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1 | INTRODUCTION AND MAIN RESULT

In the present paper, we consider the zero dissipation limit of the one-dimensional micropolar equations

o+ (pu), =0,
(pu), + (pu* + p), = (eu(O)u,),.
(pw), + (puw), + e£Ow = (€AO)0,),.
(PE), + (puE +up), = (x(0)0,), + (eu(@uu,), + €A0)w,)? + e£O)u?,

(1.1)

here, x € R, t > 0, the unknowns are p(x,t) > 0, u(x,t), w(x,t) and 6(x,7) > 0 which denote the mass density, fluid velocity,
microrotational velocity and absolute temperature respectively. Moreover, p = p(p, 0) is pressure and E = e + % is the specific
total energy, where e = e(p, 0) is the specific internal energy. The transport coefficients are e u(0), €£(0), e A(6) and ex(6) which
represent the shear viscosity, microrotation viscosity, angular viscosity and heat conductivity coefficient, respectively.

The micropolar equations was firstly introduced by Eringen™ to deal with a class of fluids which exhibit certain microscopic
effects arising from the local structure and micro-motions of the fluid elements. Which enables us to consider some physical
phenomena that cannot be explained by the classical Navier-Stokes equations. Due to its importance in mathematics and physics,
a lot of attentions have been payed to the micropolar fluid systems:

e For one dimensional case, Mujakovié¢ studied the local existence and global existence to an initial-boundary value problem
in™% Later, Cui and Yin" studied the stability of the composite wave for the inflow problem on the micropolar fluid
model, Jin and Duan"™ verified the stability of rarefaction waves for 1-D compressible viscous micropolar fluid model.
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Recently, Duan™ proved the global solutions for the one-dimensional with zero heat conductivity case, and Su verified
the global existence and low Mach number limit of a compressible micropolar fluid in“**.

o For multidimensional case, Mujakovié et al.” considered the three dimensional spherical symmetry solution and
derived its local existence, global existence, uniqueness and large time behavior. Recently, Gong and Zhang™ obtained
the nonlinear stability of planar rarefaction wave to 3D micropolar equations.

SR,

Its worth to note that all the results obtained above are made in the absence of vacuum. When vacuum is under consideration,
due to the difficulties caused by the vacuum, the corresponding results are much less, the global well-posedness of strong
solutions was verified in®”® for the one dimensional case. Chen et al.** derived the global weak solutions with discontinuous
initial data and vacuum and the blow up criterion with vacuum. Very recently, Gong™ studied the zero dissipation limit to
rarefaction wave with one-side vacuum state for the 1D micropolar equations with constant transport coefficient.

The most results which we mentioned before concern the case that the transport coefficients are constants. While according
to the Chapman-Enskog expansion theory for rarefied gas dynamics (cf."), the transport coefficients should be temperature-
dependent. In this paper, in the base of the former study™, we further concerns the zero dissipation limit to the rarefaction wave
with vacuum for the system (CTl) with temperature-dependent transport coefficients. We assume the transport coefficients in
system (IT) satisfy e > 0 and

uO) = pu, 0%, EO)=¢&,0% A0) =160 «(0)=«k06" (1.2)

for positive constants y,,&;, 1,, k; and @ > 0. For simplicity, we take y; = §; = A, = k; = 1 in the rest of this paper. In this
article, we consider the ideal polytropic gas, that is, the pressure p(p, #) and internal energy e(p, 8) are given respectively by the
relations

p= Rpb = Ap” exp

S, e=—2_g+const, (1.3)
y—1 ry—1

where y > 1 is the adiabatic exponent, A and R are positive constants, and .S is the entropy. We take A = R = y — 1 for
simplicity. The second law of the thermodynamics shows that

de =045+ Lap. (1.4)
2

As we all know, if w(x,t) = Const and &, = 0, the system (1) reduces to the compressible Navier-Stokes equations, and
further more, tends to the inviscid Euler equations in formally if we take e — 0 :

p; + (pu), =0,
(pu), + (pu* + p), =0, (1.5)
(pE), + (puE +up), =0.

In fact, the zero dissipation limit of viscous flows with basic wave patterns is one of the important problems in the theory of
the compressible fluid. For the Navier-Stokes equations, there have respectable results been obtained in this aspect: For the
researches without vaccum, the readrs may please refer to™ %51 and references therein. When vacuum appears, Jiu, Wang
and Xin"™ verified the large time asymptotic behavior toward rarefaction wave for solutions to the one-dimensional isentropic
compressible Navier-Stokes equations with density-dependent viscosity for general initial data. The zero dissipation limit of the
full compressible Navier-Stokes equations to a rarefaction wave with vacuum was proved by Li and Wang™ for the constant
transport coefficients case and by Li, Wang and Wang"® for the temperature-dependent transport coefficients case. While, so far,
the related researches on zero dissipation limit of micropolar equations are few.
The Euler system (X3) is a strict hyperbolic system of conservation laws with three distinct eigenvalues:

Apu, S) =u—/p,(p,S), A(pu,S)=u, A(p,u,S)=u+/p,(p,5),

the corresponding right eigenvectors to A, and A, are:

rp.u, S) = (=p.1/p, 0, S>,0)t, i, S) = (p.7/p, 5. S>,0)t,

and 4;,r;(i = 1, 3) satisfy the following relation
ri(p,u,S)- V(p’u,s)/li(p, u,S)#0, i=1,3, V6>0.
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Define two 1-Riemann invariants by

P
Vp,(z, S
20 =u+ / WAL 2=, (1.6)
Z
and two 3-Riemann invariants by
P
Vp:(z,5)
2V =u- / %dz, P =, (1.7)

such that
V(p,u,S)Zl(-J)(p’ u,S) r(pu,S)=0, i=13, j=1,2, Vp>0.

Now we give a description of the rarefaction wave connected to the vacuum to the compressible Euler equations (I3)(cf. ™).
For definiteness, 3-rarefaction wave will be considered. If we study the compressible Euler system (IT3) with the Riemann initial
data

p(x,0)=0, x<0,

(p,u,0)(x,0) = (p,,u,,0,), x>0,

where the left side is the vacuum state and p, > 0, u_, 6, > 0 are prescribed constants on the right state, and then the Riemann

problem (I3), (LX) admits a 3-rarefaction wave which connected to the vacuum on the left side. In fact, the 3-Riemann invariant

Z;')(p, u,0), (i = 1,2)is constant in (x, ¢) along the 3-rarefaction wave curve, then we can obtain the velocity u_ = Zgl)(p U0,

being the speed of the fluid coming into the vacuum from the 3-rarefaction wave. This 3-rarefaction wave (p", u", 03)(&), (¢ = f)
connecting the vacuum p = 0 to (p,, u,, 0,) is the self-similar solution of (IC3) defined by

(1.8)

PR () =0, ¢ <A0,u,0)=u_,

Ay(p" (). 03 (8),07(8)) = & ul<E<Apyuy0,), (1.9)
A3(pysuy,0,), &> As3(py,uy,0,),
and
=007 (8).u3(8),07(8) = 23°(0,u_.0) = 2 (p,.u,.0,). (1.10)

Thus we define the momentum m"™ = m"3(&) and the total internal energy e’s = ¢"3(£) of a 3-rarefaction wave by

