2 2 7
421 (0,0,1.12,1.13,1.14,1.15,1.16 + 1.25 + 1.34,1.27 + 1.36) 1<2<3<4<5<6<7<9 2 VPA 1 2 2 7
43 1 (0,0,1.12, 1.13, 1.14, 1.154+1.23,1.164 1.24,1.17+ 1.34), 1<3<4<5<6<7<8<9 2 EA 1 2 4 7
44 1 (0,0,0,1.12,0,1.15 + 1.23,1.16 + 1.34, 1.27 + 1.46) 5<T7<11<12<13<18<23<30 2 VPA 3 2 2 4
45 | (0,0,0,v/14.12, V14.13, V6.24, v13.25+V/13.34,V/14.17+ /13.45), 5<8<10<13<15 <21 <23<28 2 E 3 2 2 4
46 | (0,0,1.12,0,1.14,1.15,1.26 + 1.35,1.17 + 1.36) H11<12<13<14<15<26 <27 2 VPA 3 2 2 5
47| (0,0,0,v/5.13,v/5.14 + v/5.23,v/6.15 + v/6.24, V/5.16 + v/6.25, V/5.17 + /5.26) 1<2<5<6<7<8<9<10 3 E 2 3 4 6
48 | (0,0,0,1.13,1.14 +1.23,1.15 + 1.24,1.16 + 1.25, 1.17 + 1.26 + 1.34) 4<8<28<32<39<49<53<57 3 EA 1 3 2 6
49 | (0,0,0,1.12,1.14 4+ 1.23,1.15 + 1.34,1.16 + 1.35,1.27 + 1.46) 9<17<18<26<35<44<53<70 3 VPA 2 3 2 6
50 | (0,0,1.12,1.13,1.14 + 1.23,1.25 + 1.34, 1.351.17 + 1.26 + 1.45), 1<2<3<4<5<7<8<9 3 VPA 1 3 2 6
51 | (0,0,v/15.12,v/14.13,V/15.14,v/15.25 + v/15.34, V14.16 + v/14.35,v/10.17 + /10.45) | 1 <20 < 21 <22 < 23 <43 < 44 < 45 3 E 2 3 2 7
52 | (0,0,1.12,1.13,1.14 + 1.23,1.25 + 1.34, 1.16 + 1.35, 1.17 + 1.26) 1<2<3<4<5<7<8<9 3 VPA 1 3 2 7
53 | (0,0,1.12,1.13,1.14 + 1.23, 1.15 + 1.24, 1.16 + 1.25 + 1.34,1.17) 1<2<3<4<5<6<7<8 3 VPA 1 3 2 7

Table 4: 8-dimensional nilsoliton metric Lie algebras-Nullity 2-3




