ON OSTROWSKI-MERCER INEQUALITIES FOR DIFFERENTIABLE CONVEX
FUNCTION
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ABSTRACT. In this note, for differentiable convex functions, we prove some new Ostrowski-Mercer
inequalities. These inequalities generalize an Ostrowski inequality and related inequalities proved
in [3,5]. Some applications to special means are also given.

1. INTRODUCTION

The study of different forms of fundamental inequality has been the subject of great interest for well
over a century. A variety of mathematicians, interested in both pure and applied mathematics. One
of the various ones mathematical basic discoveries of A. M. Ostrowski [15] is the following classical
integral inequality:

Theorem 1. Let f : [1,00) — R is differentiable functions on (1,00) and f € L]a,b], where a,b €
[1,00) with a < b. If |f' ()| < M, then we have following inequality:

M | (z—a)’+(b—=z)?
=] |

(1.1)

f@)- 5 [ o :

Ostrowski inequality has applications in quadrature, theory of probability and optimization, sto-
chastic, statistics, information and the theory of integral operator. A number of scientists have con-
centrated over the last few years on Ostrowski type inequalities for bounded variation functions, see
for example [4,6,8,9,17,18]. Until now, a significant number of research papers and books have been
published on Ostrowski inequalities and their numerous applications.

In literature, the well-known Jensen inequality [13] states that if f is a convex function on an interval
contains in x,, then

j=1 j=1

In convex functions theory, Hermite-Hadamard inequality is very important which was discovered by
C. Hermite and J. Hadamard independently (see, also [10], and [16, p.137])

(1.3) f(a;b><bia/abf(x)dw<f(a);_f(b)

where f: I — R is a convex function over I and a,b € I with a < b. In the case of concave mappings,
the above inequality satisfies in reverse order.

The following variant of Jensen inequality, known as the Jensen-Mercer, was demonstrated by
Mercer [12]:
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Theorem 2. If f is a convex function on [a,b], then the following inequality is true:

(1.4) f a+bfZijj gf(a)Jrf(b)—Z)\jf(zj)

for all z; € [a,b] and \; € [0,1] with Z)\j =1.
=1
In [11], the idea of Jensen-Mercer inequality has been used by Kian and Moslehian, and the following
Hermite-Hadamard-Mercer inequality was demonstrated:

(1.5) f(a—i—b—m;y) < y%x " Fla+b—t)ydt
f(a—&-b/—x)—i—f(a-i-b—y)
- 2
< flay+ o) - TOEIW

where f is convex function on [a,b]. For some recent studies linked to Jensen-Mercer inequality, one
can consult [1,2,7,14].

Inspired by this ongoing studies, we develop some new Ostrowski type inequalities by using the
Jensen-Mercer inequalities for differentiable convex functions.

2. OSTROWSKI-MERCER INEQUALITIES

New Ostrowski-Mercer inequalities are obtained for differentiable convex functions in this section. For
this, we first give a new integral identity that will serve as an auxiliary to produce subsequent results
for advancement.

Lemma 1. Let f : [a,b] — R be a differentiable function on (a,b). If f € La,b], then for all
x,u1,u2,v € [a,b] and t € [0,1], the following equality satisfies:

(2.1) (v—u1)2/0 tf’(m+a—(tu1+(1—t)u))dt—(u2—v)2/0 L (24 b — (tus + (1 — 1) v)) dt

z4+a—uq z+b—v

f(t)dt+/ F @) dt] .

x+b—us

= w—w)f(e+a—u)+ (ug—v) f(x+b—uy)— [/

+a—v

Proof. 1t is enough to remember that

(2.2) I = (v—u1)2/0 L (24 a— (tuy + (1= £) 0)) dt

1
f(u27v)2/0 tf (x+b— (tug + (1 —t)v)) dt

= (U7u1)2I17(u27v)2I2.

Using the integration by parts, we get the equalities

1
(2.3) I = / tf' (x+a— (tup + (1 —t)v))dt
0
_ fleta—w) 1 erau
— — ) /xm_v ft)dt
and
1
(2.4) I, = / tf' (x+b— (tug + (1 —t)v)) dt
0
_ fla+b—uy) 1 etb-v
a (ug —v) * (ug — v)2 ~/z+b—u2 Fie)d.

We obtain the resulting equality (2.1) by placing the equalities (2.3) and (2.4) in (2.2). O
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Remark 1. If we set uy = a, us =b and v =z in Lemma 1, then Lemma 1 reduces to [5, Lemma 1].