3 "3(E), "3 > (),
mi () 1= pru=(),  (p ) (1.11)
0, (p==0),
and
. 3(£)0" (&), 3 > 0),
() = p(&)o(), (o ) (1.12)
0, (p==0).
Motivated by ™™™ we want to construct a sequence of solutions (p¢, m¢,e¢ := p°0¢, we)(x,t) to the micropolar equations

() which converge to the 3-rarefaction wave (p'2, m™, es = p20"3,0) <§> defined above as € tends to zero. By selecting the
well-prepared initial data depending on the viscosity of the micropolar equations, the influence of the initial layer can be ignored.
Now we state our main result as follows:

Theorem 1. Let (p"3,m'"s, e73)(’t—‘) be the 3-rarefaction wave defined by (I'9)-(II2) with left side is vacuum state. Then there
exists a constant ¢, > 0 small enough such that for Ve, 0 < € < ¢,, we can construct a family of global smooth solutions
(¢, mE, €€ := p°O°¢, we)(x, 1) to the micropolar equations (1.1) satisfying
() o N
(p€ - pr39 mg - mr3’ e — er3’ wé‘)’ (pf(? mi? e€x9 w;) € C0(09 +m; Lz(R))5
(us,. 05 ,ws ) € L%(0, +o0; L*2(R)).
(ii) As € tends to zero, (p¢, m¢, €€, w)(x, t) converges to (p'3, m’s, €', O)(f) pointwise except at (0, 0). Furthermore, for any
given positive constant /, there exists a constant C; > 0, independent of €, such that

s () -t ()

()

sup
>l

<Cie’|Ine|, sup

< Cie?| Inel,
>l ©

L L

(1.13)

sup
>l

<Ce|lne|, sup|lw(-, )| - < Cie’,
Le 1>l
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with the positive constant a is given by
1

a= - (1.14)
18y + 12a(y — 1)

Remark 1. Some remarks can be summarized as follows:

e In the vacuum region, according to the state equation (I3) and the fact that the entropy .S is constant along the 3-
rarefaction wave, the absolute temperature also becomes zero. Thus, not only the density but also the temperature cause
the degeneracies in the vacuum region and so the temperature-dependent viscosities do, which causes the terms for the
temperature-dependent viscosities becomes very complicated.

e Its seen that, the decay rate a given in (I'Td) is monotone decrease as the parameter « grows. Which is consistent with
observation that the viscosity effect becomes weaker as « grows due to the vacuum.

In this paper, the main difficulty is how to control the degeneracies caused by the vacuum in the rarefaction wave. To overcome
this difficulty, firstly, because of the invalidation of Lagrangian transformation when the fluid involves vacuum, we have to
deal with the micropolar equations in Eulerian coordinates. Then, we cut off the 3-rarefaction wave with vacuum along the
rarefaction wave curve to control the convection terms, which couples by density and velocity. More precisely, for any v > 0 to
be determined, the states (p,,u,,0,) = (v,u,, s v~y and (p +» U, 0,) can be connected by the cut-off rarefaction wave, where
u, can be determined uniquely by the definition of the 3-rarefaction wave curve. Finally, the desired solution sequences of the
micropolar system (ITl) can be established around the approximate rarefaction wave.

On the other hand, compared to the previous works™ for the micropolar equations with the constant viscosity case, some new
difficulties occur for the full micropolar equations (ITl) with temperature-dependent viscosities considered in the present paper.
For example, as we mentioned in the remark, the terms for temperature-dependent transport coefficients become very compli-
cated, see (B228). Actually, the derivative estimates of the perturbation of the density depend on the second-order derivative
estimates of velocity with some degenerate coefficients is quite different from the constant viscosity case in™. So, we choose
the convergence rate a suitably as in (CI4) and choose the parameters v, 6 as in (BZ2) to close the a priori estimates and yields
the desired result.

The rest of this paper is arranged as follows: In section 2, we construct a smooth 3-rarefaction wave which approximates the
cut-off rarefaction wave based on the inviscid Burgers equation, and then we give some properties of this approximate rarefaction
wave. In section 3, we show the proof of the a priori estimates. Finally, the Theorem [ is proved in section 4.

Notations. Throughout this article, LI(Q)(1 < g < oo) denotes the usual Lebesgue space with norm || - || ;,, and H*(Q)(k € N)
represents the usual Sobolev space with norm || - ||,. We take || - || := || - || 2, for simplicity. And C(I; H?(€2)) denotes the
space of continuous functions on the interval I with values in H?(Q) and L?(I; H?(Q)) represents the space of L>-functions
on I with values in H?(Q).

2 | RAREFACTION WAVE

As we all know, there is no exact rarefaction wave profile for the micropolar equations (1), and the following approximate
rarefaction wave profile satisfying the Euler equations was motivated by Matsumura-Nishihara®™ and Xin®".
Consider the Riemann problem for the inviscid Burgers equation:

W, +WW, =0,
W., x<0, 2.1
weo=4 = @D
W, x>0.

If W_ < W, the Riemann problem (Z1l) admits a rarefaction wave solution W"(x,t) = W’ ( ’I—‘) given by

w_, S<W.,
wr (f) = 5 wo<icw, 2.2)
W, S2xW,
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However, W" <f) is only Lipchitz continuous. We construct the smooth approximate rarefaction wave W/ (x, 1) by the solution
of following Burgers equation (see™)
{m+wm:a

. 2.3)
W(x,0) = W;(x) = W) =

W, +W._ +W+W,ta h—
2

here 6 > 0 is a small parameter to be determined. We choose 6 = ¢ in (B-2) with a given by (IT4), then the solution W (x, 1)
of the problem (Z3) is given by

Wi(x, 1) = Wi(xp(x,1),  x = xo(x, 1) + Ws(x(x,1)). 24)
And Wj(xy(x, 1)) has the following properties.

14,31

Lemma 1. (See"™"") The problem (Z3) has a unique global smooth solution VV;(z, x) for each 6 > 0 such that
L W_<Wix,0)<W,.,oW/x,1)>0,forxeR,7>0,6>0.
2. Foranyt > 0,6 > 0 and p € [1, o], the following inequalities hold:

1 _
10 W) C.0ll e SCOW, = W)@ +1) "

141
102WL Dl <CG+07' G+, 25)
PWFCD| _49W;C.0
0x2 -5 ox

3. There exist a constant 6, € (0, 1) such that for 6 € (0, 6], t > O,
WS¢0 =W /Dl e < C87HIn(1 +1) + | In 8],

The proof of Lemma [ can be found in Xin®", so we omit the details here for brevity.

As mentioned in the introduction, in order to overcome the degeneracies caused by the vacuum, we will cut off the 3-rarefaction
wave with vacuum along the rarefaction wave curve. In detail, for any v > 0 to be determined, we can obtain a state (p , u,,0,) =
(v, uv,esv}"l) which belongs to the 3-rarefaction wave curve, where S = S, = —=(y — Dlogp, + logd,. In fact, the 3-
Riemann invariant Zg)(p, u,0),(i = 1,2) is constant along the 3-rarefaction wave curve, and u, can be computed by u, =

2(31) (pystiy, 0.) + 2, /L]vy—les Then we can construct a new 3-rarefaction wave (p,’,u.’, 6,°)(&), (€ = %) that connect the

states (p,,u,,0,) = (v,u,,e _vy‘l) and (p,,u,,0,) and which can be expressed exactly as

(v, u,, eSvrh, §<%@uwéw4x
A3(p) uit,0,)(E) = & Mu, SV <E< Aoy u,.0,), (2.6)
A3(py,uy, 0,), &> A(pp,uy,0,),
and
2000w, 00) = 2 v, V) = 20, 1. 0,). @2.7)
Correspondingly, the momentum and total internal energy can be defined by m.’ := pl’u.’ and e?f 1= p.*0)° respectively.

