References
ACIA. 2004. Impacts of a Warming Arctic: Arctic Climate Impact Assessment – Cambridge Univ. Press.
Alpfjord, H. and Andersson, C. 2017. Nationell miljöövervakning med MATCH Sverigesystemet - utvärdering och resultat för åren 2013-2015, SMHI technical report nr. 2017/15 – SMHI, Norrköping, Sweden. [Swedish].
Akselsson, C. et al. 2008. The influence of N load and harvest intensity on the risk of P limitation in Swedish forest soils – Sci. Total Environ. 404: 284-289.
Bardgett, R.D. and Wardle, D.A. 2003. Herbivore-mediated linkages between aboveground and belowground communities – Ecology 84: 2258–2268.
Barrio, I.C. et al. 2017. Background invertebrate herbivory on dwarf birch (Betula glandulosa-nana complex) increases with temperature and precipitation across the tundra biome – Polar Biol. 40: 2265–2278.
Bates, D. et al. 2015. Fitting Linear Mixed-Effects Models Using lme4 – J. Stat. Softw. 67: 1-48.
Bernes, C. et al. 2015. What are the impacts of reindeer/caribou (Rangifer tarandus L.) on arctic and alpine vegetation? A systematic review – Environ. Evid. 4: 4.
Bjerke, J.W. et al. 2014. Record-low primary productivity and high plant damage in the Nordic Arctic Region in 2012 caused by multiple weather events and pest outbreaks – Environ. Res. Lett. 9: 084006.
Crutsinger, G.M. et al. 2008. Ecosystem retrogression leads to increased insect abundance and herbivory across an island chronosequence – Funct. Ecol. 22: 816–823.
Damgaard, C. 2019. A Critique of the Space-for-Time Substitution Practice in Community Ecology – Trends Ecol. Evol. 34: 416-421.
Dunne, J.A. et al. 2004. Integrating experimental and gradient methods in ecological climate change research - Ecology 85: 904–916.
Elmendorf, S.C. et al. 2015. Experiment, monitoring, and gradient methods used to infer climate change effects on plant communities yield consistent patterns - Proc. Natl. Acad. Sci. U.S.A. 112: 448-452.
Fisher, J.B. et al. 2012. Global nutrient limitation in terrestrial vegetation - Global Biogeochem. Cycles 26 : GB3007.
Fürstenberg-Hägg, J. et al. 2013. Plant Defense against Insect Herbivores – Int. J. Mol. Sci. 14: 10242-10297.
Galmán, A. et al. 2018. A global analysis of elevational gradients in leaf herbivory and its underlying drivers: Effects of plant growth form, leaf habit and climatic correlates - J Ecology 106: 413-421.
Gonsamo, A. et al. 2018. A robust leaf area index algorithm accounting for the expected errors in gap fraction observations – Agric. For. Meteorol. 248: 197–204.
Hagedorn, F. et al. 2019. Above- and belowground linkages shape responses of mountain vegetation to climate change – Science 365: 1119-1123.
Hagen, S.B. et al. 2007. Shifting altitudinal distribution of outbreak zones of winter moth Operophtera brumata in sub‐arctic birch forest: a response to recent climate warming? - Ecography 30: 299-307.
Haukioja, E. 2003. Putting the insect into the birch–insect interaction - Oecologia 136: 161–168.
Haukioja, E. 2005. Plant defenses and population fluctuations of forest defoliators: mechanism-based scenarios - Ann. Zool. Fenn. 42: 313-325.
Heliasz, M. et al. 2011. Quantification of C uptake in subarctic birch forest after setback by an extreme insect outbreak – Geophys. Res. Lett. 38: L01704.
Higgins, S.I. 2016. Defining functional biomes and monitoring their change globally – Glob. Change Biol. 22: 3583-3593.
Hugelius, G. 2014. Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps - Biogeosciences 11: 6573-6593
Jepsen, J.U. et al. 2008. Climate change and outbreaks of the geometrids Operophtera brumata and Epirrita autumnata in subarctic birch forest: evidence of a recent outbreak range expansion – J. Anim. Ecol. 77: 257-264.
Jepsen, J.U. et al. 2011. Rapid northwards expansion of a forest insect pest attributed to spring phenology matching with sub‐Arctic birch – Glob. Change Biol. 17: 2071-2083.