Theorem 3. We assume that the conditions of Lemma 1 hold. If the mapping |f'| is convex on [a, b,
then we have the following inequality

rta—uy z4+b—v
(25) <”‘“1>f<x+a—ul>+<w—v>f<x+b—u2>—[/ f(t)dt+/ f(t)dj
rt+a—v z4+b—us
= %[(U_u1)2{3(‘f/(33)|+|f’(a)|)—2|f’(u1)|_|f’(v)‘}

+(uz = 0)* 3(If (@) + |f (B)) = 2f (w2)] — |f (v)l}] :

Proof. Taking modulus in Lemma 1 and from Jensen-Mercer inequality, we have the inequality

T+a—uy r+b—v
(v—w)fx+a—u)+ (ug—v) f(x+b—uz)— l/ﬂav f(t)dt+/£+bu2f(t)dt]
< (v—u1)2/0 L (24 a— (tus + (1— £)0))] dt
1
+(u27fu)2/0 EIf (2 +b— (tug + (1 —t)v))| dt
< (11—141)2/O tllf @I+ 1f (@) =t (u)] = (L =) [f' (v)[] dt
+(U2—v)2/0 tlf @)+ 1 O = t1f (u2)l = 1 =) [ (v)]] dt
= - B @I+ @D 21 ()] - 1 @)}
+ (w2 = o) 3 (@) + £ ®))) = 21f (u2)| = |’ (v)l}}
which ends the proof. O

Corollary 1 (Ostrowski-Mercer Inequality). In Theorem 3, if we choose |f’ (t)| < M for allt € [a,b],
then we have the following Ostrowski-Mercer inequality

Tt+a—uq r+b—v

(2.6)

<vul>f<:c+au1>+<u2v>f<m+bu2>[/ fwa+ [

r+b—us

£t dt]

+a—v
M
< 5 ((v —u1)? + (ug — v)2) .
Proof. The result can be easily obtained by using |f' (z + a — (tu; + (1 —t)v))| < M
and |f' (z+b— (tug + (1 —t)v))| < M. O

Remark 2. If we consider u; = a, us = b and v = x in Corollary 1, then inequality (2.6) reduces to
(1.1).

Remark 3. If we consider u; = a, us = b and v = x in Theorem 3, then inequality (2.1) reduces
to [5, Theorem 3].

Theorem 4. We assume that the conditions of Lemma 1 hold. If the mapping |f’|*, ¢ > 1 is convex
on [a,b], then we have the following inequality

T+a—uq x+b—v
(2.7) (vul)f(eraul)Jr(uQv)f(erbug)[/ f(t)dtJr/ f(t)dt]
r+a—v T+b—usg
1 2 / q 1 q / q 1 e
— (v —u1)" (2 T 2 a)l’ — u)| — v 1
S2(1+p)p[( )T I @)+ 20 (@) = [ ()] = [ (v)])

+ (2 =) 21f @]+ 21 ) — 1 @)~ 17 (0)]%) 7]

1,1 _
where;—i—;—l.
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Proof. From Lemma 1 and Holder’s inequality, we have the inequality

T+a—uq x+b—v
(2.8) (vul)f(:chaul)Jr(uQv)f(a;eruQ)l/ f(t)dtJr/ f(t)dt]
r+a—uv r+b—us
1
< (v—u1)2/ t)f (x4a— (tu; + (1 —t)v))|dt
0
1
+@Q—vf/‘ﬂf@+b—ﬁw+%l—@mﬂﬁ
0
1 5 1 :
([ es) ([ eee-tmen0ir)
< W m)(ét ¢ A\f@+a (buy + (1— 1) 0))|" dt
2 ([ )i<1 , q>q
_ P b— - d
+ (uz —v) <jé Pt Jé (@b — (tus + (1 — t) )| dt
From Jensen-Mercer inequality, we have the inequality
T+a—uy z+b—v
(v—ul)f(:c+a—u1)+(u2—v)f(x—i—b—uz)—[/ f(t)dt+/ f(t)dt}
r+a—v T+b—usg

< - ([ ea) ([ 07 @F s @F -1 - a- o1 W @)
+m—w2Aﬂ%y<AUfmf+f@“%WWﬁ“ﬂfﬂwwﬂﬁy
—¥v—u2 ! )9 /a—'uq—'vq%
= S 0T @I 2l @l -1 )l -1 o))
F(uz =) Q2IF @I +217 0)] - I @]~ | @)[")7]
which finished the proof. O

Corollary 2. In Theorem 4, if we choose |f'(t)] < M for all t € [a,b], then we have the following
Ostrowski-Mercer inequality

T+a—uq x+b—v

(v—u)fx+a—u)+ (ug—v) f(x+b—us) — [/

M
< m ((v —up)® + (ug — v)2) .

f@ﬁ+/

T+b—usg

f@ﬂ

+a—v

Proof. The result can be easily obtained by using |f' (z +a — (tu; + (1 —t)v))| < M
and |f (z+b— (tug+ (1 —t)v))] < M. O

Remark 4. If we consider uy = a, us = b and v = x in Corollary 2, then Corollary 2 reduces
to [3, Theorem 3 (for s =1)].