It is easy to see that the cut-off 3-rarefaction wave (p.’, m,’, e?f)(f) converges to the original 3-rarefaction wave with vacuum
(p3,m"s, e73)(§) in the sup-norm with the convergence rate v as v tends to zero. In fact, we have
Lemma 2. There exist a constant v, € (0, 1) such that for v € (0, v], t > 0,

(o7, my}, ) (/1) — (p", m"s, €3)(-/D)]| L < C.

Now, with the above preparation, we can construct the approximate rarefaction wave (g, s, i, 5 év’ﬁ)(x, t) of the cut-off 3-
rarefaction wave (p.*, m.’, 9”)(;—‘) to the compressible Euler equations (I3) by

W+ = i3(p+’ I/[+, 9+)7 W— = 23(‘/9 uvs eSV]/—l)’
W] (t,x) = A3(p, 5,8, 5,0, 5)(1, X), (2.8)

1), - — A 1 1 S y—
2By 58,5, 0,5)(t, %) = Z (0, 1y, 0,) = (v, u,, SV ).
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Here W/ defined in (Z4) is the solution of Burgers equation (Z33). From here on, for simplicity, we abbreviate (p, 5, i, 5, év) ), 1)
to (p, i1, 0)(x, t). Then, it’s easy to check that the approximate cut-off 3-rarefaction wave (3, ii, 0)(x, t) defined above satisfies
p + (pi), =0,
(pi), + (pi* + p), = 0, (2.9)
(E), + (5aE +p), = 0,
where E = &+ g, p = RpO. The properties of the approximate rarefaction wave (p, i, 0)(x, t) are listed in Lemma B as below.

T4,[(8,19

Lemma 3. (See ) The approximate cut-off 3-rarefaction wave (p, ii, 8)(x, t) defined in (ZZR) satisfies:

L a,(x,1) = 2 (W), > 0, forx € R, 120,

1 37 3— -
+ =P (@),

_ 1 _3r - 3 _
Px= e P e AN P = T e ¥ 3T
0, =/=L0%a, and G, = /=Ldra, + =@,
Y Y 2y
2. Foranyt > 0,6 > 0 and p € [1, oo], there exists a positive constant C such that
_ -1 —1+1
a0l SCW, = W) r(S+0 7,
g Ol <C@ + 171677,
3. There exist a constant 6, € (0, 1) such that for 6 € (0, 6], t > O,
H(p — a0 —07) (-,t)“Lm < Cs ' [In(1 + 1) + | n §]].

3 | A PRIORI ESTIMATES

3.1 | Reformulation of the problem
In order to prove the Theorem [, we consider the Cauchy problem () with the smooth initial data
(p°,us, 0%, w)(x,0), 3.1

and treat the global smooth solution (p¢, u¢, 8¢, w®) of system (I),(B-) as the perturbation around the approximate rarefaction
wave (p, i, 0, 0). For convenience, we reformulate the system by introducing a scaling for the independent variables
X t

y=% =L (3.2)
€ €

Then we denote the perturbation
(¢9 v, xs W)(y, T) = (p€ - ﬁ’ uG - I,_l, 9€ - é, w€ - 0)(x9 t)’

and assume _
(d)()’ W()9 ){0, w())(y) = (pé" ué" 96’ we)(x7 0) - (,57 ﬁ» 69 0)(x9 0)9

1
”(¢Ov WO’ /1/0’ wO)”iI'(R,dy) = 0(1)634‘7“.
For simplicity of notation, without causing confusion, the superscription of (p¢, u¢, 8¢, w°) will be omitted as (p, u, 8, w) from
now on. Then the system (I),(Bl) can be rewritten in form of (¢, v, y, w)(y, 7) as follows

. +py, tup,=—f,

Py, + puy, + (v = OB, + px,) — u@y,,
= —g+ pu(0),u, + () — uOmu,) .
1PW, + puw, + e*E@)w — AOw,, = 0, (3.4)

(3.3)

px.+puy,+ (@ —Dpby, — k@),
= —h+x(0),0, + ((k(©0) - x@)0,)  + uOus;,

(b, v, x,w)y,0) =0,
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where
f=ud+pw,
_ _ ]
g =—u@u,, + pyi, + (y — 1%@1—”¢, (3.5)
h =(y = Dpyi, + py0, — (0)0,, + AO)(w,)* + e*E(O)w?.

Next, we seek a global (in time) and bounded (in L* norm) solution (¢, v, y, w)(y, ) to the Cauchy problem (B4). Firstly, we

define the functional space
¢, € LX0,7,(e); L*(R)), }

_ (b, 1 w) € CO10, 7,(e)]; H'(R)),
XOmen = {(d”‘””‘ " 10 0,) € L2, 7y(e); H'(R))

with 0 < 7,(¢) £ 0.
Our main result can be stated as following:
Theorem 2. There exist positive constants ¢, and C independent of e, such that if 0 < ¢ < ¢, then the Cauchy problem

+00

sup / (ﬁy_zd)z + oy’ + pwt + p-z—ylz) dy + / / (9”wy2 + 5"_1)(3 + 5“wi) dydr
0 R

7€[0,+00)
R

+oo
+ / / [ﬁy(ﬁy_quz + ot + T )+ ezﬁ_“wz] dydr < Ce-%,

sup /—‘f’d +//_¢ dydr<C€3 =374 Ine| ™,

7€[0,4+00)
sup /(1// + 7, +w2)dy+//[(w +)( +wy

7€[0,+00)

//—(ll/ +;( +w )dydr<C€é

(B3),(B3),(B3) admits a unique global-in-time solution (¢, v, ¥, w) € X (0, +o00) satisfying

and
i dydr

where a is given by (I14).
Suppose the solution is exists in time interval [0, 7,(¢)]. Some a priori assumptions can be listed as follows, which will

used in the proof of Theorem D.
lw(, Dl <€,

be

sup  lpC, D)l 1= <€, sup
0<7<7,(€) 0<r<7,(€)
-1
sup [, Dl <77V sup JlwC o)l < € (3.6)
0<7<7,(€) 0<7<7,(€)
sup [y, 1,0 <1,
0<7<7(€)
where the positive constant a is given in (I'T4). We take
(3.7

v=¢lne|, 6=¢°

- - o L
in what follows. Then we have v > Ce®, where C = max{2, (2¢~%)"1} if € < 1. From the a priori assumptions (B8), it follows

that ~ 35 5 3
P P
Ccp<st Z<o<=,
2 =P=7%0 33Y=7
Actually, if € < 1, we have B
_ _ _ _ \Y P
p=p+d2p=llpllpe 25— Z”_EZE’
_ v _3p
p=p+dp<p+|dll-<pte §p+§s7,

(3.8)
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and noticed that 6 = ﬁy‘leS_ > v'~1eS, which can be obtained by the definition of rarefaction wave profile in (I_¥), we have

0=b4h20- gl 20— 25 S v 20
< 3—5

-2
Theorem [ can be proved by the standard method which is based on the local existence result combined with the a priori estimates
stated in proposition [II. Since the proof of the local existence of the solution to (B4) is standard, we omit the details here for
brevity. Now we will devote ourselves to prove the following a priori estimates.