Jepsen, J.U. et al. 2013. Ecosystem Impacts of a Range Expanding Forest Defoliator at the Forest-Tundra Ecotone - Ecosystems 16: 561-575.
Jonasson, S. and Michelsen, A. 1996. Nutrient Cycling in Subarctic and Arctic Ecosystems, with Special Reference to the Abisko and Torneträsk Region – Ecol. Bull. 45: 45-52.
Jonsson, M and Wardle, D.A. 2008. Context dependency of litter‐mixing effects on decomposition and nutrient release across a long‐term chronosequence – Oikos 117: 1674–1682.
Karlsson, P.S. et al. 2004. Determinants of mountain birch growth in situ: effects of temperature and herbivory - Ecography 27: 659-667.
Kaukonen, M, et al. 2013. Moth herbivory enhances resource turnover in subarctic mountain birch forests? - Ecology 94: 267-272.
Kjelvik, S. and Kärenlampi, L. 1975. Plant biomass and primary production of Fennoscandian Subarctic and Subalpine forests and of Alpine willow and heath ecosystems - In: Wielgolaski, F.E. (ed.), Fennoscandian tundra ecosystems. Springer, pp. 111–120.
Körner, C. 2007. The use of ‘altitude’ in ecological research - Trends Ecol. Evol. 22: 569-574.
Kozlov, M.V. et al. 2015. Global patterns in background losses of woody plant foliage to insects - Global Ecol. Biogeogr. 24: 1126-1135.
Kozlov, M.V. and Zvereva, E.L. 2017. Background Insect Herbivory: Impacts, Patterns and Methodology - In: Cánovas, F. et al. (eds), Progress in Botany 79. Springer, pp. 313-355
Kristensen, J.A et al. 2018. The biogeochemical consequences of litter transformation by insect herbivory in the Subarctic: a microcosm simulation experiment - Biogeochemistry 138: 323–336.
Kristensen, J.A., et al. 2020. Below‐ground responses to insect herbivory in ecosystems with woody plant canopies: A meta‐analysis – J. Ecology 108: 917-930. DOI: 10.1111/1365-2745.13319
Körner, C. 1989. The nutritional status of plants from high altitudes – Oecologia 81: 379-391.
LeBauer, D.A. and Treseder, K. 2008. Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed - Ecology 89: 371-379.
Logan, J.A. et al. 2003. Assessing the impacts of global warming on forest pest dynamics, Front. Ecol. Environ. 1: 130-137.
Lovett, G.M. et al. 2002. Insect defoliation and nitrogen cycling in forests - BioScience 52: 335-341.
Madritch, M.D. and Lindroth, R.L. 2015. Condensed tannins increase nitrogen recovery by trees following insect defoliation - New Phytol. 208: 410-420.
Metcalfe D.B. et al. 2014. Herbivory makes major contributions to ecosystem carbon and nutrient cycling in tropical forests – Ecol. Lett. 17: 324-332.
Metcalfe, D.B. et al. 2016. Nutrient fluxes from insect herbivory increase during ecosystem retrogression in boreal forest - Ecology 97: 124-132.
Metcalfe, D.B. et al. 2019. Ecological stoichiometry and nutrient partitioning in two insect herbivores responsible for large‐scale forest disturbance in the Fennoscandian subarctic. Ecol. Entomol. 44: 118-128.
Nordell, K.O. and Karlsson, P.S. 1995. Resorption of Nitrogen and Dry Matter Prior to Leaf Abscission: Variation Among Individuals, Sites and Years in the Mountain Birch - Funct. Ecol. 9: 326-333.
Paaso, U. et al. 2017. Intrapopulation Genotypic Variation of Foliar Secondary Chemistry during Leaf Senescence and Litter Decomposition in Silver Birch (Betula pendula) – Front. Plant Sci. 8: 1074.
Parker, T.C. et al. 2016. Slowed biogeochemical cycling in Sub-arctic birch forest linked to reduced mycorrhizal growth and community change after a defoliation event - Ecosystems 20: 316-330.
Read, Q.D. et al. Convergent effects of elevation on functional leaf traits within and among species – Funct. Ecol. 28: 37–45.