Remark 5. If we consider u; = a, us = b and v = x in Theorem 4, then we have the following
1mequality

b
waﬁfa/faMt
1

= z—a) (If @I +1F @])7 + (b—2)* (1f @ +1F B)I)7] .
ST a T e (@IS @)+ = (@ 17 0]

T =
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Theorem 5. We assume that the conditions of Lemma 1 hold. If the mapping |f'|*, ¢ > 1 is convex
on [a,b], then we have the following inequality

zta—uq T+b—v
(2.9) (v—ul)f(x+a—u1)+(u2—v>f(x+b—u2)—V f(t)dt+/ f(t)dt]
r+a—v x+b—us
< 5 lw-w) (3(f’(x)l“+|f’(a)lq)3—2f’(ul)lq—f’(v)lq>q

(g~ v)? (3 U @I + 17 OF) = 211 )" - | <v>|q>q

Proof. From Lemma 1 and well-known power mean inequality, we obtain the inequality

r+a—uq x+b—v
(=) f (@ +a—u)+ (us—v) f (z+b—us) — VHH f(t)dt+/z+b_u2f(t)dt]
1 1-3 1 H
< (vul)Q(/O tdt) </0 t|f’(x+a(tu1+(1t)v))|th>
1 -2 1 3
+(u2—v)2</0 tdt) (/O t|f’(m+b—(tu2+(1—t)v))|th>
From Jensen-Mercer inequality, we obtain that
(v—u)fx+a—u)+ (ue—v) f(x+b—uz) — [/w+a—u1f(t) dt+/z+b—vf(t) dt]
r+a—v T+b—usg
1 - 1 3
< - () C([elr @i @F el @l - a-ols @ )
w0 ([Ca) ([l @ 1@ ol @l - 0= 01f 0 @)
a3 @I 1 @) =218 @) — 1 @) )
= 3 (v—u1) 3
+ (ug =0 (3 (@ +157 ) ~217 ()l = <v>|‘1) q
which finishes the proof. O

Remark 6. In Theorem 5, if we choose |f' (t)| < M for allt € [a,b], then we recapture the inequality

(2.6).

Remark 7. If we consider u; = a, up = b and v = x in Theorem 5, then we have the following
imequality

b
|f(as>—bfa/ (o)t

e lu_a)? (Q'f’ @I +1f” W); ) (2|f’ @) +1f (b)|q>é] |

2(b—a) 3 3

Remark 8. In the previous inequalities, by setting r = aT'H’, one can acquire multiple midpoint type

inequalities. Furthermore, it leaves the specifics to the interested reader.
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Theorem 6. We assume that the conditions of Lemma 1 hold. If the mapping |f'|?, ¢ > 1 is concave
on [a,b], then we have the following inequality

x+b—v

r+a—uy

(2.10)

f@ﬁ+/

+a—v T+b—usg

o)l

Proof. From Lemma 1 and Holder’s inequality, we have the inequality

(v—ul)f(x—i—a—ul)—i—(uQ—v)f(x—i—b—uQ)—[/ f(t)dt]

revnd O TRy AR
pp

{(U —up)”

where%—i—%: 1.

rt+a—uy r+b—v
(2.11) (vul)f(:chaul)Jr(uQv)f(a;eruQ)l/ f(t)dtJr/ f(t)dt]
r+a—v r+b—us
< @—uﬁiﬂtﬁ%x+a—@mﬁ%l—ﬂ@ﬂﬁ
1
+@vaf[;ﬂf@+bf@w%{1f®@Mﬁ
< (v—mf(l;ﬂﬁ>p<é f%x+a—@mﬂ%1—ﬂvﬂqﬁ>q

+ (up —v)° </01tpdt>; </Ol|f'(:c+b—(tu2+(1—t)v))th>}1.

Since | f’|? is concave mapping, therefore from inequality (1.5), we have

(2.12) /Ju%x+a—@m441—ﬂvnwﬁg f<x+a—“1+”>q
0 2

and
1 Uy + v q

(2.13) /|f’(x+b—(tU2+(1—t)v))\‘1dt§ f’(:c+b— 2 )
0 2

We obtain the resulting inequality (2.10) by placing the inequalities (2.12) and (2.13) in (2.11). O

Remark 9. If we consider u; = a, us = b and v = = in Theorem 6, then Theorem 6 becomes [3,

Theorem 5 (for s =1)].

3. APPLICATION TO SPECIAL MEANS

For arbitrary positive numbers a,b (a # b), we consider the means as follows:

(1) The arithmatic mean
a+b

Ala,b) = 5

(2) The generalize logarithmic mean

pptl _ gptl

<b—a><p+1>] - P ERV{-L 0}

Ly (et = |

(3) The identric mean
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Proposition 1. Let a,b > 0, then we have the following inequality
|(v—u1) (24 (z,a) —u1)" + (ug — v) (2A (z,b) — uz)"

—[(v=—uw) L} (z+a—u,z+a—v)+(ug—v) L, (x+b—v,x+b— us)l

< % ((v —uy)? + (ug — v)2) .

Proof. The result can be directly obtained by applying Corollary 1 to the convex function f (z) = z",
> 0.There are omitted the information. O

Proposition 2. Let a,b > 0, then we have the following inequality
\ln (24 (z,0) — up)"" ™) +In (24 (z,b) — ug) ™"
— [ln](m—l—a —u,r+a— v)(U*ul) +ln[(x+b— v, +b— u2)(u27v)”

1 (v— u1)2 (ug — v)2

(1+p)% x—|—a——”12+” a:—|—b——“22+”

Proof. The result can be directly obtained by applying Theorem 6 to the concave function f (z) = Inzx.
There are omitted the information. g
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