_ _ _ B S
9=9+¢39+”¢”LmS9+€“(7_l)59+%v7_

Proposition 1 (A priori estimates). Lety > 1 and (¢, y, y, w) € X(0, 7,(¢)) be a solution to the system (B4), where 7,(¢) is
the maximum existence time of the solution satisfying the a priori assumptions (B6). Then there exists a positive constants €,
such thatif 0 < € < ¢,, then

7y(€)

sup / (772 + py” + pw* + 5° 7 y*) dy + / / <§”t//y2 + é"_l)(yz + éawi) dydr
0 R

7€[0,7,(¢)] 2
39
7(e) (3.9
+ / / [ﬁy(ﬁy_zqﬁz + o+ 7T )+ ezéawz] dydr < eé,
0 R
- 11(6) -
02(1 5 91+a 5 1—3ya 3
sup —ddy+ —-¢,dydr < €3 |Ine|™, (3.10)
wefon@1) 27 /Y
R 0 R
71(€)
sup /(l//2 + 2+ widy + / / [(1//2 + 2+ wdi, + @wz dydr
(0.7, ()] J y y y J y y vy p y
0 (3.11)
T (e) _
0“ 1
+ / / [;(wyzy + )(yzy + wiy)] dydt < €9,
0 R
where the positive constant a is given by (CT4).
The proof of proposition [ consists of several lemmas, the first one is the following basic energy estimates.
3.2 | Basic energy estimates
Lemma 4. Under the conditions of Proposition [ll, for 0 < 7 < 7,(¢) and € < 1 is small enough, we have
sup / (7772¢* + py’ + pw’ + 57 %) dy
7€[0.7(¢)]
R
71(e) (3.12)
+ / / (ﬁy(ﬁy_zcl)z + T )+ 5”1//3 + é“_lxi + é"wi + ezé"w2> dydr < €3
0 R
Proof. Firstly, we define the relative entropy-entropy flux pair (4, q) as
n=-0{pS—pS - Vx(pSlxx - X-X)}, G1%)
q=—0{puS — paS — Vx(pS)lxx - (Y -Y)},
where
2
X = (p,pu,pw,p (9+ E)) s
(3.14)

2
Y= (pu, pu* + (y — 1)pb, puw, pu <79 + %)) :
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Then we can obtain :
1= p0=0pS +p (5 =)0+ Slu—al| + (¢~ 150
= 2 2
(P py- | pw 5 [ O
=@y —-Dpfd | = |+ —+— +pb®| =),
(r—"Dp <p> > S tp <9>
q=un+( — D(u—a)pd — p0) — AO)ww,,
with
d(@#) :=n—Iny—1.
Through direct calculation, we get

n + 4, + Hi, + (0w + 60w’

=y (u(®)u,), + % H(O2 + % (x©)6,), ~ AB), 1,0,
where

H =p(u— ) +(y — 1)pb> (g) (& — 17000 (g)

-1 5
+1/ =8 ptu - <(y—1)1og3+log§)
14 p 0

0 0 1 > 0\’
>(1—e)p(u— L_t)2 +(y—1)pb lCI) <:> +@y-1DHd <:> - — <(y - l)loge + log :> ] R
0 0 dey p 0

with € > 0 to be determined later. Then we can derive that (see™)

H>C

_ 0 P
py’ + ¢ + :12] :
0

Then, integrating (B16) over R X [0, 7] and using (B) yields

/ (7772¢% + oy’ + pw’ + 577 %) (2. y)dy
R
T

na—1
0 ;(ywyw” dydr

[

g ;(| |(éyy, a§>| n |é"y/ayy| n

éa_l/zu/ﬁﬂ +

Where we used the fact that, for all y > 1, from (B33), we can get

—_y—2 _ _ _D—
/ (p{) by + Powy + Bowy + B 7;(3) dy <e'l’.
R

By Lemma B and Sobolev’s inequality, we have

T

Il =//|90t—1|’(éyy,ﬁi)|dyd‘[§cv1—}’/”(éyy,ﬁi))”Ll”){lll/Z”){y”l/ZdT
R 0

0
T

_ B+o(-p) 1 12
<Cv 4 /
[ i
0

1/2
dr

fa-1 Xy

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)
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T
2 4/3
1 ~ _ Gta)i-p+2 2/3
<= 01y || de+Cv 3 su V- 7)(“ / < > dr
24 / g OSTSE(E) T+6/e
0
- 2
1 — _Grat—p2 [ e \1/2
<= fa-1 dT+— su \prr ” 2 <_>
24 / o 24 0<T<1P(€) d o
0
T
<i/ Gy 2d1+— sup ||V p?2" 7;(” +e%
—24 Y 24 0<7<7(€)
0
where we have used the following fact
_Graa-pe2 [ e\ 1/2 1—aGy—1+a(y=1) _ Gral-p+2 1 .
v 2 (g) =Ce 2 |Ine| 2 <es, fe<xl.

For I,, by Cauchy’s inequality and Sobolev’s inequality, it holds that

T T
[2=//|§"y/ﬁyy‘dydTSC/||b7yy||L1 Iy 12w, 11 2d 2
R O

T

1 A \/_— 2 ay=1) 1 4/3 2/3
<— o« d Cv~ d
<o [ [V as e 3/(T+5/€> lwIP de
0 0
<1 / Vi, || de + v Vi ||2/3/ "
— * T v 3 su T
—24 ll/y OSTS‘E(E) 4 T+ 5/6
0
1 ~ 2 _ag=br1 e\ 1/2
<L [V || de+ L s +Cv (—)
24 / L] IR Y \/_"’” v \G
0
1 A \/_— 2 1
<L oy || dr+ L +eb
T24 / ! o<§l<1£(e) \/_W” .
0

where we used the following fact

a-n+l [ e\ 1/2 1—a@+a(y=1) _ @+l 1 .
Cv™ —<3> =Ce  : |Ine| > <e3, fexl.

D Ag—t 1 _ _
://’ui& zu/‘a’ydr ﬂ// ypwzdydT+Cv 7//uidydr
0 R 0 0 R
2
dydt + Cv™” d
oo ()
R

0

For I, we have

<L
24

o,

IA
N
~

- — 2 — €
a,py-dydr + Cv ”<g>

o,
R

For 1,,

il

L/ ”\/éa—lxy
0

wayLU|dydT <CV1 y”wuLoo//waydydT

dr

=24

2 2
dr + Vw3, / H Vow,
0




GUIQIONG GONG 11

dr

1 —
—4/ [V7=

T
2 2
dt + CyPe =1 g2a / H Y é“wy
0

2
> dr,

_ 3y—2a(r amon . 1.
CVTNG = e 2e D I 09070 < 7 ife < 1.