Risch, A.C. et al. 2018. Size-dependent loss of aboveground animals differentially affects grassland ecosystem coupling and functions – Nat. Commun. 9: 3684.
Roslin, T. et al. 2017. Higher predation risk for insect prey at low latitudes and elevations - Science 356: 742–744.
Rousk, K. and Michelsen, A. 2017. Ecosystem nitrogen fixation throughout the snow-free period in subarctic tundra: effects of willow and birch litter addition and warming – Glob. Change Biol. 23: 1552–1563.
Rousk, K. et al. 2016. Nitrogen Transfer from Four Nitrogen-Fixer Associations to Plants and Soils - Ecosystems 19: 1491–1504.
Rubert-Nason, K.F. et al. 2015. Influence of Genotype, Environment, and Gypsy Moth Herbivory on Local and Systemic Chemical Defenses in Trembling Aspen (Populus tremuloides) – J. Chem. Ecol. 41: 651-661.
Ruohomäki, K. et al. 1997. Old mountain birches at high altitudes are prone to outbreaks of Epirrita autumnata (Lepidoptera: Geometridae) – Environ. Entomol. 26: 1096–1104.
Sandén, H. et al. 2020. Moth Outbreaks Reduce Decomposition in Subarctic Forest Soils - Ecosystems 23: 151-163.
Saravesi, K. et al. 2015. Moth outbreaks alter root-associated fungal communities in Subarctic mountain birch forests – Microb. Ecol. 69: 788–797.
Schleppi, P. et al. 2007. Correcting non-linearity and slope effects in the estimation of the leaf area index of forests from hemispherical photographs – Agric. For. Meteorol. 144: 236–242.
Schmitz, O.J. et al. 2018. Animals and the zoogeochemistry of the carbon cycle - Science 362: eaar3213.
Sjögersten, S. and Wookey, P.A. 2009. The impact of climate change on ecosystem carbon dynamics at the Scandinavian mountain birch forest-tundra heath ecotone - Ambio 38: 2-10.
Stark, S. et al. 2007. Ecological role of reindeer summer browsing in the mountain birch (Betula pubescens ssp. czerepanovii) forests: effects on plant defense, litter decomposition, and soil nutrient cycling - Oecologia 151: 486–498.
Sundqvist, M.K. et al. 2013. Community and Ecosystem Responses to Elevational Gradients: Processes, Mechanisms, and Insights for Global Change – Annu. Rev. Ecol. Evol. Syst. 44: 261-280.
Sundqvist, M.K. et al. 2014. Plant and microbial responses to nitrogen and phosphorus addition across an elevational gradient in subarctic tundra - Ecology 95: 1819-1835.
Tenow, O. and Bylund, H. 2000. Recovery of a Betula pubescens forest in northern Sweden after severe defoliation by Epirrita autumnata – J. Veg. Sci. 11: 855–862.
Thimonier, A. et al. 2010. Estimating leaf area index in different types of mature forest stands in Switzerland: a comparison of methods – Eur. J. For. Res. 129: 543-562.
Van Heerwaarden, L.M. et al. 2003. Current measures of nutrient resorption efficiency lead to a substantial underestimation of real resorption efficiency: Facts and solutions - Oikos 101: 664-669.
Virtanen, T. and Neuvonen, S. 1999. Performance of moth larvae on birch in relation to altitude,climate, host quality and parasitoids - Oecologia 120: 92-101.
Vitousek, P.M. et al. 2010. Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen–phosphorus interactions – Ecol. Appl. 20: 5-15.
Vowles T. et al. 2017. Expansion of deciduous tall shrubs but not evergreen dwarf shrubs inhibited by reindeer in Scandes mountain range - J. Ecol. 105: 1547-1561.
Wieder, W.A. et al. 2015. Future productivity and carbon storage limited by terrestrial nutrient availability – Nat. Geosci. 8: 441–444.
Zvereva, E.L. and Kozlov, M.V. 2019. Biases in studies of spatial patterns in insect herbivory - Ecol. Monogr. 89: e01361.
Zvereva, E.L. et al. 2012. Little strokes fell great oaks: minor but chronic herbivory substantially reduces birch growth - Oikos 121: 2036-2043.
TABLE 1