2
i | (] Ve

where we used the following fact

And for I,

=//|L_ly Ha I/YW 6%~ 3/2)(){ 6% IW){ 6% l/2w w)|dydr

/ﬁ‘ééu i I’\/Z_U(‘(

R

+]65 |> dydt

E
2 |

T

/ ‘%éa_;l i, |\/_1//|
0

05 1| + |||

63 y|>dydr

1
4

IA
)

o\

I/\

/ ‘v 249 1;{ +0%w )dydT+C //ﬁy(ﬁ2_7)(2+ﬁk//2+ﬁw2)dydr
R

1 e ~ _ o _ _
—4/ 9“wy2+6"’ 11y2+0”wi+uyp2 J’)(2+uy,m,t/2+uypw2>dydf,
0

where we have used the fact that

€5 = Cel | Ine| 7 < e'[Inel 7 < 2—14, ife<1.

Substituting all the above estimates into (B3.19), we can obtain (B—T2), that’s to say we have completed the proof of Lemma
a. O

3.3 | Estimates of higher order derivatives
In this subsection, we deduce some estimates on the higher order derivatives.

Lemma 5. Under the conditions of Proposition [ll, for 0 < 7 < 7,(¢) and € < 1 is small enough, we have

71(6)

6> » 6!+ 5 1/3=3ay _3
sup _—3d>ydy+ F(i)ydydTSe |Ine|™7, (3.21)
0 R

7€[0,7,(e)] P
R

and
7,(e)

sup / 2dy+-/'/< yl// +— 2y> dydr < €'/°. (3.22)
7€[0,7(e)]

Proof. First, differentiating the equation (B4), with respect to y and then multiplying the result by /42(9)% gives

# g}
<u2(9)2—py3> + (uz(mZ—pi) 2(9)WW¢
T y

¢ @? ) )
=- ;ﬂ(e)p—; (1, + 5w +25,p,) + 2—;3 [120), + 12 (O),u] .

(3.23)
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Multiplying the equation (B4), by y(é)% yields

_¢ 0, 1,9
(u(@%”) < (9)"’Z’ ) —u@w; + (- 1);4(9)—+(y— Du(d) yp -
T y

WP we o we v 7o ?
— W (0) ypy > + u(d) (—u 7+py v ‘P“y7y> +”(9)gp_zy
v, w¢ ~ oyl _
. S5by+ 7))

_ _¢
+ [(u(0) — u@u,] | u(e)p—j.

Adding the equation (B223) and (B=24)) together, and then integrating the result over R X [0, 7] we obtain

¢> o] by
/< <9> >dy+// ly—l)uw)—w—lm(m > y]d dt

R

@2 o,V b,
/ " (e(,)—+ MO, dv+ / / (u(ew ~ u(B)g— )dydr
Po

v _ ¢
/ / {uw) < - 1, 22 + 7, pj) =IO (B + By + 20,01 } dydr

//{ b, Z) W('b}dydr

e _ ¢
+ / / {u(9>ﬁy‘:—2(¢y+ﬁy>+ [(M(9)—ﬂ(9))uy]yﬂ(9)p—zy}dydf-
0 R

Then combining the Lemma B, (B3),, (B223), and the fact that
[(1(®) = u@u,| , =((u(O) = w@)w,y +1y,) + (67716, — 6°7'8 )y, + )
=((u(0) — u@)(w,, + i) +a (0 yy, + 0" y,a,
+O* ' =00y, + (0 — 6",

2

then we can obtain

/< 2(9)¢
R

T

2
+ PP+ Pyt + pwt + P >dy

+ / / <ﬁy(ﬁy_2d)2 + 0t + T )+ 9"1;/2 + 0% 1)(2 + 0"w2 + 20%w? + ¢2> dydt
p?
0

_3/¢0ydy+

¢, $,
+C / / [ KO3ty b+ 7,y ) + 1O ((0) = uw»uyy] dydz

+C //ﬂ(@)g dydr // L = (10, + 17(0) u)] dydt

v, ¢,
/ / [ @, i u@i,p—s= - 2u2<a>—3pwy] dydz

+C

(3.24)

(3.25)

(3.26)
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+C

+C

+C

+C

9

+c/
0

//{ @), W—z ] 'ywy(fy—u<é>yw(pwy+u¢y+uy¢+pyw)}dydr
p p
0 R
a—1 — a—1 a—1 d)
/ / { —u)p —+a[9 2yiy, 4+ (097 = 6°7") O, | u(é))—}dyd'r (3.27)
0 R
w2 r _ ¢, _
u(0), ¢ dydr|+C H(O0)—= (u0) — u@),, | dydr
P p?
R 0 R
et _ge-tyg - Py
// /4(0);4(0 (9 -0 )Gyuyy(O)E dydr
0 R

o,
o )(yy/y,u(H) > dydrt +Ces

w\

1
=) J 4 Cet T Ine| .

i=1

The terms on the right-hand side of (BZX2) will be estimates one by one as follows. From Lemma 2.3, (B6) and the Cauchy’s
inequality, it holds that

0a+1

by ‘ V9], ¢,||Vw||pdvdr

ay=D-y _

Ji SC// P2 i,
0 R

+C// ﬁa(}’—l)—}’ﬁy

—24//<'2

Qo+l

o«

dydr

+ 6” 2) dydT+C—// (7 %¢* + py?) dydr.

It from Lemma 2.1 and Lemma 2.3 holds that

Therefore, we have

and

pul < C <pT/EX ¥ ,sz—n-@) |

9a+l

Vo] + [Vow| + |V 1) dyde

T
3a(y -3y €
J, <C 2
0 R

T

1 07",
— dyd
24//p¢y”< >
0 R

a+1
J,=C //M(H)g dydr <2i//9 ¢2dydT+C//0" 1572¢%dydr.
R R

IA

/17 y2¢2+pu/ +7557y )dydr
R

0
From (B3),(Ef) and Lemma 2.3, it holds that

gl < C (6"

sc(é

-2
| + | + |54 + 177 0])

iy | + 1, (1wl + 57 2| + |57 ¢])).
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So, the last term in J; can be estimated by

//éa_lﬁ_2g2dyd7
0 R
2
Cv'l_y/”ﬁyy” dT-l-C// 0 5 (572 + oy + 57 ) dyd
0 0

€

<Ccv~'- 7 5 / / i, (72" + pw’ + 577y )dydr.
R

J<C // 20" dyd <cV‘£"’//—¢ dydz

<l éa+12dd if 1
S5 ﬁztbyyr, ife x1.

For J,, we have

And

T

J SC// ‘I9a+1 —2¢ H\/eau/y
Sa(y—D—r 7 fa+1 75— pa—
+C//{p‘” i, \/ 0o+ 5 2¢yH\/9 2
0 R
b/

ﬁa(y D— yu

dydr

|Vpwdydz

+C / 7T, |\ o5,
R
—a(y—1)—y = _ _
| [
a+1
S i& //9 ¢2dyd‘r

€ o e - s
+C%// (9 u/y +0 1)(y +uypw2+uypy 2¢2>dydr.
0 R

+ ﬁyﬁy/2> dydr

Similarly, J¢ and J; can be estimated as follows

J, < C//éa/Z—lp——l/ZlL_{y|’ éa+1/3—2¢y‘ I\/Ew‘dydr

1 9a+1 2 1-2r € [ _
2— qbydyd‘r +Cv 5 u,py-dydr,
0 R

and

T i d) i
hsC / / u(e))p—j(u(e)—u(e))wyydydr
0 R

a(y—1)— —
+5 2 oa, |\/5v/| ‘ Gawy’ } dydr
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1 o+t 0% 5 2zre-3-
Sﬂ Pz ¢ydydT+C 71//”)(0 °p dydr
0 R 0 R

Ja+1 ]
<31/ | v s 1 sup 11 / [ Zviaras
24 [0.7,()] 0.7, (e p
0 R R
1 6! 1-3y _1/6 6" ,
Sﬁ// 7 ¢ydydT+Cv e ?l[lyydydf.
0 R 0 R
Recalling Lemma 2.3 and (B), we can get
T, < 9a+l¢2d dr+C § 252 dydr
g < 24 L4y piydy
0 R
1 6 -2 ¢
2—// P*dydz +Cv ”uy Lt
0
1 ga +1 ) 2
3—4// ¢dydr+C<5y>.
0
And
a—1 (’b
Jy =C |a 0 )(llly,u(ﬂ) dydT
0 R
t
y — — 1/2 1/2
<ot [[Vaaa||Vimia| ] o "o
0
_ 2rta(y=1) : - _ \/__ ]/2 _— /2
= W[ |
0

T
2a(y—1) -1 ﬁ 2
<v |Ine| —yw* dydrt
p yy
0 R
g 4/3
2y+3a(y—1) 1 - -
+COv T |ln€|3/H\/92"‘p"3¢yH H\/m—l;(y

4/3 2/3
o] e

2

<v¥0=D|lne|” l// —v, dya'ﬂ:+L sup ’ 0% 53¢,
24 011(6)]
3
- 4/3 2/3
ool [ o
! 2
<v¥0=D|lne|” 1// u/ ,dydt + — sup ’ 0% 53¢,
24 071(5)]

3

dr

2 2
+ [V,

+ Cv 240D Ipe| /H é“—l)(y
0
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2

<v¥0=D|lne|” l//—l// dyd‘t'+L sup ’ 0% 53¢,
24 011(6)]
+ CyIrtalr= l)|1n€|e
! - 2
<V D e~ 1//—1// dydt + — sup ’ 02p3¢, || +€'7,
24 [0,’[1(6)]

where we have used the fact that
Cv‘27_4"(y_l)| Inele = Cel_(2y+4“(7_1))“| In e|]_27_4"(y_') <l ifex 1.

Plugging J, — J, into (B=X1), we can deduce
6 _ _ -
/ (Fqﬁi +py’ + pw’ + 5 7)(2> (z,y)dy
R

_ _ _ _ na+1
+ / / (ay(ﬁy—zqsz +py’ + 57 ) + 0%y + 0 ;{yz + 9“w§ + 20%w* + %qﬁi) dydrt

( Da(y— 1)|1n€| 1+Vl 3y 1/6 // 0 II/ dyd1_+c€1/3+(}’ 3)a|1n€| 3
D

In particular, it holds that

T
é2a él+a
sup /_—3d)2dy+// - P*dydr
welozen P07 Y
R 0 R
T
[14
C(vz"(y_l)llnel_l+v1_37€1/6)//%wyzydydr+C€1/3+(7_3)“|1ne|_3.

Next, we estimate the term [ fR - u/  dydz, firstly we note that

[(1(®) = u@)u,), = [1(0) — u(®)] (w,, + ) + 1(O), 1, — u(@),u

and take

p,0¢
g = —u(O)ii,, + pyii, + (y — 1) <py)( — yp ) :
then (B4), can be rewrite as

Py, + puy, + (v — D(O@, + px,) — u@y,, = -8 + u(0),u,,

multiplying (B30) by — Yo yields
v, v, G
7 - lllyl[/,r-i-u? +My7+T
T y

3
14

v v v

_yy y 2 Y
rary + @ - DO, + P){y)T - H(G)yuyT

Then integrating the last equation over R X [0, 7], we have

2 . ) 2
v ays u@w
= dy+ Al Y ) dydz
2 2 p

' v, ¥y
/—dy+// lg—”——+(y—1)(9¢ +01y) py H(6) u,— . dydr.

(3.28)

(3.29)

(3.30)

(3.31)

(3.32)
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Similar to J3, it holds that

(X

[1/4 I//

//gldydr _%// 2 dydt + Cv20- l)// 05 g?dydr
p p

0 R 0 0 R
9“

l// Wyydydr+Cv_2“(7 D=1 Eel/3

8 p 5

l/ o 13,

8

where in the last inequality we used the fact that

A

IA

_ _1)—y € _ _ _ —_1)— 1 _ _1)— .
Cy~2r=D 73 = Ce!7aUr+1+20G=D)| [ ¢|7200-D7 < Cer | Ine| 0 D7 <1, ife< 1.

And

T 3 T
v

[ [ -Savaz| <c [ w12, 1 ayas

0 R 0
1 éallliy _daG-1) 4 I
<= —dydt+Cv "3 sup |y, |13 0%y dydr
8 p 7€[0,7,(¢)] Y

0 R

1 da-D 1
§ —dydT+Cv 3€3,

where we have used the a priori assumptlons (B:ﬂ).
By direct calculation, we can get

v
/ / =1 (0, +rz,) %dydr
0 R
1 ; 9"’1//y2y ; suoty {0 5 )
<= —dydr +C g2 =D T2 4 9% 2 ) dydr
8 p oY y

0 R

1 90[ yy 0 a+1 %
g// —2dydr + Ccv - 1)// ¢2dydT+Cv 2a(y=D¢l/3

As for the last term on the right-hand of (B32), we have

%
/ / —u(Q)yuy%dydT
0 R

<C [ [ 05l (i) + 5, (021w, + 1) + 072 v

3
:=2Hi
i=1

By the Lemma 2.3, Cauchy inequality, the terms H; (i = 1,2, 3) will be estimates as follows:

H, =C//§“_l/3_l 'y/yyq/y;(y|dyd'r
0 R

(3.33)

(3.34)

(3.35)

(3.36)
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1/2 1/2
lwy 1=l Il d

et
0
_2rtagn) — 3/2
ot |V,
0
1 6" 1-3y—a(y—1) 2 a1 2
g —y; dydt +Cv sup [l x,lI° sup Ilwyll 0°' y,dydt
& p [0,7,(e)] [0,7,()]
1 O 2 dydz + CuI-r-et-D I/
8 p Wyy Y
0 R
1 0* , Lia
_g//?l//yydydr+es ,
0 R

s A

IA

IA

A

where we used the fact that

Cvl—3y—a(y—1)€]/6 < V1—3y—2a(7—1)€1/6 — €a| 1n€|1—3y—2a(y—1) < ea, ife <« 1’

and also, obviously, the last term in (8334) and (B33) can be controlled by €57 due to the above inequality. Similarly,

H, =C//9"_'/3_llwyy|ﬁy (021w, | + | x,|) dydt

_8//—1;/ dydr+//(é“wj+é“-1;(y2)(éﬁ)-1a§dydr
R

0

1 6° (€N 13
_g//?y/yydydr+Cv 7(5) €

0 R

6« 1
/ / ?wyzydydr +e€s.

0 R

A

IA
oo —

And likewise we have

e _ 1 0~ Sl ——1 -
H, =C//9 '5 llq/yyluidydfﬁg//fwyzydydT+C//9 15 1u‘y‘dydr
0 R 0 R 0 R
0” _ 0* _, [ €)?
_g//;l//yzydydr+Cv 7/ lla, ||4 dr £ = //;wyzydydr+Cv y(g)
0 R

A

| —

2 1
ydyd1+€3.

A
Ell%l

Hence, we can obtain

0
L
0 R
7,(€) 7,(e) "
/ 2dy+//< iy, +— >dydr<v‘2"(7 “//9 ¢§dydf+eé+”. (3.37)
76[011(6)

R
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Then, plugging (B331) into (329), we can derive that
71(€)

sup /—¢2dy+//
re[O,r(e)JR

T (e)

dydr<el/3 e ne|™, ife< 1.

Meanwhile, it holds that

sup / 2dy+ / /< yy/ +— )dydr<Cv 2ar=Dl/3=37a| | ¢| 737 4 ¢!/6+a
7€[0,7(e)]

1
=€6|1n€|—3y—2a(y—l) +€l/6+a < €6.

So we have completed the proof of Lemma B.

Lemma 6. Under the conditions of Proposition [ll, for 0 < 7 < 7,(¢) and € <« 1 small enough, we have
T](f)

2 o, 0" 5 0% 5 1/3
sup wydy + Uyw) + —w + —w,, dydr <e
rel0.01 ) , P P

w—i — ww, + uw—i + hwy +i “ + 1Oy, + O,
2 reT 2 p ) p p
T y

ezf(e)ywwy N ezf(e)wquﬁy N ezf(e)wwyﬁy

P P P
Integrating the last equation over R X [0, 7] gives

/ w_ﬁ e / / < i, 2y AO)w? . eZg(a)wi)dydT

2 2 p p

/_d .\ / /< 25(9) ww, e25(9>wwy¢y+e25<9)wwyﬁy>dydr
p p

1
=3l I + Z M,.
i=1

Proof. Multiplying (B4); b

For the first term on the right hand side of the equation (B-22), we have

25(9) ww _
// ddT<C€v1//0”19+)(ywwdydT
0 R
_ -1
i'//0"‘14)idyd1’+C€2v_(2"’+1)(7_1)_2 (% //€2 0*w’dydr
0 R

PO up D) / [ o zavas
0 R

.[;

7€[0,7,(€)]

_ -1
S%//@“widydr+ Ce?yCarDlr—D=2 2a <§> el/3
R

+ Cety—@tDr-D-22a1/3

(3.38)

(3.39)

(3.40)

(3.41)

(3.42)
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1 ) 1/3
—4//9 wydyd‘r+e s
R

where we have used the following two facts

-1
- —1)— € - - - - .
Ce2y~—Cathiy-1-2 Za( ) Ce!~4Qa+)y ')+l)|ln€| (Qa+D=1D+2) 1, ifexl,

and
C€4V—(2a+1)(y—1)—2€2a — C€4—a(2a+1)(y—1)| 1n€|—((2a+1)(y—1)+2) < l, ife < 1.

T 2 0
M, = //Mdyd,
0 R

i// ¢2dydr+C€4v_(2“+1)(y D2 sup ||w(-,r)||2m//é“widydf
24 7€[0,7(e)] 9 R

<i// d) dydT+C€4v—(2a+l)(y—l)—2€2a€1/3
0

Similarity,

24

1 2
5—4//_2¢dydr+e

where we have used the fact that

C€4V—(2a+l)(y—l)—2€2a - C€4—a(2a+l)(y—l)| 1n€|—((2a+1)(y—l)+2) < 1’ ife < 1.

T
2 -
e“E(@yww p
- / / D i
P
0 R
5 D _
<Cev 2 sup |lw(, D)1 aw,dydt
7€[0,7,(e)] 0 R

T
/ 0* idydr+C€4v_((7+1)+“(7_1)) sup ||w(-,1)||2w//ﬁidydr
R 0 R

For M, we have

7€[0,7,(e)]

IA
2]
o\

-1

IA
l\)l,_
=

é”‘widydr + Cety~rHhtal=) g2a (%)

B

IA
S

O\ S o\
P —

é“widydr +¢!/3,
where we have used the fact that
-1
-+ DHa-1) 2a < % ) = Ce U= [ o[ ~@-DHHD) < (13 if e < 1.
Substituting M| — M5 into (B-22), then we can derive (340). In other words, we have completed the proof of Lemma B. O]

Finally, we give the estimate of sup, ||y, || in the following lemma.
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Lemma 7. Under the conditions of Proposition [, for 0 < 7 < 7,(¢) and € <« 1 small enough, we have
Tl(e)

sup /)(yzdy+//< y)( +— yy)dydr<eé (3.43)
7€[0,7,(e)] 2 2

[(x(0) — x(8)) ey]y = [k(0) = k(0] (x,, + 0,,) + [x(0), — x(0),] 0,

Proof. Firstly, note that

and take
= —x(0)8,, + (v = Dpxi, + py, + AO)w,)* + €£©O)w?,

then (B4)), can be rewrote as
= _7 2
px:+puy,+(y— Dpby, — k() y,, =—h+x(0),0,+ y(G)uy, (3.44)

multiplying (B24) by —2 yields

2 2 2
Ay Ay A () 2
<7) —<)(y)(r+u7> +uy7+7)(yy
- y (3.45)

2

X X
=B (= D0, =+ (x©),0, + woxz) =
Then integrating the last equation over R X [0, 7], it holds that

y)( k(0 );{
/ —dy+ / / dydz
WX, Xy
/ 5 gy s / / <h—+<y D0, 23y~ =5+ [(0),0, + uoni] 2 >dydr (346)

1
=5 ll20, I + 2 N;
i=1

By virtue of (B3), (B=R) and Lemma B, we get that

(Rl <C (6710, +|a0,w| + [a,52] + 6712 + 2672

<C {é“’ ( 0'2 | +ﬁi) +i, (’51/2@/’ + |p‘wy|> + 0w’ + ezé“wz} .

From Cauchy’s inequality, it holds that
yydydr +C / / —dydt

N, = //hﬂdd < - //
ea 2
_8// dyd'r+Cv_1/(||uyy||2+||u I 1dT

+Cv- // “w? 2 + 20w )dydr+C//u (Pw* + p°77 0", dydr (3.47)
0 R
0%y 2
5%/ <§) +CvleP vt <§>€1/3
0 R
<l/ 9 }{ /3
<3 5
0 R
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2 |
Similarly, we have
1 i 2 dydrt + 20> *dydr
g 5 Xy P, y
0 R 0 R (3.48)

N, = //(y—l)@wy)(yydydr <
0

1 6° , “2a(y—1) 1/3
gg//7)(yydydr+Cv .
R

0

By sobolev’s inequality, we obtain
[rowal r
y
N; = / / ——dyde| <€ / 12, 210, 12
0

1 —a(y—
: / / L ardr+ v [y Pl e
0

<
<l / / — 1, dydt + Cv V8 sup ly, || / / 1y 2dydr (3.49)
8 0 R 7€[0,7,] ’
1 0 , —da(y—1y/3 1/3
Sg —1,,dydt +Cv v
p
0 R
T
1 h* 1/9
Sg 7)(yydyd'r+€/ s
0 R P
where we have used the a priori assumptions (Bf), and in the last inequality we have used the fact that
P p quality
Cy4t=D3el/3 = Cv]mgy_])al ne|” == < ifex 1.
By the Cauchy’s inequality, we have

X
_ 2\ Ayy
N, = // (x(e)yey + M(G)uy) _p dydrt
0 R

SC//éa[_’_llﬂfyyl <0 )( +l[/ +u >dyd‘r:= ZO,-.

0 R
Now we estimate the terms on the right-hand side of (B30l) one by one. By the Sobolev inequality, it holds that
2

0, =//9“‘1/T1 |%yyxy2|dydfscv”2‘7/H\/é“ﬁ‘lxyy |, 4=
0

0 R
chl/z_y/"‘,éaﬁ_l)(yy
0

T 3
2-dy—a(y=1) — 2

<oV /H\/eaﬁ—l;(yy

0
1 6" , 2 dy—a(y—1) 6
2 / / L dvir+ o I 0=
0

0 R

2
Xyy

3
”)(y *dr

(3.50)
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1 0* , 2-4y—2a(y-1) 4 ga=1,2
<= —_)(yydydT+Cv r=ealy sup ”)(y” 0 ;(ydydr
8 P TE[O,TI(G)]
0 R 0 R
<! 8% 2 dydr + Cyrr20-Dgh
<3 5 Xy
0 R
1 6« 1
Sg//?;(yzydydr+€9,
0 R
where in the last inequality we have used the fact that
Cy?~4r—2alr= l)e3 = Ce?Jra(2 4r=20(=1)| 1p g 242001 < eé ife < 1.
Similarity, we have
o >—1 2 -1 pa 5—1 z
0, = 0%p I;(yyu/y'dydTSCv 2 00~ xyy ”q/y L dr
0 R 0
. - - 1 3
sz‘Z/H\/H“ﬁ‘lxyy Hwyy ) u/y”'dr
2+a(y 1) %=1 1 %
\ 05 1y, 05y, ||v1y dr
sl//e 23 dydr+Cv )/H G5t || e
8 p
0 R
1 6* , 6% , —2—a(y-1) 6
<= . . aly
_8//<ﬁ)(yy+ ﬁl//yy)dyd1+Cv “q/ H dr
0 R
Sl//eﬂf dydt + Leb + v 220D gup !w H // vydrdz
8 p 8 [Or (c)]
0 R
1 0 1! o saty—1) L
Sg// ?)(yzydydr+ §€9 + Cy 27200 =De5
0
1 0
Sg//?)(ydydr+el/9.
R
Recalling Lemma 2.3 and using the Cauchy inequality, it holds that
0, = //9“ |;(yy zdtdr <- // —1, dydr+c//é“ﬁ—1a‘y‘dydr
0 R
<1 O 2 ayar+cv [ a1 d
< | | vz +cy ||uy||L4 .
0 R 0
1 6«
sg//?)(yzydydr+el/9.
0 R
Substituting N; — N, into (B-2f) we can derive (343) immediately. So, we have proved the Lemma [1. O
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Therefore, combining Lemma B - Lemma [ together, we obtain (89), (310), (B1). It follows from (B9) — (B that if € is
suitably small, then y
1/2
sup 19 Dlle < V2 sup g0l |, 7

0<7<7(¢) 0<7<7(¢)

n2a
<C sup v_7_2"(7_1)//37_2¢2dy/%d’idy
R

0<7<7,(€)
R

1
—y— _n ! 1_ _ n
SC(V r=2e(r=D¢3 . 3 307|1n€| 37)

dr+3a(y=1) _ 2r+a-=1) 1
= Ce2r+i2ee-0) | Ine|™ " 2 < e®r12e0-D = ¢,

1/2
sup [l Dlle < V2 sup (w0l w0

0<7<7(€) 0<7<7(€)
1

4
<C sup |v ﬁwzdy/wzdy
0<7<7,(€) 2 R Y

s

1 1 _a 1
<C<v e* €9> =Ce5 4|lne|™ 3
24y+16a(y—1)-3
= (C e 1208r+12a(r-1) | 1n€| 4 < €]8/+12rt(y H = %
and

1/2
sup [l Dlle < V2 sup o)l o)

0<7<7(€) 0<7<7(€)

1
4

<C sup vl ﬁwzdy/widy

0<7<7(€)
R

s

1 1 _a 1
<C<v €3 69) =Ce5 4|Ilne|™?
24y+16a(y—1)-3
= (Ce 1208y+12a(r-1) | 11’1€| 4 < €lSy+12a(y—]) =4

swp G Olle V2 sup ol 1,600

0<7<7,(¢) 0<7<7,(€)
1

4
<C sup v_z/ﬁz_y)(zdy/)(idy
0<7<x(e)

R
<C<v 6‘3 eé)

12y +8a(y—1)-3
= Cetsrine-0 | Ine|” 2 < €18y+12u(y b = =Da

im A

1_a _1
=Ce> 2|Ilne| ™2

Therefore, the a priori assumptions (B-f) are proved if € < 1. We have completed the proof of the Proposition [I.

It is easy to see that, in the maximum time interval [0, 7, (¢)], the a priori assumption (Bf) are worse than that we have obtained
the a priori estimates (B9)-(B-Il). On the basis of these a priori estimates, we claim that 7,(e) = oo. In fact, if 7,(¢) < o0, we
can using the local existence result at time 7 = 7,(¢) again, and then we can find another time 7,(¢) > 7,(¢) so that the solution
satisfies the assumptions (B-f) in the time interval [0, 7,(e)] which contradicts the assumption that 7, (¢) is the maximum time.
So, we can extend the local solution to the global solution in [0, co) for small but fixed €.

4 | PROOF OF THEOREM 1

In this section, we prove Theorem [. Actually, there only left ('T3) with a given in (I”T4) need to be proved. By Lemma [,
Lemma B, PropositionDland v = €| In €| and 6 = €7, it holds that for any given positive constant / there exists a positive constant
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C, which is independent of € such that

(1) = o (-)

su
P t

>l

‘ﬁ(-,n - (%)

L

< sup  |lp(, Dl g + sup
>l L»
+ sup

L~ 7€[0,+00)
e e
o (:)- ;)
s 1Y\ t

<C,(e”+6|Ine| +v) < Cie?| Inel,

=i ;)

similarly we have

sup
>l

- ()

<C sup (¢l + Wl ) + sup

L> 7€[0,4+00) >l
+ sup ||m}’ <—> —m <_>

1>l t t

<C,(e”+6|Ine| +v) < Cie?| Inel,

L

L

sup
12l

- ()

poc.n—e: (3)

<C sup (II)(IIL“, + ||¢||Lm) + su?
>

L 7€[0,400)

2()-0 ()

<C,(e”+6|Ine| +v) < Cie?| Inel,

L

+ sup
121

L

where we have used the fact that

sup || x( Dl e < CeV7 2 Ine| ™2 < €,
7€[0,+00)

and lastly,

sup [lw(-, )l < Cpe”.
1>

Thus the proof of Theorem [ is completed.
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